

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

Section (A) : Equilibrium and its properties

In a reaction A + B \subset C + D the rate constant of forward reaction & backward reaction is k₁ and k₂ A-1. then the equilibrium constant (k) for reaction is expressed as -

(1)
$$K_{C} = \frac{K_{2}}{K_{1}}$$
 (2*) $K_{C} = \frac{K_{1}}{K_{2}}$ (3) $K_{C} = K_{1} \times K_{2}$ (4) $K_{C} = K_{1} + K_{2}$

A-2. Molar concentration of 96 g of O2 contained in a 2 litre vessel is -(1) 16 mol/litre (2*) 1.5 mol/litre (3) 4 mol/litre (4) 24 mol/litre

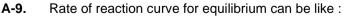
$$K_p$$

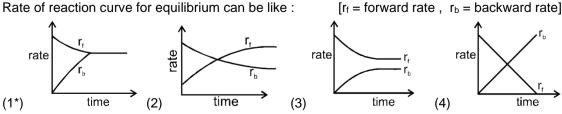
 $\log K_c + \log RT = 0$ is a relationship for the reaction : A-3.

- (1) $PCl_5 \longrightarrow PCl_3 + Cl_2$ (2*) 2SO₂ + O₂ $\overrightarrow{}$ 2SO₃ (4) N₂ + 3H₂ $\overrightarrow{}$ 2NH₃ (3) H₂ + I₂ = 2HI
- The equilibrium concentration of $[B]_{eq}$ for the reversible reaction A $\overline{}$ B can be evaluated by the A-4. expression:

(1) K_C[A]_e⁻¹ (2)
$$\frac{k_{f}}{k_{b}}$$
 [A]_e⁻¹

(4) k_fk_b[A]⁻¹


A-5. In a chemical equilibrium, the rate constant for the backward reaction is 7.5×10^{-4} and the equilibrium constant is 1.5 the rate constant for the forward reaction is :


(1)
$$2 \times 10^{-3}$$
 (2) 5×10^{-4} (3*) 1.12×10^{-3} (4) 9.0×10^{-4}

For the reaction, $CuSO_{4.5}H_2O(s)$ CuSO_{4.3}H₂O(s) + 2H₂O(g). Which one is correct representation: A-6. (1) $K_P = (P_{H_2O})^2$ (2) $K_c = [H_2O]^2$ (3) $K_P = K_c(RT)^2$ (4*) All

For a reaction $N_2 + 3H_2 \xrightarrow{} 2NH_3$, the value of K_c does not depends upon : A-7. (a) Initial concentration of the reactants (b) Pressure (c) Temperature (d) catalyst

At 1000 K, the value of K_p for the reactionm, A(g) + 2B(g) $\overline{}$ 3C(g) + D(g) is 0.05 atmosphere. The A-8. value of Kc in terms of R would be : (1) 20000 R (2) 0.02 R (3) 5 × 10^{−5} R (4^*) 5 × 10⁻⁵ × R⁻¹

The equilibrium constant of the reaction $SO_2(g) + \frac{1}{2}O_2(g) \xrightarrow{} SO_3(g)$ is 4×10^{-3} atm^{-1/2}. The equilibrium A-10. constant of the reaction $2SO_3(q) = 2SO_2(q) + O_2(q)$ would be : (3) 0.25 × 10⁴ atm (1) 250 atm (2) 4×10^3 atm (4*) 6.25 × 10⁴ atm

Section (B) : Calculation of K_P & K_c in homogenous equilibrium

- For the reaction 3 A (g) + B (g) $\overline{}$ 2 C(g) at a given temperature, K_c = 9.0. What must be the volume B-1. of the flask, if a mixture of 2.0 mol each of A, B and C exist in equilibrium? (1*) 6 L (2) 9 L (3) 36 L (4) None of these
- The equilibrium constant (K_p) for the reaction $PCl_5(g) = PCl_3(g) + Cl_2(g)$ is 16. If the volume of the B-2. container is reduced to one half its original volume, the value of Kp for the reaction at the same temperature will be : (1) 32 (2) 64 (3*) 16 (4) 4

The equilibrium constant for the reaction : $N_2(q) + O_2(q) \rightarrow 2NO(q)$ at 2000 K is 4 × 10⁴ In presence B-3. of a catalyst the equilibrium is established ten times faster at the same temperature. What is the value of equilibrium constant in presence of catalyst : -Э

(1)
$$40 \times 10^4$$
 (2) 4×10^{-4} (3^{*}) 4×10^4 (4) None

The equilibrium constant for the reaction : $H_2(g) + I_2(g) = 2HI(g)$ is 64. If the volume of the container B-4. is reduced to one fourth of its original volume, the value of the equilibrium constant will be : (1) 16(2) 32 $(3^*) 64$ (4) 128

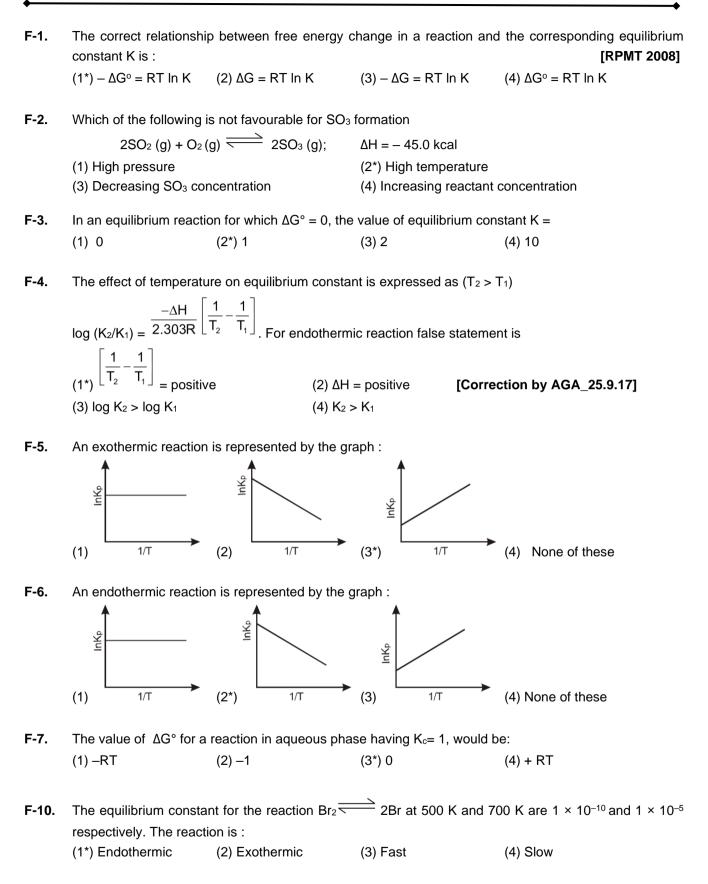
 $A_3(q) = 3A(q)$ B-5.

