Exercise-1

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

Section (A) : Fundamental principle of counting A-1. There are 10 buses operating between places A and B. The number of ways a person can go from place A to place B and return to place A, if he returns in a different bus are (1) 90(2) 100 (3) 19 (4) 20 A-2. The number of numbers from 1000 to 9999 (both inclusive) that do not have all 4 different digits, is: (1) 4048 (2) 4464 (3) 4518 (4) 4536 A-3. 10 different letters of an alphabet are given. Words with 5 letters are formed from these given letters, then the number of words which have atleast one letter repeated is: (1) 69760 (2) 30240 (3) 99748 (4) none A-4. How many three digit even numbers can be formed using the digits 1, 2, 3, 4, 5 (repetition allowed)? (1) 10(2) 60 (3) 25 (4) 50 The number of three digit odd numbers, that can be formed by using the digits 1,2,3,4,5,6 when the A-5. repetition is not allowed, is (1) 60 (2) 108 (3) 36(4) 30 In a 12 storey house 10 people enter the lift cabin. It is known that they will leave the lift in pre-decided A-6. groups of 2, 3 and 5 people at different storeis. The number of ways they can do so if the lift does not stop upto the second storey is -(3) 1430 (4) 640 (1) 820 (2) 720 Section (B) :Permutation and combination of distinct objects gap and string method, Rank of a word B-1. The numbers 1, 2, 3, 4, 5 are written on five cards. How many 3 digit numbers can be formed by placing three cards side by side? (1) 60(2) 30(3) 12 (4) 10B-2. How many nine digit numbers can be formed using the digits 2, 2, 3, 3, 5, 5, 8, 8, 8 so that the odd digits occupy even positions? (1) 7560 (2) 180 (3) 16 (4) 60 B-3. 5 boys & 3 girls are sitting in a row of 8 seats. Number of ways in which they can be seated so that not all the girls sit side by side, is: (1) 36000 (3) 3960 (4) 11600 (2)9080In how many ways n books can be arranged in a row so that two specified books are not together B-4. (3) n! – 2(n– 1) (1) n! – (n– 2)! (2) (n– 1)! (n – 2) (4) (n – 2)n! In how many ways can 5 boys and 5 girls stand in a row so that boys and girls are alternate ? B-5. $(1) 2(5!)^2$ (2) 5 ! × 4! $(3) 5! \times 6!$ (4) $6 \times 5!$ The sum of the digits in the unit place of all numbers formed with the help of 3,4,5,6 taken all at a time is B-6. (3) 108 (1) 18 (2) 432 (4) 144

MATHEMATICS

B-7.	8 chairs are numbered choose the chairs from remaining. The number	from 1 to 8. Two women amongst the chairs mark	& 3 men wish to occupy ed 1 to 4, then the men s ts is:	one chair each. First the women select the chairs from among the
	(1) ⁶ P ₃	(2) ${}^{4}P_{3}$	(3) 20	(4) ⁴ P ₂ . ⁶ P ₃
B-8.	The number of signals t the other, is:	hat can be made with 3 f	lags each of different col	our by hoisting 1 or 2 or 3 above
	(1) 3	(2) 7	(3) 15	(4) 16
B-9.	How many cricket team in every team ?	s of members eleven ea	ch can be formed from 1	15 persons if captain is included
	(1) 364	(2) 1365	(3) 1001	(4) 1000
B-10.	A bag contains 9 balls m of ways of getting the s	narked with digits 1, 2 um of the digits on balls	9. If two balls are c as odd number is-	Irawn from the bag, then number
	(1) 20	(2) 29	(3) ³ C ₂	$(4) {}^{\mathfrak{s}}P_2$
B-11. Ir	n a football championshi number of teams partic (1) 17	p, 153 matches were pla ipating in the champions (2) 18	yed. Every team played hip is- (3) 9	(4) None of these
B-12 (() if seven consenants	8 four vowels, the number	(5) 5	(+) None of these
D-12. C	& two vowels, is (Assur	ne each ordered group o	f letter is a word)	
	(1) 210	(2) 462	(3) 151200	(4) 332640
B-13 .O	out of 16 players of a cric chosen so as to contair team be selected, is	ket team, 4 are bowlers at least 3 bowlers and a	and 2 are wicket keeper t least 1 wicketkeeper. T	s. A team of 11 players is to be he number of ways in which the
	(1) 2400	(2) 2472	(3) 2500	(4) 960
B-14. ⊺	he number of ways in wh if no husband & wife pla	nich a mixed double tenn ays in the same game is:	is game can be arranged	from amongst 9 married couple
	(1) 756	(2) 3024	(3) 1512	(4) 6048
B-15. S	Six married couple are si is exactly one married o	tting in a room. Number couple among the four is:	of ways in which 4 peop	le can be selected so that there
	(1) 240	(2) 255	(3) 360	(4) 480
B-16.	A box contains 2 white l the box if atleast one b	balls, 3 black balls & 4 re black ball is to be includ	d balls. In how many way ed in draw (the balls of	the same colour are different).
	(1) 60	(2) 64	(3) 56	(4) none
B-17.	Passengers are to trave the lower deck. The nu refuse to sit in the lowe	el by a double decked bu mber of ways that they o r deck, is	s which can accommoda can be divided if 5 refus	te 13 in the upper deck and 7 in e to sit in the upper deck and 8
	(1) 25	(2) 21	(3) 18	(4) 15
B-18. V	Vords are formed by arr number of words in whi come together. Then th	anging the letters of the ch vowels do not come t e ratio of m: n is-	word "STRANGE" in all ogether and 'n' be the nu	possible manner. Let m be the umber of words in which vowels
	(1) 5: 4	(2) 5: 2	(3) 7 : 2	(4) 2 : 5
B-19. T	he sum of all the numbe	ers which can be formed	by using the digits 1, 3, 5	5, 7 all at a time and which have
	(1) 16 × 4!	(2) 1111 × 3!	(3) 16 × 1111 × 3!	(4) 16 × 1111 × 4!.

