Exercise-1

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

Section (A): Dry test

- **A-1.** When a metal sulphate is heated in dry test tube, the colour changes from blue to white. Then metal sulphate may be:
 - (1) BaSO₄
- (2*) CuSO₄.5H₂O
- (3) Na₂SO₄
- (4) None of these
- **A-2.** Which of the following can not evolve more than one gas (vapour) if heated in dry test tube.
 - (1) NaNO₃(s)
- (2*) MgCO₃(s)
- (3) FeSO₄(s)
- (4) (NH₄)₂Cr₂O₇(s)
- A-3. On heating, a white amorphous inorganic compound becomes yellow and on cooling, turns white again. The salt may be (SID_DEC 2014]
 - (1) PbCO₃
- (2) MgCO₃
- (3*) ZnCO₃
- (4) K₂CO₃
- **A-4.** Which of the following metal carbonates liberate CO₂(g) on heating :
 - (1) Na₂CO₃
- (2) K₂CO₃
- (3) Rb₂CO₃
- (4*) Ag₂CO₃
- A-5. In which of the following reactions a brown coloured gas is evolved?
 - (1) KBr (s) + dil. $H_2SO_4 \longrightarrow$

(2) $NH_4NO_2 \xrightarrow{\Delta}$

(3) NaNO₃ $\xrightarrow{\Delta}$

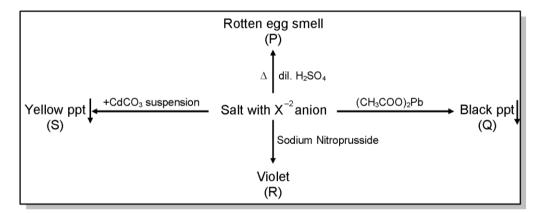
(4*) AgNO₃(s) + conc. $H_2SO_4 \longrightarrow$

Section (B): Flame and borax bead test

- **B-1.** Why is concentrated HCl used to dissolve the given metal salt in the flame test? [SM SIR]
 - (1) strong acids produce better flame test.
 - (2) HCl is volatile
 - (3*) Volatile metal chloride produce better flame test.
 - (4) sharper coloured are seen in the flame in presence of Cl⁻ ions.
- **B-2.** The hottest part of the flame of a Bunsen burner is the
 - (1) Blue Zone

- (2*) Zone of complete combustion
- (3) Zone of partial combustion
- (4) All parts of the flame are equally hot.
- **B-3.** Metal (M) shows crimson red colour in flame test and its halide is deliquescent then metal (M) could be:
 - (1*) Li
- (2) Mg
- (3) Ca
- (4) Ba
- **B-4.** In Borax bead test, metal oxides react with B₂O₃ and form a coloured bead. This bead contains.
 - (1) orthoborate ion
- (2*) metaborate ion
- (3) double oxide
- (4) tetraborate ion

- B-5. Which one of the following ion does not give borax bead test:
 - (1) Cr3+
- (2) Cu2+
- (3) Mn²⁺


- (4*) Zn²⁺
- B-6. In the Borax bead test of Co²⁺, the blue colour of bead is due to the formation of :
 - (1) B_2O_3

- (2) Co₃B₂
- $(3*) Co(BO_2)_2$
- (4) CoO

Section (C): Dilute H₂SO₄ group

- C-1. The carbonate of which of the following cation is insoluble in water?
 - (1) Cs+
- (2) K+
- (3) NH₄+

- (4*) Ba2+
- C-2. A substance on treatment with dilute H₂SO₄ liberates a colourless gas which produces (i) turbidity with baryta water and (ii) turns acidified dichromate solution green. The reaction indicates the presence of :
 - (1) CO₃²⁻
- $(2) S^{2-}$
- (3*) SO₃2-
- (4) NO₂-
- C-3. A mixture when rubbed with dilute acid smells like vinegar. It contains:
 - (1) sulphite
- (2) nitrate
- (3) nitrite
- (4*) acetate
- C-4. When a salt is heated with dilute H₂SO₄ and KMnO₄ solution, the pink colour of KMnO₄ is discharged, the salt is:
 - (1*) a sulphite
- (2) a carbonate
- (3) a nitrate
- (4) a bicarbonate

C-5.

Anion (X-2) is:

[SID Sir_DEC 2014]

- (1) CO_3^{2-}
- (2) SO_3^{2-}
- $(3*) S^{2-}$
- $(4) S_2O_3^{2-}$

Section (D): Concentrated H₂SO₄ group

- D-1. When a mixture of solid NH₄Cl, solid K₂Cr₂O₇ is heated with concentrated H₂SO₄, deep red vapours are obtained. This is due to the formation of :
 - (1) chromous chloride (2*) chromyl chloride
- (3) chromic chloride
- (4) chromic sulphate

- D-2. AgCl dissolves in ammonia solution giving:
 - (1) Ag⁺, NH₄⁺ and Cl⁻
- (2) Ag(NH₃)+ and Cl-
- (3) $Ag_2(NH_3)^{2+}$ and Cl^- (4*) $Ag(NH_3)_{2+}$ and Cl^-

D-3.	A solution of a salt with concentrated H ₂ SO ₄ produces violet colour vapours which turns starch paste						
	blue. The salt may con	tain:					
	(1) chloride	(2) nitrate	(3) bromide	(4*) iodide			
D-4.	Nitrate is confirmed by	ring test. The brown cold	our of the ring is due to fo	ormation of :			
	(1) ferrous nitrite		(2*) nitroso ferrous sulp	ohate			
	(3) ferrous nitrate		(4) FeSO ₄ .NO ₂				
D-5.	J	O ₄ and MnO ₂ evolves a co		urless pungent smelling gas but gas which bleaches moist litmus			
	(1) NO ₂	(2*) Cl ₂	(3) Br ₂	(4) l ₂			
D-6.	Chromyl chloride vapo then:	urs are dissolved in wate	er and acetic acid and ba	arium acetate solution is added,			
	(1) the solution will rem	nain colourless.	(2) the solution will bed	come dark green.			
	(3) a yellow solution wi	Il be obtained.	(4*) a yellow precipitate	e will be obtained.			
Section	on (E) : Precipitatio	on Reactions					
E-1.	Which one of the follow	ving reagents gives white	e precipitated with SO ₄ ²⁻	ions?			
	(1*) Ba(NO ₃) ₂	(2) NH ₄ NO ₃	(3) NaNO₃	(4) Be(NO ₃) ₂			
E-2.	_	ves a yellow ppt. with silve. The solution contains.		olves in dil. Nitric acid as well as			
	(1) Br ⁻	(2) I ⁻	(3*) PO ₄ ³ -	(4) SO ₄ ²⁻			
Section	on (F) : zero Group						
F-1.	Nessler's reagent is :						
	(1) K ₂ HgI ₄	(2*) K ₂ HgI ₄ + KOH	(3) K ₂ Hg I ₂ + KOH	(4) K ₂ HgI ₄ + KI			
F-2.	NH ₄ Cl + Nessler's reag	,	cipitate (X).				
	(1) Hg(NH ₂)CI	(2) Hg(NH ₂)Cl + Hg	(3*) HgO.Hg(NH ₂)I	(4) HgO.Hg(NH ₂)NO ₃			
F-3.	Ammonium salts on h statement for gas (X).	neating with slaked lime	e liberates a colourless	gas (X). Identify the incorrect			
	(1) (X) turns red litmus	blue and produces dens	e white fumes in contact	with dilute HCI.			
	(2) (X) turns filter pape	r moistened with mercure	ous nitrate black.				
	(3*) (X) when passed the	hrough Nessler's reagen	t produces a pink colour	precipitate.			
	(4) (X) gives intense blue coloured solution with aqueous solution of CuSO ₄ .						