> In the above reaction, the initial concentration of A₃ is "a" moles/lit. If x is degree of dissociation of A₃. The total number of moles at equilibrium will be :

(2) $\frac{a}{3}$ - ax (3) $\left(\frac{a-ax}{2}\right)$ ax (1) a - 3(4*) a + 2ax

- The reaction A(g) + B(g) \leftarrow C(g) + D(g) is studied in a one litre vessel at 250°C. The initial B-6. concentration of A was 3n and that of B was n. When equilibrium was attained, equilibrium concentration of C was found to the equal to the equilibrium concentration of B. What is the concentration of D at equilibrium?
 - (1*) n/2 (2) (3n – 1/2) (3) (n - n/3)(4) n
- B-7. When alcohol (C₂H₅OH) and acetic acid are mixed together in equimolar ratio at 27°C, 33% is converted into ester. Then the Kc for the equilibrium

$$C_{2}H_{5}OH(\ell) + CH_{3}COOH(\ell) \xrightarrow{} CH_{3}COOC_{2}H_{5}(\ell) + H_{2}O(\ell).$$


'a' moles of PCl₅, undergoes, thermal dissociation as : PCl₅ \longrightarrow PCl₃ + Cl₂, the mole fraction of PCl₃ B-8. at equilibrium is 0.25 and the total pressure is 2.0 atmosphere. The partial pressure of Cl2 at equilibrium is : (1) 2.5 (2) 1.0 (3*) 0.5 (4) None

B-9.	4.5 moles each of hydrogen and iodine heat		-
	were found. The equilibrium constant for $H_2(g(1^*) 1)$ (2) 10	g) + I ₂ (g) (3) 5	is : (4) 0.33
B-10.	1.50 moles each of hydrogen and iodine were At equilibrium 1.25 moles each of hydrogen a the reaction. $H_2(g) + I_2(g) 2HI(g)$ at 717 K is (1) 0.4 (2*) 0.16	•	
D 44			
B-11.	500 ml vessel contains 1.5 M each of A,B, C out, the value of K _c for A + B $$ C + D w	•	[DCE 2000]
	(1*) 1.0 (2) 1/9	(3) 4/9	(4) 8/9
B-12.	The relation between K_P and K_c in equilibrium	ı is :	[RPMT 2001]
	(1*) $K_p = K_c (RT)^{\Delta ng}$ (2) $K_p = K_c \times RT$	(3) $K_c = K_p (RT)^{\Delta_n}$	(4) $K_c = K_p \times \Delta n$
		[C	correction by AGA_25.9.17]
Secti	ion (C) : Reaction quotient		
C-1.	In a 20 litre vessel initially 1 – 1 mole CO, Hz	-	n for the equilibrium of
	$CO + H_2O \xrightarrow{\frown} CO_2 + H_2 \text{ following}$ (1) H ₂ , more then 1 mole (3) CO ₂ & H ₂ O both more than 1 mole	is true : (2*) CO, H ₂ O, H ₂ Ie (4) All of these	ess then 1 mole
C-2.	Vapour density of PCI ₅ is 104.16 but when I degree of dissociation of PCI ₅ at this tempera $(1) 6.8 \%$ $(2^*) 68\%$		apour density is reduced to 62 The
C-3.	A reaction mixture containing H_2 , N_2 and NH_3	has partial pressure 2	atm 1 atm and 3 atm respectively at
0.0.	 725 K. If the value of K_P for the reaction, N₂ direction the net reaction will go : (1) Forward (3) No net reaction 	2 + 3H ₂ 2NH ₃ is (2*) Backward	
C-4.	2 mole each of SO ₃ , CO, SO ₂ and CO ₂ is take	en in a one lit_vessel	If Ke for
- 1	$SO_3(g) + CO(g) \xrightarrow{\frown} SO_2(g)$		
	(1) total no. of moles at equilibrium are less th		$(CO_2) = 4$
	(3) [n(SO ₂)/n(CO)] < 1	(4*) nksu	ıksa (2) r Fkk (3).
C-5.	The reaction quotient Q for N ₂ (g) + $3H_2(g) =$ proceed in backward direction, when (1) Q = K _C (2) Q < K _C		h by Q = $\frac{[NH_3]^2}{[N_2][H_2]^3}$. The reaction will (A) A = 0 (4) A = 0
C-6.	For the reaction,	(S	ID Sir) (CEQ–RQ) (SCQ) (E)
	2A + B 3C at 298 K, K _C = A 3L vessel contains 2, 1 and 3 moles of A, E		he reaction at the same temperature

	(1*) must proceed (3) must be equilib	in forward direction rium	(2) must proceed (4) can not be pre	in backward direction dicted
Sect	ion (D) : Degree o		(i) can not be pro	
D-1.	is attained at 25°C equilibrium is 0.66	librium $N_2O_4(g) =$. The total equilibrium pressure of district the degree of district $\frac{1}{2}$	essure in container is 380 ssociation of N ₂ O ₄ at this	. 1
	(1) 3		$\frac{\frac{2}{3}}{(3)}$	(4) 4
D-2.		ociation of PCl₅ at a ceri this substance is half dis (2) 0.246		at one atm pressure . Calculate the mperature. (4) 0.111
D-3.	Consider the react	ions		
	(i) PCl₅(g) <u> </u>			
	(1) will increase th(2) will reduce the(3) will increase th	2NO ₂ (g) inert gas at constant vol e dissociation of PCI₅ as dissociation of PCI₅ as w e dissociation of PCI₅ an the equilibrium of the re	well as N₂O₄ /ell as N₂O₄ d step up the formation (of NO ₂
D-4.		for the reaction , $SbCl_5$ (in the degree of dissociation		$\frac{1}{2}$ (g) is 1.07 atm at a total pressure of
	(1) 0.516	(2*) 0.718	(3) 0.321	(4) None of these
D-5.		nixed with 4 moles of B, \sim \rightarrow C + D. The equilibrium		ormed at equilibrium, according to the
		(2*) 1		(4) $\sqrt{4}$
D-6.		e heated at constant tem al number of moles at ec	perature in closed conta	iner. If degree of dissociation for PCI
	(1) 4.5	(2*) 6	(3) 3	(4) 4
D-7.				 + O₂. If the 2 moles of CO₂ is taken mber of moles at equilirbrium : (4) 5
D-8.			. ,	of P and Q taken initially in a 1 litre
-	flask. At equilibriur (1*) [P] < [Q]		(3) [Q] = [R]	(4) None of these
D-9.	In a 0.25 litre tube	e dissociation of 4 moles	of NO is take place. If i	ts degree of dissociation is 10%. The
		ction 2NO $$ N ₂ + C		
	(1*) $\frac{1}{(18)^2}$	(2) $\frac{1}{(8)^2}$	(3) ¹ / ₁₆	(4) ¹ / ₃₂