Section (C) : Permutation and combination of alike objects

C-1. The number of permutations that can be formed by arranging all the letters of the word 'NINETEEN' in which no two E's occur together, is 5! 5! 8! 8! (2) $3! \times {}^{6}C_{2}$ (1) 3! 3! (3) $\overline{3!} \times {}^{6}C_{3}$ (4) $5! \times 6C_3$ C-2. 2m white identical coins and 2n red identical coins are arranged in a straight line with (m + n) identical coins on each side of a central mark. The number of ways of arranging the identical coins, so that the arrangements are symmetrical with respect to the central mark, is (2) ^{2m + 3n}Cm (4) $^{2m + n}C_{m}$ (1) $2^{m-2n}C_{2m}$ (3) $^{m+n}C_{m}$ C-3. The number of permutations which can be formed out of the letters of the word "SERIES" taking three letters together, is: (3) 42(1) 120 (2) 60 (4) none C-4. If all the letters of the word "QUEUE" are arranged in all possible manner as they are in a dictionary, then the rank of the word QUEUE is: (1) 15th (3) 17th (2) 16th (4) 18th C-5. Sum of all the numbers that can be formed using all the digits 2, 3, 3, 4, 4, 4, is: (3) 55555500 (1) 22222200 (2) 11111100 (4) 20333280 C-6. The number of words which can be formed from the letters of the word "MAXIMUM", if two consonants cannot occur together, is (1) 4! (2) 3! × 4! (3) 7 ! (4) None of these The number of words that can be formed by using the letters of the word 'MATHEMATICS' that start as C-7. well as end with T, is (2) 90720 (3) 20860 (4) 37528 (1) 80720 Section (D) : Division into groups, Selection of one or more objects, divisors, factorisation of numbers D-1. The total number of selections of fruits which can be made from 3 bananas, 4 apples and 2 oranges is, it is given that fruits of one kind are identical (1) 60(2) 59 (3) 286 (4) 70 D-2. Number of ways in which 9 different toys be distributed among 4 children belonging to different age groups in such a way that distribution among the 3 elder children is even and the youngest one is to receive one toy more, is : $(5!)^{2}$ 9! 9! 3! (2!) 8 (2) 2 (3) (1) (4) none

D-3. Number of ways in which a pack of 52 playing cards be distributed equally among four players so that each may have the Ace, King, Queen and Jack of the same suit, is:

	36!.4!	36!	
(1) (9!) ⁴	(2) (9!)4	(3) $\overline{(9!)^4 \cdot 4!}$	(4) none

- **D-4.** The number of ways in which the number 27720 can be split into two factors which are co-primes, is: (1) 15 (2) 16 (3) 25 (4) 49
- D-5. The number of ways in which the number 94864 can be resolved as a product of two factors is (1) 27 (2) 23 (3) 29 (4) 31
- **D-6.** The total number of proper divisors of 38808 is (1) 60 (2) 59 (3) 286 (4) 70

D-7.	The number of divisors itself, is:	of a ^p b ^q c ^r d ^s where a, b, c,	d are primes & p, q, r, s ∈	N, excluding 1 and the number
	(1) pqrs		(2) $(p + 1) (q + 1) (r + 1)$	(s + 1) - 4
	(3) pqrs – 2		(4) (p + 1) (q + 1) (r + 1)) (\$ + 1) - 2
D-8.	How many divisors of 2 (1) 10	1600 are divisible by 10 (2) 30	but not by 15? (3) 40	(4) none
D-9.	The sum of the divisors (1) $2^6 \cdot 3^8 \cdot 5^4 \cdot 7^3$ (3) $2^6 \cdot 3^8 \cdot 5^4 \cdot 7^3 - 1$	of $2^5 \cdot 3^7 \cdot 5^3 \cdot 7^2$, is	(2) 2 ⁶ . 3 ⁸ . 5 ⁴ . 7 ³ – 2 . 3 (4) none of these	3.5.7
Section	on (E) : Circular per	mutation		
E-1.	The number of ways in that all the white roses of	which 6 red roses and 3 come together, is	3 white roses (all roses o	different) can form a garland so
	(1) 2170	(2) 2165	(3) 2160	(4) 2155
E-2.	The number of ways in after the other, is:	which 4 boys & 4 girls ca	an stand in a circle so tha	at each boy and each girl is one
	(1) 3 !. 4 !	(2) 4 !. 4 !	(3) 8!	(4) 7 !
E-3.	12 guests at a dinner pa of the house have fixed always be placed next t (1) 20. 10 !	rty are to be seated along seats opposite to one ar o one another. The num (2) 22. 10 !	g a circular table. Suppos nother and that there are ber of ways in which the (3) 44. 10 !	ing that the master and mistress two specified guests who must company can be placed, is : (4) none
E-4.	The number of ways in flowers are never separ	which 8 different flowe ated, is : 8 !	rs can be strung to form	n a garland so that 4 particular
E-5.	(1) 4!. 4! Number of ways in which if the people of the same (1) 2. $(4!)^2 (3!)^2$	 (2) 4! (2) 4! (2) Indians, 3 Americans (2) and (3!)³. 4! 	(3) 288 s, 3 Italians and 4 French , is: (3) 2. (3 !) (4 !) ³	(4) nonenmen can be seated on a circle,(4) none
Sectio	on (F) : Multinomial	theorem, Distributi	ion of objects (Meth	od of fictitious partition)
F-1.	Number of positive integ (1) 25	gral solutions of x ₁ .x ₂ .x ₃ = (2) 26	= 30, is (3) 27	(4) 28
F-2.	Number of positive integ (1) 1360	gral solutions of xyz = 21 (2) 1260	600 is (3) 1460	(4) 1270
F-3.	If chocolates of a particle chocolates out of 8 different $^{13}C_6$	ular brand are all identica rent brands available in (2) ¹³ C ₈	al then the number of wa the market, is:. (3) 8 ⁶	ys in which we can choose 6
- 4				
F-4.	it is given that balls of s (1) 60	ame colours are identica	l (3) 286	(4) 70
F-5.	If chocolates of a particl chocolates out of 8 diffe	ular brand are all identicative for the second sec	al then the number of wa the market, is:.	ys in which we can choose 6
	(1) -06	(2) 08		
F-6.	The number of ways of it is given that balls of s (1) 60	selecting 10 balls from u ame colours are identica (2) 59	unlimited number of red, Il (3) 286	black, white and green balls is, (4) 70