Section (G): Ist Group

G-1.	Group reagent for 1st gro	oup radicals is :		(Group-I)
	(1) KCI (concentrated)	(2) HCI (concentrated)	(3*) HCl (dilute)	(4) none of these
G-2.	Cu²+ and Ag+ both are properties solution, add:	oresent in the same solu	tion. To precipitate one o	of the ions and leave the other in
	(1) H ₂ S (aq)	(2*) HCl (aq)	(3) HNO₃(aq)	(4) NH ₄ NO ₃ (aq)
G-3.	Consider the following	observation :		
	M ⁿ⁺ + HCI (dilute) The metal ion M ⁿ⁺ will b	\rightarrow white precipitate $\stackrel{\Delta}{-}$ be :	→ water soluble CrO ₄ ²⁻	→ Yellow precipitate.
	(1) Hg ²⁺	(2) Ag+	(3*) Pb ²⁺	(4) Sn ²⁺
G-4.	Identify the compound	which turns black with ar	nmonia solution.	
	(1) Lead chloride	(2*) Mercurous chloride	e (3) Mercuric chloride	(4) Silver chloride
G-5.		solution, one formed a w	-	. One formed a white precipitate e NaCl solution and one formed
	(1) AgNO ₃	(2*) Pb(NO ₃) ₂	(3) Hg(NO ₃) ₂	(4) Mn(NO ₃) ₂
G-6.	with water produces a	white precipitate. The m	etal nitrate solution with	l hydrochloric acid but on dilution K₂CrO₄ and Na₂HPO₄ reagents nonia solution. The cation of the
Secti	on (H) : IInd Group			
H-1.	H ₂ S in the presence of	HCI precipitates II group	but not IV group becau	se
	(1) HCl activates H ₂ S		(2) HCI increases cond	entration of CI-
	(3*) HCl decreases con	centration of S ²⁻	(4) HCl lowers the solu	bility of H ₂ S in solution
H-2.	Which of the following r	metal ions is precipitated	when H ₂ S gas is passe	d in presence of HCI? (Group-II)
	(1) Co ²⁺	(2) Al ³⁺	(3*) Bi ³⁺	(4) Mn ²⁺
H-3.	Which compound does	not dissolve in hot 50%	HNO₃?	(Group-II)
	(1) AgS	(2) CuS	(3) Bi ₂ S ₃	(4*) HgS
H-4.	A metal chloride origin	al solution on mixing wi	th K ₂ CrO ₄ solution give:	s a yellow precipitate soluble in
	aqueous sodium hydro	xide. The metal may be :		
	(1) mercury	(2) Iron	(3) silver	(4*) lead

H-5.		$^{\circ}$ SnCl ₂ is added to a solution of SnCl ₂ is due to the formation of		y while precipitate is obtained. The
	(1*) Hg ₂ Cl ₂	(2) SnCl ₄	(3) Sn	(4) Hg
H-6.		NH ₄ OH is added to an a	queous solution of copp	er sulphate an intense blue colour
	(1) [Cu(NH ₃) ₆] ²⁺	(2) Cu(OH) ₂	(3*) [Cu(NH ₃) ₄] ²⁺	(4) (NH ₄) ₂ SO ₄
H-7.	Precipitation of II group is:	o cations takes place who	en H₂S gas passed in pı	resence of dilute HCl because H₂S
	(1) highly ionised	(2) not ionised	(3*) less ionised	(4) none of these
H-8.	Which one among th hydrochloric acid?	e following pairs of ion	s can not be separate	ed by H ₂ S in presence of dilute
	(1*) Cd ²⁺ , Sn ²⁺	(2) Al ³⁺ , Hg ²⁺	(3) Zn ²⁺ , Cu ²⁺	(4) Ni ²⁺ , Bi ³⁺
H-9.	Which of the following solution or in excess o		d from its higher oxida	tion state (+2) to (+1) by both KI
	(1) Zn ²⁺	(2) Hg ²⁺	(3*) Cu ²⁺	(4) None
Secti	ion (I) : IIIrd Group			
I-1.	When NH ₄ Cl is added	to a solution of NH ₄ OH:		
	(1) the dissociation of	NH₄OH increases.	(2) the concentration	of OH ⁻ increases.
	(3) the concentrations	of both OH ⁻ and NH ₄ + ir	ncrease. (4*) the conc	entration of OH ⁻ ion decreases.
I-2.	The solution of sodiun gives:	n meta aluminate on dilu	ting with water and the	n boiling with ammonium chloride
	(1) $[AI(H_2O)_5OH]^{2+}$	(2) AICI ₃	(3*) AI (OH) ₃	(4) NaAl(OH) ₄
I-3.	Which one among the	following is insoluble in	excess of NaOH solutio	n?
	(1) AI(OH) ₃	(2) Zn(OH) ₂	(3*) Fe(OH) ₃	(4) Pb(OH) ₂
I-4.	Concentrated nitric act	id is added before proceding H₂S.	eding to test for group I	II members. This is to :
	(2*) convert ferrous ion	ns to ferric ions as K _{sp} of	Fe (II) hydroxide is high	ner.
	(3) form nitrates which	gives granular precipita	te.	
	(4) increase ionisation	of ammonium hydroxide		
I-5.	Concentrated sodium	hydroxide can separate	a mixture of :	
	(1) Al ³⁺ and Cr ³⁺	(2*) Cr ³⁺ and Fe ³⁺	(3) Al ³⁺ and Zn ²⁺	(4) Cu ²⁺ and Mn ²⁺
I-6.	What product is formed absence of air?	ed by mixing the solution	n of K_4 [Fe(CN) ₆] with	the solution of FeCl ₂ in complete
	(1) Ferro ferricyanide	(2) Ferric ferrocyanide	(3) Ferric ferricyanide	e (4*) None