D-10.		N ₂ O ₄ at a certain tempe	rature is 30. What is the	percentage dissociation of N ₂ O ₄
	at this temperature ? (1*) 53.3 %	(2) 106.6%	(3) 26.7%	(4) none
D-11.			. ,	in molecular weight (observed) is
5	80.			
	The equilibrium is		B(g)	
		(mol. wt. = 10	0) (mol. wt. = 60	0) (mo. wt. = 40)
	Find the degree of dis	sociation α for A(g).		
	(1*) 0.25	(2) 0.5	(3) 0.75	(4) 0.8
D-12.	The degree of dissoci	ation of PCl₅ (g) obeying	the equilibrium, PCI ₅	$\stackrel{\frown}{\longrightarrow}$ PCl ₃ + Cl ₂ , is approximately
	related to the presure			
		1	1	1
	(1) α ∝ P	(2*) α ∝ ¹ / _{√P}	(3) $\alpha \propto \overline{P^2}$	(4) $q \propto \overline{P^4}$
D_12	PCl₅(g) ── PCl₃(g) $\downarrow Cl_{\alpha}(\alpha)$		
D-13.			fraction of PCI- is 0.4 an	d mole fraction of Cl₂ is 0.3. Then
	find out mole fraction	•		
	$PCl_5(g) \longrightarrow PCl_3(g)$			
				(4) 0.0
	(1*) 0.3	(2) 0.7	(3) 0.4	(4) 0.6
D-14.	$N_2O_4(q) 2NO_2(q)$) In this reaction the diss	ociation of N2O4 is X the	n the how much mole will of N ₂ O ₄
D-14.			sociation of N_2O_4 is X the	n the how much mole will of N ₂ O ₄ [RPMT 2001]
D-14.	and NO ₂ at equilibriun	n :	ociation of N_2O_4 is X the	n the how much mole will of N ₂ O ₄ [RPMT 2001]
D-14.	and NO ₂ at equilibriun N ₂ O ₄ (g) \longrightarrow 2 NO ₂	n : (g)		[RPMT 2001]
	and NO ₂ at equilibrium N ₂ O ₄ (g) $\stackrel{\frown}{=} 2 \text{ NO}_2$ (1) $(1 - x)^2$	n : (g) (2) 1	(3*) (1 + x)	[RPMT 2001] (4) 2
D-14. D-15.	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5	n : (g) (2) 1 moles of O₂ are allowed	(3*) (1 + x) to react to form SO₃ in a	[RPMT 2001] (4) 2 closed vessel. At the equilibrium
	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use	n : (g) (2) 1 moles of O ₂ are allowed ed up. The total number o	(3^*) (1 + x) to react to form SO ₃ in a of moles of SO ₂ , O ₂ and 3	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is :
	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5	n : (g) (2) 1 moles of O₂ are allowed	(3*) (1 + x) to react to form SO₃ in a	[RPMT 2001] (4) 2 closed vessel. At the equilibrium
	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use (1) 3.9	n : (g) (2) 1 moles of O ₂ are allowed ed up. The total number o (2) 10.5	(3*) (1 + x) to react to form SO₃ in a of moles of SO₂, O₂ and 3 (3*) 8.5	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is :
D-15.	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use (1) 3.9	n : (g) (2) 1 moles of O ₂ are allowed ed up. The total number of (2) 10.5 N ₂ O ₄ has a vapour dens	(3*) (1 + x) to react to form SO₃ in a of moles of SO₂, O₂ and 3 (3*) 8.5	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is : (4) 10.0
D-15.	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use (1) 3.9 A mixture of NO ₂ and	n : (g) (2) 1 moles of O ₂ are allowed ed up. The total number of (2) 10.5 N ₂ O ₄ has a vapour dens	(3*) (1 + x) to react to form SO₃ in a of moles of SO₂, O₂ and 3 (3*) 8.5	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is : (4) 10.0 at is the number of moles of NO ₂
D-15. D-16.	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use (1) 3.9 A mixture of NO ₂ and in 100 g of the mixture (1) 0.043	n : (g) (2) 1 moles of O ₂ are allowed ed up. The total number of (2) 10.5 N ₂ O ₄ has a vapour dens e? (2) 4.4	(3^*) (1 + x) to react to form SO ₃ in a of moles of SO ₂ , O ₂ and 3 (3 [*]) 8.5 sity of 38.3 at 300 K. What	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is : (4) 10.0 at is the number of moles of NO ₂ [Kerla PMT 2004]
D-15. D-16.	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use (1) 3.9 A mixture of NO ₂ and in 100 g of the mixture	n : (g) (2) 1 moles of O ₂ are allowed ed up. The total number of (2) 10.5 N ₂ O ₄ has a vapour dens e? (2) 4.4	(3^*) (1 + x) to react to form SO ₃ in a of moles of SO ₂ , O ₂ and 3 (3 [*]) 8.5 sity of 38.3 at 300 K. What	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is : (4) 10.0 at is the number of moles of NO ₂ [Kerla PMT 2004]
D-15. D-16. Secti	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use (1) 3.9 A mixture of NO ₂ and in 100 g of the mixture (1) 0.043 on (E) : Heterogeno	n : (g) (2) 1 moles of O ₂ are allowed ed up. The total number of (2) 10.5 N ₂ O ₄ has a vapour dens e? (2) 4.4 us Equilibrium	(3*) (1 + x) to react to form SO ₃ in a of moles of SO ₂ , O ₂ and 3 (3*) 8.5 Sity of 38.3 at 300 K. What (3) 3.4	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is : (4) 10.0 at is the number of moles of NO ₂ [Kerla PMT 2004] (4*) 0.437
D-15. D-16.	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use (1) 3.9 A mixture of NO ₂ and in 100 g of the mixture (1) 0.043 on (E) : Heterogeno In the reaction C(s) +	n : (g) (2) 1 moles of O ₂ are allowed ed up. The total number of (2) 10.5 N ₂ O ₄ has a vapour dens e? (2) 4.4 us Equilibrium	(3*) (1 + x) to react to form SO ₃ in a of moles of SO ₂ , O ₂ and 3 (3*) 8.5 Sity of 38.3 at 300 K. What (3) 3.4	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is : (4) 10.0 at is the number of moles of NO ₂ [Kerla PMT 2004]
D-15. D-16. Secti	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use (1) 3.9 A mixture of NO ₂ and in 100 g of the mixture (1) 0.043 on (E) : Heterogeno In the reaction C(s) + then K _P will be :	n : (g) (2) 1 moles of O_2 are allowed ed up. The total number of (2) 10.5 N ₂ O ₄ has a vapour dens e? (2) 4.4 us Equilibrium $CO_2(g) \longrightarrow 2CO(g),$	(3*) (1 + x) to react to form SO ₃ in a of moles of SO ₂ , O ₂ and 3 (3*) 8.5 wity of 38.3 at 300 K. What (3) 3.4	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is : (4) 10.0 at is the number of moles of NO ₂ [Kerla PMT 2004] (4*) 0.437 is 12 atm. If 50% of CO ₂ reacts
D-15. D-16. Secti E-1.	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use (1) 3.9 A mixture of NO ₂ and in 100 g of the mixture (1) 0.043 on (E) : Heterogeno In the reaction C(s) + then K _p will be : (1) 12 atm	n : (g) (2) 1 moles of O_2 are allowed ed up. The total number of (2) 10.5 N ₂ O ₄ has a vapour dens e? (2) 4.4 us Equilibrium $CO_2(g) \longrightarrow 2CO(g),$ (2*) 16 atm	 (3*) (1 + x) to react to form SO₃ in a of moles of SO₂, O₂ and 3 (3*) 8.5 ity of 38.3 at 300 K. What (3) 3.4 the equilibrium pressure (3) 20 atm 	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is : (4) 10.0 at is the number of moles of NO ₂ [Kerla PMT 2004] (4*) 0.437 is 12 atm. If 50% of CO ₂ reacts (4) 24 atm
D-15. D-16. Secti	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use (1) 3.9 A mixture of NO ₂ and in 100 g of the mixture (1) 0.043 on (E) : Heterogeno In the reaction C(s) + then K _p will be : (1) 12 atm What is the minimum	n : (g) (2) 1 moles of O_2 are allowed ed up. The total number of (2) 10.5 N ₂ O ₄ has a vapour dens P_2 (2) 4.4 us Equilibrium $CO_2(g) \longrightarrow 2CO(g),$ (2*) 16 atm mass of CaCO ₃ (s), below	 (3*) (1 + x) to react to form SO₃ in a of moles of SO₂, O₂ and 3 (3*) 8.5 bity of 38.3 at 300 K. What (3) 3.4 the equilibrium pressure (3) 20 atmos which it decomposes 	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is : (4) 10.0 at is the number of moles of NO ₂ [Kerla PMT 2004] (4*) 0.437 is 12 atm. If 50% of CO ₂ reacts (4) 24 atm completely, required to establish
D-15. D-16. Secti E-1.	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use (1) 3.9 A mixture of NO ₂ and in 100 g of the mixture (1) 0.043 on (E) : Heterogeno In the reaction C(s) + then K _p will be : (1) 12 atm What is the minimum equilibrium in a 6.50	n : (g) (2) 1 moles of O_2 are allowed ed up. The total number of (2) 10.5 N ₂ O ₄ has a vapour dens P_2 (2) 4.4 us Equilibrium $CO_2(g) \longrightarrow 2CO(g),$ (2*) 16 atm mass of CaCO ₃ (s), below	 (3*) (1 + x) to react to form SO₃ in a of moles of SO₂, O₂ and 3 (3*) 8.5 bity of 38.3 at 300 K. What (3) 3.4 the equilibrium pressure (3) 20 atmos which it decomposes 	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is : (4) 10.0 at is the number of moles of NO ₂ [Kerla PMT 2004] (4*) 0.437 is 12 atm. If 50% of CO ₂ reacts (4) 24 atm
D-15. D-16. Secti E-1.	and NO ₂ at equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2$ (1) $(1 - x)^2$ 5 moles of SO ₂ and 5 stage, 60% SO ₂ is use (1) 3.9 A mixture of NO ₂ and in 100 g of the mixture (1) 0.043 on (E) : Heterogeno In the reaction C(s) + then K _p will be : (1) 12 atm What is the minimum	n : (g) (2) 1 moles of O_2 are allowed ed up. The total number of (2) 10.5 N ₂ O ₄ has a vapour dens P_2 (2) 4.4 us Equilibrium $CO_2(g) \longrightarrow 2CO(g),$ (2*) 16 atm mass of CaCO ₃ (s), below	 (3*) (1 + x) to react to form SO₃ in a of moles of SO₂, O₂ and 3 (3*) 8.5 bity of 38.3 at 300 K. What (3) 3.4 the equilibrium pressure (3) 20 atmos which it decomposes 	[RPMT 2001] (4) 2 closed vessel. At the equilibrium SO ₃ in the vessel now is : (4) 10.0 at is the number of moles of NO ₂ [Kerla PMT 2004] (4*) 0.437 is 12 atm. If 50% of CO ₂ reacts (4) 24 atm completely, required to establish