F-7.	The number of ways of Physics, Chemistry and	f selecting 8 books from English, if books of the s	n a library which has 10 same subject are alike, is	0 books each of Mathematics, s:
	(1) $^{13}C_4$	(2) $^{13}C_3$	(3) $^{11}C_4$	(4) $^{11}C_3$
F-8.	Number of ways in whic (1) 27	h 3 persons throw a nori (2) 25	mal die to have a total so (3) 29	ore of 11, is (4) 18
Sectio	on (G) : Geometrica	I Problems		
G-1.	If 7 points out of 12 are (1) 185	in the same straight line, (2) 466	then the number of triar (3) 462	ngles formed is (4) 286
G-2.	The number of triangles (1) ⁸ C ₃	that can be formed by 5 (2) ${}^{8}C_{3} - {}^{5}C_{3}$	points in a line and 3 pc (3) ⁸ C ₃ – ⁵ C ₃ – 1	ints on a parallel line is (4) None of these
G-3.	The number of diagonal (1) 28	ls in a octagon will be (2) 20	(3) 10	(4) 16
G-4.	If a polygon has 44 diag (1) 7	onals, then the number (2) 11	of its sides are (3) 8	(4) None of these
G-5.	How many triangles car (1) 4	n be formed by joining for (2) 6	ur points on a circle (3) 8	(4) 10
G-6.	The number of straight straight line except 4 of (1) 183	lines that can be formed them which are in the sa (2) 186	l by joining 20 points no ame line (3) 197	three of which are in the same (4) 185
G-7.	There are n points in a	plane of which 'p' points	are collinear. How many	lines can be formed from these
	points (1) $(n-p)C_2$	(2) ${}^{n}C_{2} - {}^{p}C_{2}$	(3) ${}^{n}C_{2} - {}^{p}C_{2} + 1$	(4) ${}^{n}C_{2} - {}^{p}C_{2} - 1$
G-8.	The number of parallelo	grams that can be forme	d from a set of four paral	lel lines intersecting another set
	(1) 6	(2) 18	(3) 12	(4) 9
G-9.	The greatest possible n (1) 32	umber of points of inters (2) 64	ection of 8 straight lines a (3) 76	and 4 circles is (4) 104
Sectio	on (H) : Exponent o	f prime number p ir	n n, Derangement	
H-1.	Exponent of 3 in 20 ! is	-		
	(1) 6	(2) 4	(3) 8	(4) 9
H-2.	Number of zeros at the (1) 10	end of 45! is - (2) 4	(3) 5	(4) 6
H-3.	A person writes letters to can the letters be placed (1) 20	o five friends and addres d in the envelopes so tha (2) 40	ses on the corresponding at all letters are in the wro (3) 44	g envelopes. In how many ways ong envelopes? (4) 109
H-4.	A person writes letters to can the letters be place (1) 89	o five friends and addres d in the envelopes so tha (2) 40	ses on the corresponding at at least four of them ar (3) 44	g envelopes. In how many ways e in the wrong envelopes? (4) 109