I-7.	An original solution of an inorganic salt in dilute HCl gives a brown colouration with potassium hexacyanidoferrate (III) and reddish brown colouration with sodium acetate solution. The cation of the salt is:				
	(1) Ni ²⁺	(2*) Fe ³⁺	(3) Cu ²⁺	(4) none	
Section	on (J) : IVth Group				
J-1.	In qualitative analysis I	Ni ²⁺ belongs to :			
	(1) II nd group	(2) III rd group	(3*) IV th group	(4) VI th group	
J-2.	Which of the following	sulphides is buff coloured	d (light pink coloured)?		
	(1) ZnS	(2*) MnS	(3) NiS	(4) CdS	
J-3.	Which one of the follow	ving sulphide is white?			
	(1) MnS	(2*) ZnS	(3) HgS	(4) CdS	
J-4.	HgS can be separated	from ZnS by treating with	h :		
	(1*) HCI	(2) NaOH	(3) aqua-regia	(4) NH ₃	
J-5.	•	in excess of NH₄OH.On p		e precipitate with NH ₄ OH.This this solution, a white precipitate (4*) Zn	
J-6.		ving cation will give a gresalt and Co(NO ₃) ₂ is burn		piece of filter paper dipped in a	
	(1) Cu ²⁺	(2) Mg ²⁺	(3) Al ³⁺	(4*) Zn ²⁺	
J-7.	Zn(OH) ₂ precipitate is	soluble in :			
0 -7.	(1) excess of sodium h		(2) excess of ammonia	solution	
	(3) solutions of ammor	•	(4*) all of these		
J-8.	Concentrated solution	of sodium hydroxide in w	rator can congrato a mivi	ure of :	
J-0.	(1) Zn ²⁺ and Pb ²⁺	(2) Al ³⁺ and Pb ²⁺	(3*) Pb ²⁺ and N		
	· /	•	, ,	· /	
Section	on (K) : Vth and VIth	Group			
K-1.	In fifth group, (NH ₄) ₂ CC	D_3 is added to precipitate	out the carbonates in pro	esence of NH ₄ Cl. We do not add	
	Na ₂ CO ₃ because :				
	(1) CaCO ₃ is soluble in	ı Na₂CO₃			
	(2) Na ₂ CO ₃ increases t	the solubility of fifth group	carbonates		
	(3*) MgCO ₃ will be pre-	cipitated out in fifth group)		
	(4) Mg(OH) ₂ will be pre	ecipitated			

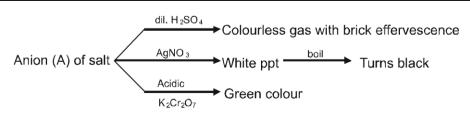
CHEMISTRY FOR JEE

- K-2. K₄[Fe(CN)₆] can be used to detect one or more out of Fe²⁺, Fe³⁺, Zn²⁺, Cu²⁺, Aq⁺, Ca²⁺:
 - (1) Only Fe²⁺, Fe³⁺
- (2) Only Fe³⁺,Zn²⁺,Cu²⁺ (3) All but not Ca²⁺
- (4*) All of these.
- K-3. If crimson flame is given when an inorganic mixture is tested by flame test, it may be due to the presence of
 - (1) potassium
- (2*) strontium
- (3) barium
- (4) calcium

- K-4. A brick red colour is imparted to Bunsen flame by a:
 - (1*) Ca salt
- (2) Sr salt
- (3) Na salt
- (4) Co salt
- K-5. The presence of magnesium is confirmed in the qualitative analysis by :
 - (1) titan yellow solution + 2M NaOH solution
- (2) disodium hydrogen phosphate +NH₄Cl + NH₃ (aq.)

(3) magneson(I) reagent

- (4*) all of these
- Which of the following solution gives white precipitate with Pb(NO₃)₂ as well as with Ba(NO₃)₂? K-6.
 - (1) Sodium chloride
- (2*) Sodium sulphate
- (3) Potassium iodide
- (4) All of these
- K-7. An aqueous solution of salt gives white precipitate with AgNO₃ solution as well as with dilute H₂SO₄. It may be:
- K-8. Select the correct statement with respect to Ca²⁺ ions.
 - (1) K₂CrO₄ gives white precipitate in the presence of acetic acid.
 - (2*) Potassium hexacyanidoferrate (II) solution gives white precipitate.
 - (3) Ammonia solution gives white precipitate.
 - (4) Prolonged passage of carbon dioxide gas through its aqueous solution produces white precipitate.
- K-9. Potassium chromate solution is added to an aqueous solution of a metal chloride. The precipitate thus obtained is insoluble in acetic acid. The precipitate is subjected to flame test, the colour of the flame is:
 - (1) lilac


1.

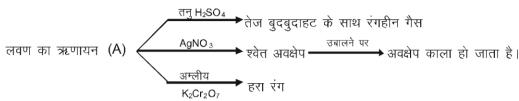
- (2*) apple green
- (3) crimson red
- (4) brick red

Exercise-2

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

[SID_DEC 2014]


Shape of anion A will be:

(1) Tetrahedral

(2) Trigonal planner

(3*) Trigonal pyramidal

(4) Linear

- **2.** How do we differentiate between Br^- and I^- ?
 - (1) By adding silver nitrate solution.
 - (2*) By adding lead acetate solution.
 - (3) By adding first silver nitrate solution and then sodium arsenite solution.
 - (4) By adding dilute H₂SO₄.
- 3. Match column-I with column-II and select the correct answer using the codes given below:

	Colu	mn-l			Column-II				
	(Basic ra	adicals)			(Group num	ber)			
(1)	Hg ₂ ²⁺			(p)	II				
(2)	Cu ²⁺			(q)	III				
(3)	Al ³⁺			(r)	1				
(4)	Zn^{2+}			(s)	IV				
	(1)	(2)	(3)	(4)		(1)	(2)	(3)	(4)
(1)	(q)	(p)	(r)	(s)	(2)	(p)	(p)	(r)	(s)
(3)	(p)	(r)	(q)	(s)	(4*)	(r)	(p)	(p)	(s)