Section (F) : Thermodynamics of Equilibrium

Section (G) : Le-chatelier's principle

G-1. A reaction in equilibrium is represented by the following equation -

 $2A_{(s)} + 3B_{(g)} = 3C_{(g)} + D(g) + O_2$ if the pressure on the system is reduced to half of its original value (1) The amounts of C and D decreases (2*) The amounts of C and D increases

(3) The amount of B and D decreases

(4) All the amounts remain constant

G-2. In which of the following equilibrium reactions, the equilibrium would shift to right side, if total pressure is decreased :

(2) H₂ + I₂ = 2HI (1) N₂ + 3H₂ 2NH₃ (4) $H_2 + Cl_2 = 2HCl$ (3^*) N₂O₄ $\overrightarrow{}$ 2NO₂

G-3. In a vessel containing SO₃, SO₂ and O₂ at equilibrium, some helium gas is introduced so that the total pressure increases while temperature and volume remain constant. According to Le-Chatelier principle, the dissociation of SO₃,

(1) Increases (2) Decreases (3*) Remains unaltered

(4) None of these

- On cooling of following system at equilibrium $CO_2(s) \xleftarrow{} CO_2(q)$ G-4. (1) There is no effect on the equilibrium state (2) More gas is formed
 - (3*) More gas solidifies (4) None of above
- For an equilibrium $H_2O(s) \xleftarrow{} H_2O(\ell)$ which of the following statements is true. G-5.
 - (1) The pressure changes do not affect the equilibrium
 - (2*) More of ice melts if pressure on the system is increased
 - (3) More of liquid freezes if pressure on the system is increased
 - (4) The degree of advancement of the reaction do not depend on pressure.
- In the Haber process for the industrial manufacture of ammonia involving the reaction, G-6.

 $N_2(g) + 3H_2(g) = 2NH_3(g)$ at 200 atm pressure in the presence of a catalyst, a temperature of about 500°C is used. This is considered as optimum temperature for the process because

- (1) yield is maximum at this temperature
- (2) catalyst is active only at this temperature
- (3) energy needed for the reaction is easily obtained at this temperature

(4*) rate of the catalytic reaction is fast enough while the yield is also appreciable for this exothermic reaction at this temperature.