Exercise-2

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

PART - I : OBJECTIVE QUESTIONS

1. The digits from 0 to 9 are written on slips of paper and placed in a box. Four of the slips are drawn at random and placed in the order. The number of outcomes possible are (4) 4¹⁰ (1) ¹⁰P₄ $(2)^{10}C_4$ $(3) 10^4$ 2. How many words can be formed by using all the letters of the word 'MONDAY' if each word start with a consonant. (1) 120 (2) 240 (3) 560 (4) 480 The number of natural numbers from 1 to 1000 having none of their digits repeated is 3. (1) 738 (2) 648 (3) 729 (4) 800 The number of words those can be formed by using all letters of the word 'DAUGHTER', if all the vowels 4. must not be together is (2) 36000 (3) 40320 (1) 3600(4) 414205. A 5 digit number divisible by 3 is to be formed using the numerals 0, 1, 2, 3, 4 & 5 without repetition, then the total number of ways in which this can be done is -(1) 36(2) 256 (4) 216 (3) 108 Let P_m stand for nP_m . Then the expression 1. $P_1 + 2$. $P_2 + 3$. $P_3 + \dots + n$. $P_n =$ 6. (2)(n+1)!+1(1)(n+1)! - 1(3) (n + 1)! (4) none The number of 6 digit numbers that ends with 21 (eg. 537621), without repetition of digits are 7. (1) 7. $^{7}C_{3}$ (2) 7. ⁷P₃ (3) 9. ⁷P₃ (4) 9. $^{7}C_{3}$ Two variants of a test paper are distributed among 12 students. Number of ways of seating of the students 8. in two rows so that the students sitting side by side do not have identical papers & those sitting in the same column have the same paper is : 12! (12)!(2) $\overline{2^5.6!}$ (1) 6! 6! $(3) (6!)^2$, 2 (4) 12 ! × 2 If all the letters of the word 'AGAIN' are arranged in all possible ways & put in dictionary order, then the 9. 50th word is (2) NAAGI (3) NAIGA (1) NAAIG (4) NAIAG 10. The number of ways of arranging the letters AAAAA, BBB, CCC, D, EE & F in a row if the letter C are separated from one another is: (3) 14 ! (3) 3 ! 3 ! 2 ! 12! 13 ! 13 ! (1) ¹³C₃. 5! 3! 2! (2) 5! 3! 3! 2! 5! (4) 11. 11. There are 3 white, 4 blue and 1 red flowers. All of them are taken out one by one and arranged in a row in the order. The number of different arrangements possible is (flowers of same colours are similar) (1) 12 (2) 8(3) 8! (4) 280 12. The number of different possible permutations using all the letters of the word "MISSISSIPPI", if no two I's are together is (1) 7150 (2)7350(3) 7249 $(4) \ {}^{8}C_{4}$

MATHEMATICS

Permutation and Combination

- **13.**In a unique hockey series between India & Pakistan, they decide to play on till a team wins 5 matches.
The number of ways in which the series can be won by India, if no match ends in a draw is:
(1) 126
(2) 252
(3) 225
(4) none
- 14.The number of ways of selecting 11 players from 15 players, if only 6 of these players can bowl and the
playing 11 must include atleast 4 bowlers is
(1) 540(2) 1080(3) 280(4) 1170
- **15.** The number of ways in which 5 X's can be placed in the squares of the figure so that no row remains empty is:

16. In a conference 10 speakers are present. If S₁ wants to speak before S₂ & S₂ wants to speak after S₃, then the number of ways all the 10 speakers can give their speeches with the above restriction if the remaining seven speakers have no objection to speak at any number is:

10!

(1)
$${}^{10}C_3$$
 (2) ${}^{10}P_8$ (3) ${}^{10}P_3$ (4) $\overline{3}$

17. In a cricket match against Pakistan, Azhar wants to bat before Jadeja and Jadeja wants to bat before Ganguli. Number of possible batting orders with the above restrictions, if the remaining eight team members are prepared to bat at any given place, is

(1)
$$\frac{11!}{3!}$$
 (2) ${}^{11}C_3$ (3) $\frac{11!}{3}$ (4) none of these

18. Seven different coins are to be divided amongst three persons. If no two of the persons receive the same number of coins but each receives atleast one coin & none is left over, then the number of ways in which the division may be made is:
(1) 420 (2) 630 (3) 710 (4) none

19. The number of ways in which 200 different things can be divided into groups of 100 pairs is:

(1) (1. 3. 5 199) 200 !		$(2)\left(\frac{101}{2}\right)\left(\frac{102}{2}\right)\left(\frac{103}{2}\right)$	$\left(\frac{200}{2}\right)$ $\left(\frac{200}{2}\right)$
(3) 2 ¹⁰⁰ (100)!		(4) All of these	
The number of ways in top corner, if it is given	which an insect can mo that it can move only ups (2) ¹⁶ Co	ve from left bottom corn side or right, along the lin (3) ¹⁵ Co	er of a chess board to the right es is- (4) ⁸ Co
(1) 04	(2) 0_8	$(3) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(4) 02
In how many ways 144	00 can be resolved into p	product of two factors ?	
(1) 16	(2) 32	(3) 64	(4) 128
In how many ways the	number 10080 can be w	ritten as product of two c	coprime factors ?
(1) 2	(2) 4	(3) 8	(4) 16
The number of ways in	which 5 beads, chosen f	rom 8 different beads be	threaded on to a ring, is:
(1) 672	(2) 1344	(3) 336	(4) none
	(1) (1. 3. 5 199) $\frac{200 !}{2^{100} (100) !}$ The number of ways in top corner, if it is given (1) ${}^{8}C_{4}$ In how many ways 144 (1) 16 In how many ways the (1) 2 The number of ways in (1) 672	(1) (1. 3. 5 199) $\frac{200!}{2^{100} (100)!}$ The number of ways in which an insect can motop corner, if it is given that it can move only ups (1) ${}^{8}C_{4}$ (2) ${}^{16}C_{8}$ In how many ways 14400 can be resolved into p (1) 16 (2) 32 In how many ways the number 10080 can be w (1) 2 (2) 4 The number of ways in which 5 beads, chosen f (1) 672 (2) 1344	(1) (1. 3. 5 199) $\frac{200!}{2^{100} (100)!}$ (2) $\left(\frac{102}{2}\right) \left(\frac{103}{2}\right)$ (3) $\frac{200!}{2^{100} (100)!}$ (4) All of these The number of ways in which an insect can move from left bottom corn top corner, if it is given that it can move only upside or right, along the lin (1) ${}^{8}C_{4}$ (2) ${}^{16}C_{8}$ (3) ${}^{15}C_{8}$ In how many ways 14400 can be resolved into product of two factors ? (1) 16 (2) 32 (3) 64 In how many ways the number 10080 can be written as product of two conditions of tw