4. Match column-I with column-II and select the correct answer using the codes given below.

Column-I					Colur	nn-II				
	(Salts	s)			(Colo	ur of fla	ame)			
(1)	Cu ²⁺ s	alts		(p)	Brick r	ed				
(2)	Ca ²⁺ s	alts		(q)	Apple	green o	r yellow	ish-gree	n	
(3)	Ba ²⁺ salts (r			(r)	Bluish green or green					
(4)	Sr ²⁺ sa	alts		(s)	Crims	on				
	(1)	(2)	(3)	(4)			(1)	(2)	(3)	(4)
(1)	(q)	(p)	(r)	(s)		(2*)	(r)	(p)	(q)	(s)
(3)	(p)	(r)	(q)	(s)		(4)	(p)	(q)	(r)	(s)

An inorganic compound 'A' is dissolved in dilute hydrochloric acid and is then warmed. A colourless gas 'B' is produced. When a filter paper moistened with potassium iodate and the starch solution is exposed to the gas it turns blue. The gas B and the compound A are:

CHEMISTRY FOR JEE

Qualitative Analysis

(1*) SO₂ and Na₂SO₃

(2) SO₃ and Na₂SO₄

(3) CO₂ and Na₂CO₃

(4) H₂S and Na₂SO₃

6. Consider following reaction ; Nitrite + Acetic acid + Thiourea \longrightarrow N₂ ↑ + SCN⁻ + 2H₂O. Formation of

the product in the above reaction is identified by :

- (1*) FeCl₃ / dilute HCl, when blood red colour appears.
- (2) FeCl₃ / dilute HCl, when blue colour appears.
- (3) K₂Cr₂O₇ / HCl, when green colour appear.
- (4) KMnO₄/HCl, when colourless solution is formed.
- 7. A mixture of two colourless substances was dissolved in water. When gaseous Cl₂ was passed through the solution, containing small quantity of CCl₄ a violet colour developed in CCl₄ layer. Addition of BaCl₂ to the original solution give a white precipitate. The mixture contains:

(1) salts of nitrate and chloride.

(2) salts of bromide and chloride.

(3*) salts of iodide and sulphate.

(4) salts of sulphate and chloride.

8. The reagents, NH₄Cl and aqueous NH₃ will precipitate:

(1) Ca²⁺

(2*) Al3+

 $(3) Mg^{2+}$

 $(4) Zn^{2+}$.

9. A metal salt solution forms a yellow precipitate with potassium chromate in acetic acid, a white precipitate with dilute sulphuric acid, but gives no precipitate with sodium chloride or iodide, it is:

(1) lead carbonate

(2) basic lead carbonate

(3*) barium carbonate

(4) strontium carbonate

10. Mg is not precipitated in V group because :

(1) MgCO₃ is soluble in water.

(2*) K_{sp} of MgCO₃ is high.

(3) MgCO₃ is soluble in NH₄OH.

(4) None.

Exercise-3

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

OFFLINE JEE-MAIN

1. How do we differentiate between Fe³⁺ and Cr³⁺ in group IIIrd?

[AIEEE 2002, 3/225]

(1) By adding excess of NH₄OH solution.

(2) By increasing NH₄+ ion concentration.

(3) By decreasing OH- ion concentration.

(4*) Both (2) and (3).

2. Which one of the following statement is correct?

[AIEEE 2003, 3/225]

- (1*) From a mixed precipitate of AgCl and AgI, ammonia solution dissolves only AgCl.
- (2) Ferric ions gave a deep green precipitate on adding potassium ferrocyanide solution.
- (3) On boiling a solution having K⁺, Ca²⁺ and HCO₃⁻ ions we get a precipitate of K₂Ca(CO₃)₂.
- (4) Manganese salts give a violet borax bead test in the reducing flame .

3.	A red solid is insoluble in water. However it becomes soluble if some KI is added to water. Heating the red solid in a test tube results in liberation of some violet coloured fumes and droplets of a metal appear						
		s of the test tube. The red					
	(1) (NH ₄) ₂ Cr ₂ O ₇	(2*) HgI ₂	(3) HgO	[AIEEE 2003, 3/225] (4) Pb ₃ O ₄ .			
4.	Which of the follow	ving compounds is not col	lored yellow ?	[JEE-Main 2015, 4/120]			
	(1*) Zn ₂ [Fe(CN) ₆]		(2) K ₃ [Co(NO ₂) ₆]				
	(3) (NH ₄) ₃ [As(Mo ₃ (O10)4]	(4) BaCrO ₄				
		ONLIN	IE JEE-MAIN				
1.	The cation that wil	ll not be precipitated by H ₂	S in the presence of dil	HCl is:			
			- '	n) 2015 Online (10-04-15), 4/120]			
	(1) Pb ²⁺	(2) As ³⁺	(3*) Co ²⁺	(4) Cu ²⁺			
2.	An aqueous solut	ion of a salt X turns bloo	d red on treatment wit	h SCN- and blue on treatment with			
	K ₄ [Fe(CN) ₆]. X als	o gives a positive chromyl	chloride test. The salt 2	K is:			
			[JEE(Mair	n) 2015 Online (10-04-15), 4/120]			
	(1) CuCl ₂	(2) Cu(NO ₃) ₂	(3*) FeCl₃	(4) Fe(NO ₃) ₃			
3.		ed HCl is added to an aque ch complex ion gives blue		its colour changes from reddish pink			
			[JEE(Mair	n) 2015 Online (11-04-15), 4/120]			
	(1*) [CoCl ₄] ²⁻	(2) [CoCl ₆] ³⁻	(3) [CoCl ₆] ^{4–}	(4) $[Co(H_2O)_6]^{2+}$			
4.	A pink coloured sa	alt turns blue on heating. T	he presence of which c	ation is most likely?			
				nin) 2015 Online (11-04-15), 4/120]			
	(1*) Co ²⁺	(2) Cu ²⁺	(3) Zn ²⁺	(4) Fe ²⁺			
5.	Sodium extract is	heated with concentrated	HNO ₃ before testing for	halogens because :			
			[JEE(M	ain) 2016 Online (10-04-16), 4/120]			
	` ,	er with halides in acidic me are totally insoluble in nitric					
	(3) Ag ₂ S and AgC	N are soluble in acidic me	dium.				
	(4*) S ²⁻ and CN ⁻ , i	if present, are decompose	d by conc. HNO₃ and h	ence do not interfere in the test.			
6.	Aqueous solution	of which salt will not conta		nic configuration 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ?			
	(1) NaCl	(2) CaI ₂	[JEE(Ma (3*) NaF	ain) 2016 Online (10-04-16), 4/120] (4) KBr			
	` '	. , _		` '			