- The effect of increasing the pressure on the following equilibrium 2A + 3B 3A + 2B is -G-7. (1) Forward reaction is favoured (2) Backward reaction is favoured (4) None of these (3*) No effect
- G-8. When NaNO₃(s) is heated in a closed vessel, O₂ is liberated and NaNO₂(s) is left behind. At equilibrium-(1) Addition of NaNO₃(s) favours forward reaction (2) Addition of NaNO₂(s) favours reverse reaction (3*) Increasing pressure favours reverse reaction (4) Decreasing temperature favours forward reaction
- $aA + bB \equiv cC + dD$ G-9. In above reaction low pressure and high temperature, conditions are shift equilibrium in back direction so correct set : $aA + bB \longrightarrow cC + dD$

Exercise-2

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

1.		$(g) + O_2(g) \iff 2SO_3(g)$		quilibrium the amount of SO ₂ and
	SO ₃ is the same ?			
	(1) 16.0 atm	(2*) 0.25 atm	(3) 1 atm	(4) 0.75 atm
2.				pectively as follows A + D \longrightarrow stant 'K' for A + 3D \longrightarrow AD ₃ is
	(1) $K_1 + K_2 + K_3 = K$		(2*) logK1 + logK2 + lo	$gK_3 = \log K$
	(3) $K_1 + K_2 = K_3 + K$		$(4) \log K_1 + \log K_2 = \log K_2$	gK₃ + log K
3.	For the reaction			
	A₂(q) + 3B₂ ≂	\longrightarrow 2C ₂ (g)		
	(6)		e 0.80 atm and 0.40 atm	respectively. The pressure of the
	system is 2.80 atm. The equilibrium constant K_p will be			
	(1*) 50	(2) 5.0	(3) 0.02	(4) 0.2
4.	On decomposition of N	NH₄HS, the following equ	ulibrium is established :	
		$\stackrel{\text{IIIII}}{\longrightarrow} \text{NH}_3(g) + \text{H}_2\text{S}(g)$		
			um constant K _P is equal	to
	(1) P atm	(2) P^2 atm ²		
5.	•	or the following equilibriu	•	
	Na ₂ HPO ₄ .12H	I₂O (s) ──── Na₂HPO₄.	.7H ₂ O (s) + 5H ₂ O(g)	$K_P = 31.25 \times 10^{-13}$
		essure of water vapour.		
	(1) ¹ / ₅ ×10⁻³ atm			
	(1) ⁵ ×10 ⁻³ atm	(2) 0.5 × 10 ^{−3} atm	(3) 5 × 10 ^{−2} atm	(4*) 5 × 10 ^{−3} atm.
6.	In a reaction the rate of (1*) Law of mass action (3) Faraday law of elements	n	I to its active mass, this s (2) Le-chatelie princip (4) Law of constant pr	le
7.		+ $CO_2(g) 2CO(g)$ rium. The K _P for the read		CO and CO_2 are 2.0 and 4.0 atm.

8. Consider the two gaseous equilibrium involving SO₂ and the corresponding equilibrium constant at 299

/ 1/4

K SO₂ (g) +
$$1/2O_2(g) = SO_3(g)$$
; K₁

$$4SO_3 (g) = 4SO_2 (g) + 2O_2 (g); K_2$$

The value of the equilibrium constant are related by :

(1*)
$$K_2 = \frac{1}{(K_1)^4}$$
 (2) $K_2 = K_1^4$ (3) $K_2 = \begin{pmatrix} \frac{1}{K_1} \end{pmatrix}$ (4) $K_2 = \frac{1}{K_1}$

9. Equilibrium constant for the reaction,

> 2 NO + O₂ = 2 NO₂ is K_{C1} ; is K_{C2} and $NO_2 + SO_2 \implies SO_3 + NO$ $2 \text{ SO}_3 \rightleftharpoons 2 \text{ SO}_2 + \text{O}_2$ is Kc3 then correct reaction is : (1) $K_{C3} = K_{C1} \times K_{C2}$ (2*) $K_{C3} \times K_{C1} \times K^2_{C2} = 1$ (3) $K_{C3} \times K_{C1} \times K_{C2} = 1$ (4) $K_{C3} \times K^2_{C1} \times K_{C2} = 1$

In a chemical equilibrium $A + B \rightleftharpoons C + D$ when one mole each of the two reactants are mixed 0.4 mole 10. each of the products are formed. The equilibrium constant calculated is : (2) 0.36(4*) 4/9 (1) 1(3) 2.25

The correct relationship between K_P and K_c in gaseous equilibrium is : [RPMT 2000] 11. (1) $K_p = K_p (RT)^{\Delta_n}$ (2) $K_{C} = RT (K_{p})^{\Delta_{n}}$ (3*) K_p = K_C (RT)[∆]n (4) $K_p = RT (K_c)^{\Delta_n}$

12. At constant temperature, the equilibrium constant (K_p) for the decomposition reaction $N_2O_4 \longrightarrow 2NO_2$ is expressed by $K_p = (4x^2 P) / (1 - x^2)$ where P = pressure, x = extent of decomposition. Which one of the following statements is true? [KCET 2001] (1) K_p increases with increase of P (2) K_p increase with increase of x (3) K_p increase with decrease of x (4*) K_p remains constant with change in P and x.

$CaCO_3(s) \iff CaO(s) + CO_2(g)$; K_p is : [RPMT 2002] 13. For the reaction, (1) $K_p = {P_{(CaCO_3)}}$ (2*) $K_p = {P_{(CO_2)}}$ (3) $K_p = {1 \over P_{(CaCO_3)}}$ (4) $K_p = {1 \over P_{(CO_2)}}$ For $N_2 + 3H_2 \longrightarrow 2NH_3$ equilibrium constant is K then equilibrium constant for $2N_2 + 6H_2 \longrightarrow 4NH_3$: 14. [RPMT 2002] (4) $\sqrt{\frac{1}{K}}_{+1}$ (3) 2 (1) √K

15.	Relation between K _p	and K_c is :		[RPMT 2002]
	(1) K _c = K _p (RT) ^{∆ng}	(2) $K_p = K_c (RT)^{\Delta ng}$	(3) $K_c = K_p (RT)^{-\Delta ng}$	(4*) both (2) and (3)

(2*) K²

56 g of nitrogen and 8 g of hydrogen gas are heated in a closed vessel. At equilibrium, 34 g of ammonia 16. are present. The equilibrium number of moles of nitrogen, hydrogen and ammonia are respectively.