The number of ways in which 5 persons can sit at a round table, if two of the persons does not sit together is
(1) 12
(2) 24
(3) 60
(4) 72

25.	The number of ways in are together is	which four men and three	ee women may sit around	d a round table if all the women
	(1) 144	(2) 720	(3) 120	(4) 24
26.	Seven persons includin B is always between A a	g A, B, C are seated on a and C ?	a circular table. How mai	ny arrangements are possible if
	(1) 5040	(2) 24	(3) 720	(4) 48
27.	In a shooting competition ways in which he can so	on a man can score 0, 2 core 14 points in 5 shots	or 4 points for each sho , is:	t. Then the number of different
	(1) 20	(2) 24	(3) 30	(4) none
28.	The number of negative	e integral solutions of equ	uation $x + y + z = -12$ is	
	(1) 54	(2) 53	(3) 120	(4) None of these
29.	The total number of pos	sitive integral solutions of	$15 < x_1 + x_2 + x_3 \le 20$ is	
	(1) 635	(2) 645	(3) 685	(4) None of these
30.	The number of ways in persons, each receiving	which 15 identical apples none, one or more is:	s & 10 identical oranges	can be distributed among three
	(1) 5670	(2) 7200	(3) 8976	(4) none of these
31.	The number of non-neg	ative integral solutions o	f x₁ + x₂ + x₃ + x₄ ≤ n (wh	nere n is a positive integer) is
	(1) ⁿ⁺³ C ₃	(2) ⁿ⁺⁴ C ₄	(3) ⁿ⁺⁵ C ₅	(4) none of these
32.	The number of integers (1) 8550	which lie between 1 and (2) 5382	10 ⁶ and which have the (3) 6062	sum of the digits equal to 12 is: (4) 8055
33.	There are 12 points in a	a plane of which 5 are co	ollinear. The number of d	listinct quadrilaterals which can
	(1) 210	(2) $^{7}P_{3}$	(3) 10 ^{.7} C ₃	(4) 420
34.	Number of derangemer and odd digits occupy o	nt of all the digits of num odd places is	ber 1234567 such that e	even digits occupy even places
	(1) 12	(2) 14	(3) 16	(4) 18

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : ASSERTION/REASONING DIRECTIONS :

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.

<u>(n + 1)!</u>

A-1. Statement-I: $\overline{(n-1)!}$ is divisible by 6 for some $n \in N$.

Statement-II: Product of three consecutive integers is divisible by 3!.

A-2. Statement-I: If a, b, c are positive integers such that a + b + c ≤ 8, then number of possible values of the ordered triplets (a, b, c) is 56

Statement-II : The number of ways in which n identical things can be distributed into r different groups is ${}^{n-1}C_{r-1}$

A-3. Statement-I : If N is number of positive integral solutions of $x_{1.}x_{2.}x_{3.}x_{4} = 770$, then N is divisible by 4 distinct primes.

Statement-II : Prime numbers are 2, 3, 5, 7, 11, 13,

- A-4. Statement-I : The maximum number of points of intersection of 8 unequal circles is 56.
 Statement-II : The maximum number of points into which 4 unequal circles and 4 non coincident straight lines intersect, is 50.
- A-5. Statement-I: If there are six letters L₁, L₂, L₃, L₄, L₅, L₆ and their corresponding six envelopes E₁, E₂, E₃, E₄, E₅, E₆. Letters having odd value can be put into odd value envelopes and even value letters can be put into even value envelopes, so that no letter go into the right envelopes, the number of arrangement will be equal to 4.

Statement-II : If Pn number of ways in which n letter can be put in 'n' corresponding envelopes such

that no letter goes to correct envelope, then $P_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + \frac{(-1)^n}{n!}\right)$

A-6. Statement-I : The maximum value of k such that (50)^k divides 100! is 2.

Statement-II : If P is any prime number, then power of P in n! is equal to $\begin{bmatrix} n \\ P \end{bmatrix} + \begin{bmatrix} n \\ P^2 \end{bmatrix} + \begin{bmatrix} n \\ P^3 \end{bmatrix} \dots$ where [·] represents greatest integer function.