7.	A solution containing a group-IV cation gives a precipitate on passing H ₂ S. A solution of this precipitate in dil. HCl produces a white precipitate with NaOH solution and bluish-white precipitate with basic						
	-						
	(1) Mn ²⁺	yanide. The cation is : (2*) Zn ²⁺	(3) Co ²⁺	ain) 2017 Online (08 (4) Ni ²⁺	5-04-1 <i>1)</i> , 4/120]		
	(1) 11111	(=) =	(0) 00	(1) 1 11			
	PART - II : JE	E (ADVANCED) / IIT-	-JEE PROBLEMS	(PREVIOUS Y	EARS)		
1.	In nitroprusside	ion the iron and NO exist. T	They exist as Fe ^{II} and N	IO⁺ rather than Fe ^{III}	and NO. These		
	forms can be diff	erentiated by :			[JEE 1998]		
	(A) estimating th	e concentration of Iron.	(B) measuring the	concentration of CN.			
	(C*) measuring t	he solid state magnetic mon	ment. (D) therma	Illy decomposing the	compound.		
2.	Assertion : Sulp	hate is estimated as BaSO ₄	4 and not as MgSO4.				
	Reason: Ionic r	adius of Mg ²⁺ is smaller thar	n that of Ba ²⁺ .		[JEE 1998]		
	(A) Both Assertion	on and Reason are true and	Reason is the correct e	xplanation of Assert	tion.		
	(B*) Both Assert	ion and Reason are true but	Reason is not correct of	explanation of Assert	tion.		
	(C) Assertion is t	rue but Reason is false.					
	(D) Assertion is t	alse but Reason is true.					
3.	A gas 'X' is pass	sed through water to form a	saturated solution. The	aqueous solution o	n treatment with		
	silver nitrate give	es a white precipitate. The sa	aturated aqueous soluti	on also dissolves ma	agnesium ribbon		
	with evolution of	a colourless gas 'Y'. Identify	y 'X' and 'Y'?	[JEE 2	2002, 3/150]		
4.	[X] + H ₂ SO ₄	ightarrow [Y] a colourless gas with	irritating smell: [Y] + K ₂	Cr2O7 + H2SO4	→ areen solution.		
	[X] and [Y] is :	[.] a colormore gas mun			2003, 3/144]		
5.	Δ dilute aqueous	solution of a sodium salt for	ms white precipitate wit	n MaCla only after h	oiling. The anion		
0.	of the sodium sa		•	EE 2004, 3/144]	oming. The amon		
	(A*) HCO ₃ -	(B) CO ₃ ²⁻	(C) NO ₃ -	(D) SO ₄ 2-			
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(2) 333	(0) 1103	(5) 304			
6.	A metal nitrate r	eacts with KI to give a black	k precipitate which on a	iddition of excess of	KI is converted		
	into orange colo	ur solution. The cation of the	e metal nitrate is :	[JEE - 2005, 3	3/84]		
	(A) Hg ²⁺	(B*) Bi ³⁺	(C) Pb ²⁺		(D) Cu ⁺		
7.	The species pres	sent in solution when CO_2 is	dissolved in water are	: [JEE 2	2006, 5/184]		
	(A*) CO ₂ , H ₂ CO ₃	, HCO ₃ -, CO ₃ ²⁻	(B) HCO ₃ ²⁻ , CO ₃ ²⁻				
	(C) CO ₃ ²⁻ , HCO ₃	Ē	(D) CO_2 , H_2CO_3				
8.	A white precipita	ate is obtained when a solu	ution is diluted with H ₂ C	and boiled. On ad	dition of excess		
	NH4CI/NH4OH, tl	ne volume of precipitate deci	reases leaving behind a	white gelatinous pre	ecipitate. Identify		
	the precipitate w	hich dissolves in ammonia s	solution or NH ₄ Cl.	[JEE 2006. 3/1	1841		

9.	In blue solution of formation of:	copper sulphate	excess of K	CN is added ti	hen solutio		es colourl 006, 3/18	
	(A) [Cu(CN) ₄] ²⁻			(B*) Cu ²⁺ ge	et reduced	to form [C	Cu(CN) ₄] ³⁻	-
	(C) Cu(CN) ₂			(D) CuCN				
10.	MgSO ₄ + NH ₄ OH	+ Na ₂ HPO ₄	→ white crys	talline precipit	tate. The fo	ormula of	crystalline	e precipitate is
	:					[JEE 2	006, 3/18	4]
	(A) MgCl ₂ . MgSO ₄	(B) MgSO	4	(C*) Mg(NH	4)PO4	(D) Mg	(PO ₄) ₂	
11.	A solution of a me	tal ion when treat	ted with KI g	ives a red pre	cipitate wh	ich dissol	ves in exc	cess KI to give
	a colourless solut	tion. Moreover,	the solution	of metal ion	on treatm	ent with	a solution	n of cobalt(II)
	thiocyanate gives	rise to a deep blu	ue crystalline	e precipitate. T	The metal i	on is :	[JEE - 2	007, 3/162]
	(A) Pb ²⁺	(B*) Hg ²⁺		(C) Cu ²⁺			(D) Co ²⁺	
12.	Passing H ₂ S gas precipitates:	into a mixture	of Mn²+, Ni²	+, Cu ²⁺ and F	Hg ²⁺ ions i	n an acid	•	eous solution
	(A*) CuS and HgS	(B) MnS a	nd CuS	(C) MnS an	d NiS	(D) NiS	and HgS	3
13.	Concentrated nitri	c acid, upon long	standing, tu	ırns yellow-bro			ation of :	2/120]
	(A) NO	(B	*) NO ₂		(C) N ₂	2O		(D) N ₂ O ₄
14.	Upon treatment w	ith ammoniacal F	l₂S, the meta	al ion that pred	cipitates as	s a sulphic	de is :	
					[JEE(Advance	ed) 2013, 2	2/120]
	(A) Fe(III) (E	B) AI (III)	(C) M	g(II)	(D*) Z	n(II)		
15.	The reagent(s) that is(are)	at can selectively	precipitate	S²- from a mi	xture of S ²	and SC	O_4^{2-} in aqu	ueous solution
	(A) CuCl ₂	(B) BaCl ₂		(C) Pb(OOC	CCH ₃) ₂	(D) Na	2 [Fe(CN) 5	NO]
16.	In the following rea	action sequence	in aqueous	solution, the s	pecies X, Y	Y and Z , r	espective	ly, are
	$S_2O_3^{2-} \xrightarrow{Ag^+}$	$x \xrightarrow{Ag^+}$	Υ -	with time	Υ			
		Clear	white		black			
	S	olution	precipitate		precipitate		vanced)	2016, 4/120]
	D	BC-IDM_E (I)						
	$(A^*) [Ag(S_2O_3)_2]^{3-},$	Ag ₂ S ₂ O ₃ , Ag ₂ S		(B)	[Ag(S ₂ O ₃) ₃	3] ⁵⁻ , Ag ₂ S	O ₃ ,Ag ₂ S	
	(C) [Ag(SO ₃) ₂] ³⁻ , A	Ag ₂ S ₂ O ₃ , Ag		(D) [Ag(SO	3)3] ^{3–} , Ag ₂ S	O ₄ ,Ags		