[Karnatak 2004]

(1) 1,2,2	(2) 2,2,1	(3*) 1,1,2	(4) 2,1,2

17.	Which of the following	is in favour of forward rea	action	
	(1) Q = K _c	(2) Q > K _c	(3*) Q < K _c	(4) None
18.		illibrium constant became		
19.	Given ^{K_{P1} : ^{K_{P2}} ::9:1 If the degree dissociat}		•	t equilibria (1) and (2) are in the D).
	(1) 3 : 1	(2*) 36 : 1	(3) 1 : 1	(4) 0.5 : 1
20. Sol.	At equilibrium : $(1^*) K_P$ does not change $(2) \alpha$ does not change (3) concentration of NH (4) concentration of hy	e significantly with press	ure. pressure. of nitrogen	tion constant (α) is appreciable.
21.	Vapour density of PCI 208.5)	₅ at equilibrium is 52.12	5 at T°C. Then degree o	of dissociation of PCI_5 is. (Mw =
	(1) 20%	(2*) 100%	(3) 30%	(4) 15%
22.	The degree of dissociation K_p for $2SO_3(g) \rightleftharpoons 2$ (1) $[(P_0 \alpha^3)/2(1 - \alpha)^3]$ (3) $[(P_0 \alpha^2)/2(1 - \alpha)^2]$	ation of SO₃ is α at equilib SO₂(g) + O₂(g) is	orium pressure P ₀ . (2*) [(P ₀ α ³)/(2+α)(1 – α (4) None of these	i) ²]
23.		L mM in condition	of auddonly volume inc	ease, degree of dissociation is
23.				ease, degree of dissociation is
	decrease it represent t (1) a < (ℓ + m)	(2) $a = (\ell + m)$	(3) a = (ℓ − m)	(4*) a > (ℓ + m)
24.	2 moles of PCl₅ when h in PCl₃ and Cl₂. The value of the equilil (1) 2.67		of 2 litre capacity at equ (3) 5.33	ilibrium, 40% of PCI₅ dissociated [RPMT 2000] (4*) 0.267
	(1) 2.01	(2) 0.0	(0) 0.00	(+) 0.201

25.		les of H_2 are allowed to a tion of H_2 in the vessel is		At equilibrium, 0.8 mole of NH₃ is [Manipal PMT 2002]
	(1) 0.6 mole	(2*) 0.8 mole	(3) 0.2 mole	(4) 0.4 mole
26.	evacuated vessel. The	n at equilibrium	 is attained by mixing e (3*) [P₄] > [Cl₂] 	equal moles of P ₄ and Cl ₂ in an [J&K CET 2004] (4) [PCl ₃] > [P ₄]
27.	pressure of the system	. Supposing at constant dissociation for this reac	temperature. If the volum	s inversely as the square root of the is increased 16 times the initial
	(1*) 4 times	(2) $\frac{1}{4}$ times	(3) 2 times	(4) $\frac{1}{2}$ times
28.	A liquid is in equilibriu phases have equal : (1) inter molecular for (3*) kinetic energy		boiling point . On the av(2) potential energy(4) none of these .	verage the molecules in the two
29.	(1*) Endothermic	and 700 K are 1 × 10 ⁻¹⁰ a (2) Exothermic	and 1 × 10 ⁻⁵ respectively (3) Fast	. The reaction is : (4) Slow
Sol.	$T^{\uparrow} K_{c}^{\uparrow} \Rightarrow Endothern$	mic		
30.		eld of Z at equilibrium ? °C		
31.	The reaction in which y (1) PCl ₃ (g) + Cl ₂ (g) \leftarrow (3) N ₂ (g) + 3H ₂ (g) \leftarrow	[→] PCl ₅ (g)	t be increased by the ap $(2^*) N_2(g) + O_2(g) \rightleftharpoons$ $(4) 2SO_2(g) + O_2(g) \rightleftharpoons$	
32.	-	ssed N ₂ O ₄ (g) ~ 2NO ₂		on for the following reaction if the ion is favoured
33.		unchanged (Assume ∆ng : will be formed	-	
34.	Which reaction will pro (1) C(s) + O ₂ \longrightarrow C (3*) N ₂ + 3H ₂ \longrightarrow 2	O ₂	n on increasing pressure (2) SO ₂ (s) + 0.5 O ₂ — (4) None of the above	$\rightarrow SO_3$

35.	In a given system, water and ice are in ec	quilibrium. If pressure is appli	ed to the above system then :		
	(1) More of ice is formed	(2) Amount of ice and	d water will remain same		
	(3*) More of ice is melted	(4) Either (1) or (3)			
36.	For the equilibrium reaction, H ₂ O(I)	H ₂ O(g). What happens, if pre	ssure is applied :		
	(1) More water evaporates	(2*) The boiling point	of water is increased		
	(3) No effect on boiling point	(4) None of the above	9		
37.	For the reaction CO(g) + H ₂ O(g) \rightleftharpoons Co CO ₂ (g) can be increased by :	O ₂ (g) + H ₂ (g) at a given temp	perature the equilibrium amount of		
	(1) adding a suitable catalyst	(2) adding an inert ga	as		
	(3) decreasing the volume of container	(4*) increasing the ar	nount of CO(g)		
38.	Given the following reaction at equilibriun constant pressure is added to the system	. Predict which of the following	-		
	(1) More $NH_3(g)$ is produced	(2*) Less NH ₃ (g) is p			
	(3) No affect on the equilibrium	(4) K_p of the reaction	is decreased		
39.	The equilibrium, $SO_2Cl_2(g) \iff SO_2(g)$ gas, helium, is introduced. Which of the formation of SO ₂ , Cl ₂ and SO ₂ Cl ₂ (3) Concentration of SO ₂ is reduced	ollowing statement(s) is/are c l2 are changed (2*) No effec	orrect.		
40.	Introduction of inert gas (at the same temperature) will affect the equilibrium if :				
	(1) volume is constant and $\Delta n_g \neq 0$	(2*) pressure is cons	tant and Δn _g ≠0		
	(3) volume is constant and $\Delta n_g = 0$	(4) pressure is consta	ant and $\Delta n_g = 0$		
41.	The following reaction is favourable at – H ₂ O(s) \iff H ₂ O(ℓ) Δ H = +ve	e ; T = 0⁰C	(SIS Mam) (CEQ) (SCQ) (E)		
	(1) Low pressure & low temperture(3) Low pressure & high temperture	(2*) High pressure & (4) None of these	high temperture		
42.	Match the following : Column I (Assume only reactar	nt were present initially)	Column II		
	(A) For the equilibrium NH₄I(s) → NH₃ if pressure is increased at equilibrium	(p) Forward shift			
	(B) For the equilibrium H ₂ O(g) + CO(g) inert gas is added at constant pressu	(q) No shift in equilibrium			
	(C) For the equilibrium PCI₅ → PCI₃ + Cl₂ is removed at equilibrium.		(r) Backward shift		
		(2) (A - q) ; (B - r) ; (C - p)			
	(3) (A - p) ; (B - q) ; (C - r)	(4) (A - p) ; (B - r) ; (C - q)			

43.