Section (B) : MATCH THE COLUMN

B-1.	Consider the number N = 249480		
	Column-I	Colui	nn-ll
	(A) Number of ways N is divisible by 3 but not by 5	(p)	20
	(B) Number of ways N is divisible by 5 but not by 7	(q)	40
	(C) Number of ways N is divisible by 3 but not by 21	(r)	64
	(D) Number of ways N is divisible by 35 but not by 77	(s)	60

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT

- **C-1.** The integral value of x which satisfies the inequality ${}^{10}C_{x-1} > 2 \cdot {}^{10}C_x$ is (1) 7 (2) 8 (3) 9 (4) 10
- C-2. A student has to answer 10 out of 13 questions in an examination. The number of ways in which he can answer if he must answer atleast 3 of the first five questions is:
 (1) 276
 (2) 267
 - (3) ${}^{13}C_{10} {}^{5}C_{3}$ (4) ${}^{5}C_{3} \cdot {}^{8}C_{7} + {}^{5}C_{4} \cdot {}^{8}C_{6} + {}^{8}C_{5}$
- **C-3.** You are given 8 balls of different colour (black, white,...). The number of ways in which these balls can be arranged in a row so that the two balls of particular colour (say red & white) may never come together is:
 - (1) 8! 2.7! (2) 6. 7! (3) 2. 6!. ${}^{7}C_{2}$ (4) none of these
- **C-4.** The number of ways in which 10 students can be divided into three teams, one containing 4 and others 3 each, is

	(1) $\frac{10!}{4!3!3!}$	(2) 2100	(3) ¹⁰ C ₄ . ⁵ C ₃	(4) $\frac{10!}{6!3!3!}$ $\frac{1}{2}$
C-5.	If 10 ! = 2 ^p .3 ^q .5 ^r .7 ^s (1) p = 7	e, then (2) q = 4	(3) r = 2	(4) s = 2

Exercise-3 Marked Questions may have for Revision Questions. * Marked Questions may have more than one correct option. PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS) 1. Let T_n denotes the number of triangles which can be formed using the vertices of a regular polygon of n sides. If $T_{n+1} - T_n = 21$, then n equals [AIEEE-2002(3, -1), 225] (2) 7 (1)5(3) 6(4) 4 A student is to answer 10 out of 13 questions in an examination such that he must choose at least 4 from 2. the first five questions. The number of choices available to him is-[AIEEE-2003(3, -1), 225] (1) 140(2) 196(3) 280 (4) 346 The number of ways in which 6 men and 5 women can dine at a round table, if no two women are to sit 3. together, is given by -[AIEEE-2003(3, -1), 225] (1) 6! × 5! (2) 30(3) 5! × 4! (4) 7! × 5! How many ways are there to arrange the letters in the word "GARDEN" with the vowels in alphabetical 4. order? [AIEEE-2004(3, -1), 225] (1) 120 (2) 240 (3) 360 (4) 480 5. The number of ways of distributing 8 identical balls in 3 distinct boxes, so that none of the boxes is empty, [AIEEE-2004(3, -1), 225] is - $(3) 3^8$ (1)5(2) 21 $(4) \ {}^{8}C_{3}$ If the letters of the word "SACHIN" are arranged in all possible ways and these words are written out as 6. in dictionary, then the word "SACHIN" appears at serial number -[AIEEE 2005 (3, -1), 225] (2) 603 (1) 602 (3) 600(4) 601 At an election, a voter may vote for any number of candidates, not greater than the number to be elected. 7. There are 10 candidates and 4 are to be elected. If a voter votes for at least one candidate, then the number of ways in which he can vote is [AIEEE 2006 (3, -1), 120] (1) 5040(2) 6210(3) 385 (4) 1110The set $S = \{1, 2, 3, \dots, 12\}$ is to be partitioned into three sets A, B, C of equal size. 8 Thus, $A \cup B \cup C = S$, $A \cap B = B \cap C = A \cap C = \omega$ The number of ways to partition S is -[AIEEE 2007 (3, -1), 120] $(1) 12!/3! (4!)^3$ $(3) 12!/(4!)^3$ $(2) 12!/3!(3!)^4$ $(4) 12!/(3!)^4$ In a shop there are five types of ice-creams available.. A child buys six ice-creams. 9. [AIEEE 2008 (3, -1), 105] **Statement-1**: The number of different ways the child can buy the six ice-creams, is ${}^{10}C_5$. Statement-2: The number of different ways the child can buy the six ice-creams is equal to the number of different ways of arranging 6A's and 4B's in a row. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True 10. How many different words can be formed by jumbling the letters in the word "MISSISSIPPI" in which no two S are adjacent? [AIEEE 2008 (3, -1), 105] (2) 6. 7 ${}^{8}C_{4}$ (3) 6, 8, $^{7}C_{4}$ (4) 7. ${}^{6}C_{4}$. ${}^{8}C_{4}$ (1) 8. ${}^{6}C_{4}$. ${}^{7}C_{4}$ From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and 11. arranged in a row on the shelf so that the dictionary is always in the middle. Then the number of such [AIEEE 2009 (4, -1), 144] arrangements is-(1) atleast 500 but less than 750 (2) atleast 750 but less than 1000 (3) atleast 1000 (4) less than 500