(1) K₂SO₃

Additional Problems For Self Practice (APSP)

PART - I: PRACTICE TEST PAPER

JEE(Main) Pattern Practice paper (30 SCQ, 1 hr, 120 Marks).

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks: 120 Max. Time: 1 Hr. **Important Instructions** The test is of 1 hour duration. 2. The Test Booklet consists of 30 questions. The maximum marks are 120. 3. Each question is allotted 4 (four) marks for correct response. 4. Candidates will be awarded marks as stated above in Instructions No. 3 for correct response of each question. 1/4 (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 4 above. 1. When a salt is heated with dilute H₂SO₄ and KMnO₄ solution, the pink colour of KMnO₄ is discharged, the salt is: (1*) a sulphite (2) a carbonate (3) a nitrate (4) a bicarbonate 2. Solution of a salt in dilute H₂SO₄ or acetic acid produces deep blue colour with starch iodide solution. The salt contains: (1) Br-(2) I-(3) CI-(4*) NO₂-A test tube containing a nitrate and another containing a bromide and MnO2 are treated with concentrated 3. H₂SO₄. The reddish brown fumes evolved are passed through water. The water will be coloured by : (1) the nitrate (2*) the bromide (3) both (4) none of the two 4. Which of the following combines with Fe(II) ions to form a brown complex? (1) N₂O (2*) NO (3) $N_2 O_5$ (4) N₂O₄ Colourless salt (A) + dil. H₂SO₄ or CH₃COOH + KI \longrightarrow blue colour with starch. (A) can be 5.

(3*) NH₄NO₂

(2) Na₂CO₃

(4) NH₄Cl

6.	There are four test tubes containing dilute HCl, BaCl ₂ , HgCl ₂ and KNO ₃ solutions. Which of the following reagents will help in the identification of BaCl ₂ ?						
	(1) NaOH	(2*) K ₂ CrO ₄	(3) AgNO₃	(4) both (2) and (3)			
7.	Which one of the fo	ollowing ions does not give t	oorax bead test ?				
	(1) Cr ³⁺	(2) Cu ²⁺	(3) Mn ²⁺	(4*) Zn ²⁺			
8.	A brick red colour is	s imparted to Bunsen flame	by a :				
	(1*) Ca salt	(2) Sr salt	(3) Na salt	(4) Co salt			
9.	Which one of the fo	ollowing metal salts produc	es a blue coloured bea	d in cobalt nitrate charcoal cavity			
	(1) Zn ²⁺	(2) Mg ²⁺	(3) Sn ²⁺	(4*) Al ³⁺			
10.	with the evolution of	• •	lling gas. The gas as v	ssolves in dilute hydrochloric acid well as the salt both are used as			
	(1*) sulphite	(2) sulphide	(3) acetate	(4) carbonate			
11.		ied KMnO4 is decolourised laining the following acid rac		of any gas. This may happen with			
	(1) SO ₃ ²⁻	(2) NO ₂	(3) S ²⁻	(4*) All of these			
12.	When KI is added to	o acidified solution of sodiu	m nitrite :				
	(1*) NO gas is libera	ated and I_2 is set free	(2) N ₂ gas is liberated	d and HI is produced			
	(3) N ₂ O gas is libera	ated and I ₂ is set free	(4) N ₂ gas is liberated	and HOI is produced			
13.	Zinc pieces are add	ded to acidified solution of S	O ₃ ^{2 -} . Gas liberated can	:			
	(1*) turn lead aceta	• •	(2) turn lime water milky				
	(3) give white precip	pitate with AgNO ₃ solution	(4) None of these				
14.			_	s which produces (i) turbidity with ction indicates the presence of :			
	(1) CO ₃ ²⁻	(2) S ²⁻	(3*) SO ₃ ²⁻	(4) NO ₂ -			
15.	Ammonium molybd	ate test is used for the estin	nation of :				
	(1*) PO ₄ ³⁻	(2) PO_4^{3-}	(3) SO ₃ ²⁻	$(4)^{SO_4^{2-}}$			
16.	Identify the compou	und which turns black with a	mmonia solution.				
	(1) Lead chloride	(2*) Mercurous chlorid	e (3) Mercuric chloride	(4) Silver chloride			
17.	•			nis solution, a black precipitate is			

27.

colour due to the formation of :

(2) Mn₂O₇

(1*) HMnO₄

Qualitative Analysis

H₂SO₄, a white precipitate is obtained which is soluble in ammonium acetate. The white precipitate is that of:

(4) DI- O-O	The composition of golden spangles is :						
(1) PbCrO ₄	(2*) Pbl ₂	(3) As ₂ S ₃	(4) BaCrO ₄				
In which of the follo	wing solvents, AgBr wil	I have the highest solubility	<i>i</i> ?				
(1) 10 ⁻³ M NaBr	(2*) 10 ⁻³ M NH ₄ OH	H (3) Pure water (4)	10 ⁻³ M HBr				
_		ons can not be separated l	by passing H₂S gas in presence o				
(1*) Cd ²⁺ , Sn ²⁺	(2) Al ³⁺ , Hg ²⁺	(3) Zn ²⁺ , Cu ²⁺	(4) Ni ²⁺ , Bi ³⁺				
Which of the followi	ng is not precipitated as	s sulphide by passing H ₂ S	in the presence of dilute HCl?				
(1) Copper	(2) Arsenic	(3) Cadmium	(4*) None of these				
Which of the following metal cation is reduced from its higher oxidation state (+2) to (+1) by both K solution and excess of KCN solution?							
(1) Zn ²⁺	(2) Hg ²⁺	(3*) Cu ²⁺	(4) None				
Bi ⁺³ ions ? (1) Ammonia solutio (2) Dilution in water (3*) Potassium iodio	on (excess). de solution.						
Which of the followi (1*) Cu+2	ng ions on reaction with (2) Zn+2	n NaOH and subsequent h (3) Al ⁺³	eating produce black Precipitate? (4) Pb+2				
FeCl ₃ + K ₃ [Fe(CN) ₆	$ + H_2O_2 \longrightarrow Precipit$	ate. The colour of the prec	ipitate is :				
(1) sky blue	(2) brown	(3*) prussian blue	(4) white				
Identify the correct (1) It is an acid anhorated (2) It is a red colour (3*) It is chromium p	statement with respect of dride of chromic acid. compound which can be overoxide which produce	pe extracted easily into the es blue colouration in ether	·				
	(1) 10 ⁻³ M NaBr Which one among to dilute hydrochloric at (1*) Cd ²⁺ , Sn ²⁺ Which of the following (1) Copper Which of the following solution and excess (1) Zn ²⁺ Which of the following Bi ⁺³ ions? (1) Ammonia solution (2) Dilution in water (3*) Potassium iodicular (4) Freshly prepared Which of the following (1*) Cu ⁺² FeCl ₃ + K ₃ [Fe(CN) ₆] (1) sky blue CrO ₄ ²⁻ + H ⁺ + H ₂ O ₂ Identify the correct solution (2) It is a red colour (3*) It is chromium process.	(1) 10 ⁻³ M NaBr (2*) 10 ⁻³ M NH ₄ Of Which one among the following pairs of ice dilute hydrochloric acid? (1*) Cd ²⁺ , Sn ²⁺ (2) Al ³⁺ , Hg ²⁺ Which of the following is not precipitated as: (1) Copper (2) Arsenic Which of the following metal cation is recessolution and excess of KCN solution? (1) Zn ²⁺ (2) Hg ²⁺ Which of the following reagents give an oral Bi ⁺³ ions? (1) Ammonia solution (excess). (2) Dilution in water (3*) Potassium iodide solution. (4) Freshly prepared 0.125 M alkaline sodi Which of the following ions on reaction with (1*) Cu ⁺² (2) Zn ⁺² FeCl ₃ + K ₃ [Fe(CN) ₆] + H ₂ O ₂ → Precipit (1) sky blue (2) brown CrO ₄ ²⁻ + H ⁺ + H ₂ O ₂ ether X + H ₂ O Identify the correct statement with respect (1) It is an acid anhydride of chromic acid. (2) It is a red colour compound which can be (3*) It is chromium peroxide which produces	Which one among the following pairs of ions can not be separated by dilute hydrochloric acid? (1*) Cd^{2+} , Sn^{2+} (2) Al^{3+} , Hg^{2+} (3) Zn^{2+} , Cu^{2+} Which of the following is not precipitated as sulphide by passing H_2S (1) Copper (2) Arsenic (3) Cadmium Which of the following metal cation is reduced from its higher oxide solution and excess of KCN solution? (1) Zn^{2+} (2) Hg^{2+} (3*) Cu^{2+} Which of the following reagents give an orange coloured soluble comes Bi^{+3} ions? (1) Ammonia solution (excess). (2) Dilution in water (3*) Potassium iodide solution. (4) Freshly prepared 0.125 M alkaline sodium tetrahydroxidostannated which of the following ions on reaction with NaOH and subsequent In^{-1} (1*) In^{-1} (2) In^{-1} (3) In^{-1} (3) In^{-1} (1*) In^{-1} (2) In^{-1} (3) In^{-1} (3) In^{-1} (4) FeCl ₃ + In^{-1} (2) In^{-1} (2) In^{-1} (3) In^{-1} (3) In^{-1} (4) Freshly blue (2) brown (3*) prussian blue In^{-1} (3) In^{-1} (4) In^{-1} (4) In^{-1} (5) In^{-1} (6) In^{-1} (7) In^{-1} (8) In^{-1} (9) In^{-1} (9) In^{-1} (15) In^{-1} (15) In^{-1} (16) In^{-1} (17) In^{-1} (17) In^{-1} (18)				

White precipitate of Mn(OH)2 on heating with PbO2 and concentrated HNO3 gives red-violet (purple)

(3) MnO(OH)₂ (4) PbMnO₄

•—									
28.	Zn(OH) ₂ precipitate is soluble in :								
	(1) excess of sodium hydroxide (2) excess of ammonia solution								
	(3) solutions of ammo	(3) solutions of ammonium salts (4*) all of these							
29.	Select the correct statement with respect to Ca ²⁺ ions.								
	(1) K ₂ CrO ₄ gives white	e precipitate in the prese	nce of acetic acid.						
	(2*) Potassium hexac	yanidoferrate (II) solutior	n gives white precipitate).					
	(3) It gives lilac colour	in Bunsen flame.							
	(4) Prolonged passag	e of carbon dioxide gas t	through its aqueous sol	ution produces white precipitate.					
30.	A mixture of two salts	s is not water soluble bu	ut dissolves completely	in dilute HCl to form a colourless					
	solution. The mixture	could be :							
	(1) AgNO₃ and KBr	(2*) BaCO₃ and ZnS	(3) FeSO ₄ and Na ₂ C	O ₃ (4) Mn(NO ₃) ₂ and MgSO ₄					
	F	PART - II : PRAC	TICE QUESTIC	DNS					
1.	A colourless gas is dis	ssolved in water and the	resulting solution turns	red litmus blue ; the gas may have					
	been which one of the	e following?							
	(1) HCI	(2) H ₂ S	(3) SO ₂	(4*) NH ₃					
2.	When Ag reacts with	conc. HCl, then products	will be :						
	(1) AgCl, Cl ₂	(2) AgCl, H ₂	(3) AgCl, H ₂ , Cl ₂	(4*) None of these					
3.	Which of the following treated with dilute H ₂ S	·	lioxide gas along with fo	ormation of yellowish turbidity when					
	(1) Sodium sulphide	(2) Sodium sulphite	(3*) Sodium thiosulp	hate (4) Sodium sulphate					
4.	Aqueous solution of a	a salt + MgSO ₄ solution	—→ no precipitate in	cold — Heating — White precipitate					
	appears. The salt con	tains the acidic radical:							
	(1) CO ₃ ²⁻	(2*) HCO ₃	(3) SO ₃ ²⁻	(4) C ₂ O ₄ ²⁻					
5.		2 is treated with sodium							
o .			11103dipilato (11420203)						
	$Na_2S_2O_3 + I_2 \longrightarrow Na_2$	I +							
	(1*) Na ₂ S ₄ O ₆	(2) Na ₂ SO ₄	(3) Na ₂ S	(4) Na ₃ ISO ₄					
6.	With Cr ₂ O ₃ , colour of	the bead in sodium carbo	onate bead test is :						
	(1) red	(2) blue	(3) yellow	(4*) green					
7.	Which metal gives vio	let colour in oxidising fla	me when heated with b	orax ?					
	(1) Fe	(2) Pb	(3) Co	(4*) Mn					
8.	KBr, on reaction with	conc. H ₂ SO ₄ , gives reddi	ish-brown gas :						