For the reaction : N₂ (g) + 3H₂(g) \rightleftharpoons 2NH₃ (g) ; equilibrium constant K_c = $\frac{[NH_3]^2}{[N_2] [H_2]^3}$ Some reactions are written bellow in column I and their equilibrium constants in terms of K_c are written in column II. Match the following reactions with the corresponding equilibrium constant

```
Column I (Reaction)Column II (Equilibrium constnat)(A) 2N_2(g) + 6H_2(g) \rightleftharpoons 4NH_3(g)(p) K_c^{\frac{1}{2}}(B) 2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)(q) \frac{1}{K_c}(C) \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \rightleftharpoons NH_3(g)(r) K_c^2
```

- 44. Assertion : A net reaction can occur only if a system is not at equilibrium.
 - Reason : All reversible reactions occur to reach a state of equilibrium.
 - (1*) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
 - (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
 - (3) The assertion is incorrect, but the reason is correct
 - (4) Both are assertion and reason are incorrect
- **45.** Assertion : For the reaction, $N_2 + O_2 \implies 2NO$, increase in pressure at equilibrium has no effect on the reaction.

Reason : Σ moles of gaseous product – Σ moles of gaseous reactant = 0.

- (1*) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **46.** Assertion : The reaction quotient , Q has the same form as the equilibrium constant K_{eq}, and is evaluated using any given concentrations of the species involved in the reaction, and not necessarily equilibrium concentrations.

Reason : If the numerical value of Q is not the same as the value of equilibrium constant, a reaction will occur.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2*) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **47. Assertion :** A catalyst does not influences the values of equilibrium constant.

Reason : Catalysts influence the rate of both forward and backward reactions equally.

- (1*) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect

Exercise-3

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

OFFLINE JEE-MAIN

Change in volume of the system does not alter the number of moles in which of the following equilibriums 1. [AIEEE 2002, 3/225] (2) $PCl_5(q) \longrightarrow PCl_3(q) + Cl_2(q)$ $(1^*) N_2(q) + O_2(q) = 2NO(q)$ (3) $N_2(q) + 3H_2(q) = 2NH_3(q)$ (4) $SO_2Cl_2(q) \xrightarrow{} SO_2(q) + Cl_2(q)$ 2. In which of the following reactions, increase in the volume at constant temperature don't effect the number of moles of at equilibrium : [AIEEE 2002, 3/225] (1) $2NH_3 = N_2 + 3H_2$ (2) $C(g) + (1/2) O_2(g) \xleftarrow{} CO(g)$ (3) $H_2(q) + O_2(q) = H_2O_2(q)$ (4*) none of these. buesa dksb7 ugha For the reaction CO (g) + (1/2) O_2 (g) $\overleftarrow{}$ CO₂ (g), K_c/K_p is : 3. [AIEEE 2002, 3/225] (1) RT (3) (RT)^{-1/2} (4*) (RT)^{1/2} 4. Consider the reaction equilibrium $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g); \Delta H^\circ = -198 \text{ kJ}.$ On the basis of Le Chatelier's principle, the condition favourable for the forward reaction is : [AIEEE 2003, 3/225] (1) lowering of temperature as well as pressure (2) increasing temperature as well as pressure (3*) lowering the temperature and increasing the pressure (4) any value of temperature and pressure. For the reaction equilibrium, N_2O_4 (g) \rightleftharpoons 2NO₂ (g) the concentrations of N_2O_4 and NO₂ at equilibrium 5. are 4.8×10^{-2} and 1.2×10^{-2} mol L⁻¹ respectively. The value of K_c for the reaction is [AIEEE 2003, 3/225] (1) 3.3×10^2 mol L⁻¹ (2) 3×10^{-1} mol L⁻¹ (3^*) 3 x 10⁻³ mol L⁻¹ (4) 3 x 10³ mol L⁻¹ What is the equilibrium constant expression for the reaction : 6. [AIEEE 2004, 3/225] $P_4(s) + 5O_2(g) = P_4O_{10}(s)$? (1) $K_C = [P_4O_{10}]/[P_4] [O_2]^5$ (2^*) K_C = $1/[O_2]^5$ (4) $K_C = [P_4O_{10}]/5[P_4][O_2]$ (3) $K_C = [O_2]^5$ For the reaction, $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$ then K_p/K_c is equal to : 7. [AIEEE 2004, 3/225] (3) √RT (1*) 1/RT (2) 1.0(4) RT The equilibrium constant for the reaction, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ at temperature T is 4×10^{-4} . The 8. value of K_c for the reaction, NO(g) $\stackrel{\sim}{\longrightarrow} \frac{1}{2}$ N₂(g) + $\frac{1}{2}$ O₂(g) at the same temperature is: [AIEEE 2004, 3/225] (1) 2.5×10^2 (2) 0.02(3) 4×10^{-4} (4*) 50 $2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g),$ 9. For the reaction,

 $(K_C = 1.8 \times 10^{-6} \text{ at } 184^{\circ}\text{C})$

(R = 0.0831 kJ/(mol.K))

When K_p and K_c are compared at 184°C it is found that : [AIEEE 2005, 3/225]

(1) Whether K_p is greater than, less than or equal to K_c depends upon the total gas pressure

(2) $K_p = K_c$

(3) K_p is less than K_c

(4*) K_p is greater than K_c

The exothermic formation of CIF₃ is represented by the equation CI₂(g) + 3F₂(g) \rightleftharpoons 2CIF₃(g); Δ_r H = -10. 329 J. which of the following will increase the quantity of CIF_3 in an equilibrium mixture of CI_2 , F_2 and CIF₃. [AIEEE 2005, 3/225] (1*) Adding F₂

(3) Removing Cl₂

(2) Increasing the volume of container

(4) Increasing the temperature

11. An amount of solid NH4HS is placed in a flask already containing ammonia gas at a certain temperature at 0.50 atm pressure. Ammonium hydrogen sulphide decomposes to yield NH₃ and H₂S gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm? The equilibrium constant for NH4HS decomposition at this temperature is :

			[AIEEE 2005, 4½/225]
(1*) 0.11	(2) 0.17	(3) 0.18	(4) 0.30

12. Phosphorus pentachloride dissociates as follows in a closed reaction vessel.

$$PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$$

If total pressure at equilibrium of the reaction mixture is P and degree of dissociation of PCI₅ is x, the partial pressure of PCI₃ will be : [AIEEE 2006, 3/165]

$$(1^*) \left(\frac{x}{x+1}\right)_{\mathsf{P}} \qquad (2) \left(\frac{2x}{1-x}\right)_{\mathsf{P}} \qquad (3) \left(\frac{x}{x+1}\right)_{\mathsf{P}} \qquad (4) \left(\frac{x}{1-x}\right)_{\mathsf{P}}$$

The equilibrium constant for the reaction, $SO_3(g) \rightleftharpoons SO_2(g) + 2O_2(g)$ is $K_c = 4.9 \times 10^{-2}$. The value of 13. K_c for the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ will be : [AIEEE 2006, 3/165] (1*) 416 (2) 2.40 \times 10⁻³ (3) 9.8×10^{-2} (4) 4.9×10^{-2}