12.	There are two urns. Urr balls are taken out at ra done is (1) 36	n A has 3 distinct red ball ndom and then transferre	s and urn B has 9 distin ed to the other. The nurr [AIEE (3) 108	to blue balls. From each urn two ber of ways in which this can be E 2010 (4, –1), 144] (4) 3
13.	Statement-1 : The nun	nber of ways of distributir	ng 10 identical balls in 4	distinct boxes such that no box
	is empty is ${}^{9}C_{3}$.			[AIEEE 2011, I, (4, –1), 120]
	Statement-2 : The num (1) Statement-1 is true, (2) Statement-1 is true, (3) Statement-1 is true, (4) Statement-1 is false	nber of ways of choosing Statement-2 is true; Stat Statement-2 is true; Stat Statement-2 is false. , Statement-2 is true.	any 3 places from 9 diff tement-2 is a correct ex tement-2 is not a correct	ierent places is ⁹ C ₃ . planation for Statement-1. et explanation for Statement-1.
14.	There are 10 points in joining these points. the (1) $N \le 100$	a plane, out of these 6 ; en : (2) 100 < N ≤ 140	are collinear. If N is the (3) 140 < N ≤ 190	e number of triangles formed by [AIEEE 2011, II, (4, -1), 120] (4) N > 190
15.	Assuming the balls to b more balls can be selec (1) 880	be identical except for dif cted from 10 white, 9 gree (2) 629	ference in colours, the en and 7 black balls is : (3) 630	number of ways in which one or [AIEEE-2012, (4, -1)/120] (4) 879
16.	Let X = {1, 2, 3, 4, 5}. T Y \subseteq X, Z \subseteq X and Y \cap Z (1) 5 ²	he number of different or 2 is empty, is : (2) 3 ⁵	dered pairs (Y, Z) that c	can formed such that [AIEEE-2012, (4, –1)/120] (4) 5 ³
17.	Let T_n be the number o $T_{n+1} - T_n = 10$, then the (1) 7	f all possible triangles for value of n is : (2) 5	med by joining vertices (3) 10	of an n-sided regular polygon. If [AIEEE - 2013, (4, - 1) 120] (4) 8
18.	The number of integers repetition, is : (1) 216	greater than 6,000 that (2) 192	can be formed, using th [JEE((3) 120	ne digits 3, 5, 6, 7 and 8, without (Main) 2015, (4, – 1), 120] (4) 72
19.	If all the words (with or and arranged as in a di	without meaning) having ctionary; then the position	five letters, formed usir n of the word SMALL is	ng the letters of the word SMALL
	(1) 59 th	(2) 52 th	[JEE(I (3) 58 th	Main) 2016, (4, – 1), 120] (4) 46 th
20.	A man X has 7 friends, ladies and 4 are men. A X and Y together can th in this party, is (1) 485	4 of them are ladies and ssume X and Y have no prow a party inviting 3 lac (2) 468	I 3 are men. His wife Y a common friends. Then t dies and 3 men, so that [JEE(Main) 2 (3) 469	also has 7 friends, 3 of them are he total number of ways in which 3 friends of each of X and Y are 017, (4, – 1), 120] (4) 484
21.	From 6 different novels arranged in a row on arrangements is :	s and 3 different dictiona a shelf so that the dict	aries, 4 novels and 1 di tionary is always in th	ctionary are to be selected and e middle. The number of such
	(1) at least 500 but less (3) at least 1000	than 750	[JEE(I (2) at least 75((4) less than 5	Main) 2018, (4, – 1), 120]) but less than 1000 00
	PART - II : JEE (ADVANCED) / IIT-JE	E PROBLEMS (PR	EVIOUS YEARS)
1.	The number of arrange adjacently is (A) 40	ements of the letters of t (B) 60	he word BANANA in w [IIT-JE (C) 80	hich the two N's do not appear EE-2002,Scr, (3, – 1), 90] (D) 100
2.	A rectangle with sides as shown in the diagram	2m – 1 and 2n – 1 is divi n, then the number of rec	ded into squares of uni ctangles possible with o	t length by drawing parallel lines dd side lengths is
		2n-1 2 1 1 2 1 2	2m-1	EE-2005,Scr. (3. – 1). 841

MATHEMATICS

3.	(A) (m If r, s, t numbe (A) 252	+ n – 1) ² are prime numb r of ordered pair	(B) 4 ^{m+n-1} pers and p, q are the posi (p, q) is (B) 254	(C) m ² n ² itive integers such that [IIT (C) 225	(D) m(i the LCM (- JEE-2006 (D) 224	m + 1)n(of p, q is 5, (3, –1) 4	n + 1) r²t ⁴ s², then the , 184]
4.	The let	ters of the word s in an english c	"COCHIN" are permuted dictionary. Then number	l and all the permutatio of words that appear b	(2) = 2 ons are arra efore the v (3 - 1) 81	anged in vord CO 1	an alphabetical CHIN is
	(A) 360)	(B) 192	(C) 96	(D) 48	1	
5.	Consider all possible permutations of the letters of the word "ENDEA Expressions in Column I with the Statements / Expressions in Column darkening the appropriate bubbles in the 4 × 4 matrix given in the ORS.						he Statements/ your answer by -II, (6, 0), 81] n II
	(A)	The number of	permutations containing	the word "ENDEA" is		(p)	5!
	(B)	The number of and the last po	permutations in which th sitions is	e letter E occurs in the	e first	(q)	2 × 5!
	(C)	The number of in the last five p	permutations in which no	one of the letters D, L,	N occurs	(r)	7 × 5!
	(D)	The number of in odd positions	permutations in which th s is	ne letters A, E, O occur	only	(s)	21 × 5!
6.	The nu and 3 c (A) 55	mber of seven d only, is	igit integers, with sum of (B) 66	the digits equal to 10 a [IIT-JEE-200 (C) 77	and formed 1 9, Paper-I (D) 88	d by usin , (3, – 1)	g the digits 1, 2 , 240]
7.	The tot each po (A) 75	al number of wa erson gets at lea	ys in which 5 balls of diffe ast one ball is (B) 150	erent colours can be di [IIT-JEE 201 (C) 210	stributed a 2, PAPER (D) 24	imong 3 - 1, (3, - 3	persons so that •1)/70]
8.	Six car that ea numbe of ways (A) 264	ds and six enve ch envelope cor r and moreover t s it can be done	lopes are numbered 1, 2 ntains exactly one card a the card numbered 1 is a is [JEE ((B) 265	2, 3, 4, 5, 6 and cards and no card is placed lways placed in envelo (Advanced) 2014, Pap (C) 53	are to be in the enve ope numbe ber-2, (3, - (D) 67	placed i elope be red 2. Tl -1)/60]	n envelopes so aring the same nen the number
9.	A deba the sele one bo	te club consists o ection of a capta y. Then the num	of 6 girls and 4 boys. A tea in (from among these 4 r ber of ways of selecting	am of 4 members is to b nembers) for the team the team is	be selected . If the tear	d from thi n has to	is club including include at most
	(1) 000			[JEE (Advar	nced) 2016	6, Paper	-1, (3, –1)/62]
	(A) 380)	(B) 320	(C) 260	(D) 95)	
10.	Let S = elemen	= {1, 2, 3,, 9 its out of which e	l}. For k = 1, 2,,5, let exactly k are odd. Then N	N_k be the number of s $N_1 + N_2 + N_3 + N_4 + N_5$	subsets of =	S, each	containing five
				[JEE(Advan	ced) 2017	, Paper-	2,(3, –1)/61]
	(A) 210)	(B) 252	(C) 126	(D) 12	5	