	(1*) Bromine (3) HBr		(2) Mixture of bromi(4) NO₂	(2) Mixture of bromine and HBr				
9.	An inorganic salt when heated evolves coloured gas which bleaches moist litmus paper. The evolved gas							
J.	is:							
	(1*) NO ₂	(2) SO ₂	(3) N ₂ O	(4) I ₂				
10.	Which of the following halide is soluble in water?							
	(1*) AgF	(2) AgCl	(3) AgBr	(4) AgI				
11.	Which of the following radical can not be confirmed by using dil.HCI:							
	(1) S ²⁻	(2*) NO ₃	$(3)^{CO_3^{2-}}$	(4) NO ₂				
12.	When K ₂ Cr ₂ O ₇ is heated with conc. H ₂ SO ₄ and soluble chloride such as KCI: (1*) red vapours of CrO ₂ Cl ₂ are evolved (2) Cl ⁻ ion is oxidized to Cl ₂ gas (3) CrCl ₃ is formed							
	(4) $Cr_2O_7^{2-}$ ion is reduced to green Cr^{3+} ion							
13.	A white solid imparts a violet colour to a Bunsen flame. On being heated with concentrated H ₂ SO ₄ , the solid gives violet vapours that turn starch paper blue. The salt may be:							
	(1*) KI	(2) NaI	(3) MgI_2	(4) CaBr ₂				
14.	NaCl, NaBr, NaI mixture on adding conc. H ₂ SO ₄ gives gases, respectively :							
	(1) HCl, HBr, HI	(2*) HCI, Br ₂ , I_2	(3) Cl_2 , Br_2 , I_2	(4) None of these				
15.	Potassium chromate solution is added to an aqueous solution of a metal chloride. The yellow precipitate							
	thus obtained is insoluble in acetic acid. The precipitate is subjected to flame test, the colour of the flame is:							
	(1) lilac	(2*) apple green	(3) crimson red	(4) brick red				
16.	The reagents, NH ₄ C (1) Ca ²⁺	Cl and aqueous NH ₃ will p (2*) Al ³⁺	orecipitate : (3) Mg ²⁺	+ (4) Zn ²⁺ .				
17.	In the precipitation of the iron group in qualitative analysis, ammonium chloride is added before adding ammonium hydroxide to :							
	(1*) decrease concentration of OH⁻ ions(3) increase concentration of Cl⁻ ions		(2) prevent interference by phosphate ions(4) increase concentration of NH₄+ ions					
18.	Fe^{2+} does not give prussian blue colour with $K_4[Fe(CN)_6]$ but on its reaction with (X), prussian blue colou appears (X) can be :							
	(1*) MnO ₄ -/ H+	(2) Zn/NaOH	(3) NH₃ (aq)	(4) all true				
19.	Select the correct statement with respect to Fe ³⁺ ions. (1) Iron (III) ions react with H ₂ S in acidic solution to give a black precipitate of Fe ₂ S ₃ . (2) Iron (III) ions react with ammonium sulphide to give the black precipitate of Fe ₂ S ₃ .							

	(3*) Iron (III) ions react with ammonium thiocyanate solution to produce deep red colouration.(4) All of these							
20.	Which of the following cation does not give red colour precipitate/solution with dimethylglyoxime (DMG) in alkaline solution?							
	(1*) Zn+2	(2) Ni ⁺²	(3) Fe ²	+	(4) both (1) and (3)			
21.	•	amounts of which o (2) Silver and in	s ZnS, MnS, HgS, Ag ₂ S and FeS, is treated with 2N HCl. mounts of which one of the following? (2) Silver and iron (4*) Zinc, manganese and iron					
22.	Potassium chromate I (1) Pb ⁺²	⟨2CrO₄ is NOT used to ⟨2⟩ Ba+² ⟨2⟩ Ba+² ⟨2⟩ CrO₄ is NOT used to ⟨2⟩ Cro₄	identify. (3) Ag+		Sir) (QUA) (Cationic) (MCQ) (E) (4*) Ca+2			
23	When H ₂ S gas is pas does not precipitate o (1) CuS	-	ining aqueous solut (3) Bi ₂ S ₃		$CuCl_2$, $HgCl_2$, $BiCl_3$, and $CaCl_2$ it (4*) CaS			
24	AgI is soluble in NaCI (1*) Na[Ag(CN) ₂]	N due to formation of : (2) Ag(CN) ₂	(3) Na₂[Ag(CN)) ₃] (4) Na	(4) Na ₂ [Ag(CN) ₂]			
25	Cu ²⁺ and Ag ⁺ are both soluton, which reager (1) H ₂ S (aq)	present in the same solution. To precipitate one of the ions and leave the other in should be added: (2*) HCl (aq) (3) HNO ₃ (aq) (4) NH ₄ NO ₃ (aq)						
26	Aqueous (A) + $K_2CrO_4 \longrightarrow (B) \xrightarrow{aq. NH_3} (C)$ (Red ppt.) (soluble)							
	A is : (1*) AgNO ₃	(2) Pb(NO ₃) ₂	(3) Hg ₂ (NO ₃) ₂	(4) Ca	a(NO ₃) ₂			
27. _	The ion most difficult (1) Ag+	to remove as a precipit (2*) NH ₄ +	tate is : (3) Fe ³⁺	(4) C	(4) Cu ²⁺			
28	CuSO ₄ reacts with NH ₄ OH to give deep blue complex of : (1*) [Cu(NH ₃) ₄]SO ₄ (2) [Cu(NH ₃) ₄](OH) ₂ (3) Both (1) and (2) (4) none of these							
29	Thenard blue is: (1) Cu(NH ₃) ₄ SO ₄	(2*) CoAl ₂ C) ₄ (3) K ₂ F	(3) K ₂ Fe[Fe(CN) ₆] (4) Fe ₄ [Fe(CN)				
30	Among the species A (1*) A,C and D	(CrCl ₃), B (CuS), C ((2) C and D only	, , ,	nich will be solu nd C only	ble in excess of NaOH? (4) A and D only			