Answers

								-					
						EXERC	CISE - 1						
Sectio	n (A) :												
A-1.	(1)	A-2.	(2)	A-3.	(1)	A-4.	(4)	A-5.	(1)	A-6.	(2)		
Sectio	n (B) :												
B-1. B-8. B-15.	(1) (3) (1)	B-2. B-9. B-16.	(4) (3) (2)	B-3. B-10. B-17.	(1) (1) (2)	B-4. B-11. B-18.	(2) (2) (2)	B-5. B-12. B-19.	(1) (3) (3)	B-6. B-13.	(3) (2)	B-7. B-14.	(4) (3)
Sectio	n (C) :												
C-1.	(3)	C-2.	(3)	C-3.	(3)	C-4.	(3)	C-5.	(1)	C-6.	(1)	C-7.	(2)
Sectio	n (D) :												
D-1. D-8.	(2) (1)	D-2. D-9.	(3) (4)	D-3.	(2)	D-4.	(2)	D-5.	(2)	D-6.	(4)	D-7.	(4)
Sectio	n (E) :												
E-1.	(3)	E-2.	(1)	E-3.	(1)	E-4.	(3)	E-5.	(2)				
Sectio	n (F) :												
F-1. F-8.	(3) (1)	F-2.	(2)	F-3.	(1)	F-4.	(3)	F-5.	(1)	F-6.	(3)	F-7.	(4)
Sectio	n (G) :												
G-1. G-8.	(1) (2)	G-2. G-9.	(3) (4)	G-3.	(2)	G-4.	(2)	G-5.	(1)	G-6.	(4)	G-7.	(3)
Sectio	n (H) :												
H-1.	(3)	H-2.	(1)	H-3.	(3)	H-4.	(1)						
						EXERC	CISE - 2						
						PAI	RT-I						
1. 8. 15. 22. 29.	(1) (4) (2) (3) (3)	2. 9. 16. 23. 30.	(4) (1) (4) (1) (3)	3. 10. 17. 24. 31.	(1) (1) (1) (1) (2)	4. 11. 18. 25. 32.	(2) (4) (2) (1) (3)	5. 12. 19. 26. 33.	(4) (2) (4) (4) (4)	6. 13. 20. 27. 34.	(1) (1) (2) (3) (4)	7. 14. 21. 28.	(2) (4) (2) (4)
Sectio	n (A) ·					PAF	RT-II						
Δ_1	(1)	Δ-2	(2)	Δ-3	(2)	Δ-4	(1)	۵.5	(1)	۵-6	(3)		
Soctio	(') n (B) ·	~ - ∠ ,	(~)	- -3.	(~)	~- 7 .	(')	~ - y ,	(')	~ -v.	(0)		
	·· (ບ) ·	р	• -	D									
в-1.	$A \rightarrow f,$	¤ → q,	$\mathbf{U} \rightarrow \mathbf{I},$	υ → p									
Sectio	n (C) :								-				
C-1.	(2,3,4)		C-2.	(1,3,4)		C-3.	(1,3,4)		C-4.	(2,3)	C-5.	(2,3)	

						EXER	CISE -	3					
						P	ART-I						
1.	(2)	2.	(2)	3.	(1)	4.	(3)	5.	(2)	6.	(4)	7.	(3)
8.	(3)	9.	(4)	10.	(4)	11.	(3)	12.	(3)	13.	(1)	14.	(1)
15.	(4)	16.	(2)	17.	(2)	18.	(2)	19.	(3)	20.	(1)	21.	(3)
						P	ART-II						
1.	(A)	2.	(C)	3.	(C)	4.	(C)						
5.	(A) –	(p), (B	\rightarrow (s),	(C) → (q), (D) _	→ (q)							
6.	(Ć)	7.	(B)	8.	(C)	9.	(A)		10.	(C)			