14. For the following three reactions a, b and c, equilibrium constants are given:

(a)
$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g);$$
 K₁
(b) $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g);$ K₂
(c) $CH_4(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 4H_2(g);$ K₃
(1) K₂ K₃ = K₁ (2*) K₃ = K₁K₂ (3) K₃ K₂³ = K₁² (4) $K_1\sqrt{K_2} = K_3$

The equilibrium constants K_{p_1} and K_{p_2} for the reactions X \rightarrow 2Y and Z \rightarrow P + Q, respectively are in 15. the ratio of 1 : 9. If the degree of dissociation of X and Z be equal then the ratio of total pressures at (1) 1 : 1(2)1:3(3)1:9(4*) 1 : 36

16. A vessel at 1000 K contains CO₂ with a pressure of 0.5 atm. Some of the CO₂ is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :

[AIEEE 2011, 4/120]

•	(1*) 1.8 atm	(2) 3 atm	(3) 0.3 atm	(4) 0.18
17.				O (g) at temperature T is 4×10^{-4} . The
	value of K_c for the (1) 0.02	reaction NO(g) $\rightleftharpoons \frac{1}{2} N_2(g)$ (2) 2.5 × 10 ²	g) + ² O ₂ (g) at the sar (3) 4 × 10 ⁻⁴	ne temperature is : (4*) 50.0
18.	So For the reaction the value of x is : (a	$O_{2(g)} + \frac{1}{2}O_{2(g)} \xrightarrow{SO_{3(g)}, il}$	$f K_P = K_C(RT)^x$ where t	he symbols have usual meaning ther JEE(Main) 2014, 4/120]
		_1	1	
	(1) –1	(2^*) $-\frac{1}{2}$	(3) $\frac{1}{2}$	(4) 1
19.	The standard Gibbs			⇒ B + C is 2494.2 J. At a given time,
			1	1
	the composition of = 8.314 J/K/mol, e			$\frac{1}{2}$. The reaction proceeds in the : [R JEE(Main) 2015, 4/120]
	(1) forward directio	n because Q > Kc	(2*) reverse direct	tion because Q > K _C
	(3) forward directio	n because Q < K _C	(4) reverse direction because $Q < K_c$	
20.		nstant at 298 K for a reacti ere 1 M each, then equilibr (2*) 1.818		is 100. If the initial concentration of al D (in mol L ⁻¹) will be : [JEE(Main) 2016, 4/120] (4) 0.182
		. ,	E JEE-MAIN	
		UNLIN		
1.	At a certain temper is:	ature, only 50% HI is disso		t equilibrium. The equilibrium constant Online (09-04-14), 4/120]
	(1) 1.0	(2) 3.0	(3) 0.5	(4*) 0.25
2.		wing equilibrium AgCl↓ + which of the following ? (2) aqueous NaCl		 b₂]⁺ + Cl⁻. White precipitate of AgC n) 2014 Online (11-04-14), 4/120] D₃ (4) aqueous NH₄Cl
3.	What happens whe	en an inert gas is added to		g volume unchanged ? ain) 2014 Online (12-04-14), 4/120]
	(1) More product w (3) More reactant v		(2) Less product v	
4.		atm ³ . If the reaction is sta	arted with 1 mol of th	ONH ₄ (s) \rightleftharpoons 2NH ₃ (g) + CO ₂ (g) the ne compounds, the total pressure at n) 2014 Online (19-04-14), 4/120] m (4) 38.8 × 10 ⁻² atm

CHEMICAL EQUILIBRIUM

- Gaseous N₂O₄ dissociates into gaseous NO₂ according to the reaction N₂O₄(g) \rightleftharpoons 2NO₂(g) at 300 K 5. and 1 atm pressure, the degree of dissociation of N_2O_4 is 0.2. If one mole of N_2O_4 gas is contained in a vessel, then the density of the equilibrium mixture is : [JEE(Main) 2015 Online (10-04-15), 4/120] (1*) 3.11 g/L (2) 4.56 g/L (3) 1.56 g/L (4) 6.22 g/L
- The increase of pressure on ice i water system at constant temperature will lead to : 6.
 - [JEE(Main) 2015 Online (11-04-15), 4/120] (1) a decrease in the entropy of the system (2) an increase in the Gibbs energy of the system (3) no effect on the equilibrium (4*) a shift of the equilibrium in the forward direction
- 7. A solid XY kept in an evacuated sealed container undergoes decomposition to form a mixture of gases X and Y at temperature T. The equilibrium pressure is 10 bar in this vessel. KP for this reaction is :
 - [JEE(Main) 2016 Online (10-04-16), 4/120] (1*) 25 (2)5(3) 10 (4) 100
- The following reaction occurs in the Blast Furnace where iron ore is reduced to iron metal : 8. $Fe_2O_3(s) + 3CO(q) \rightleftharpoons 2Fe(\ell) + 3CO_2(q)$

Using the Le Chatelier's principle, predict which one of the following will not disturb the equilibrium ? [JEE(Main) 2017 Online (09-04-17), 4/120] (1*) Addition of Fe₂O₃ (2) Removal of CO₂ (3) Removal of CO (4) Addition of CO₂

PART - II : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

* Marked Questions may have more than one correct option.

- For the reaction $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$ at a given temperature, the equilibrium amount of 1. CO₂(g can be increased by [JEE-1998] (A) Adding a suitable catalyst (B) Adding an inert gas (C) Decreasing the volume of the container (D*) Increasing the amount CO(g)
- For a chemical reaction $3X(g) + Y(g) \rightleftharpoons X_3 Y(g)$, the amount of $X_3 Y$ at equilibrium is affected by 2. (A*) temperature and pressure (B) temperature only (C) pressure only (D) temperature, pressure and catalyst [JEE-1999, 2/80]
- For the reversible reaction, N₂ (g) + 3H₂(g) \rightleftharpoons 2NH₃ at 500°C, the value of K_P is 1.44 × 10⁻⁵ when 3. partial pressure is measured in atmospheres. The corresponding value of K_c, with concentration in mole litre⁻¹, is
- 4. When two reactants, A & B are mixed to give products C & D, the reaction quotient Q, at the initial stages of the reaction. [JEE-2000, 1/35] (A) is zero (B) decrease with time
 - (C) is independent of time

(D*) increases with time

5.	At constant temperature, t	the equilibrium consta	nt (K _P) for the decomposi	ition reaction $N_2O_4 \rightleftharpoons 2NO_2$ is
	$\frac{(4x^2)}{(1-x^2)}$	$\frac{P}{2}$		sition. Which one of the following
		', where P = pressure	e, x = extent of decompos	sition. Which one of the following
	statements is true?			[JEE 2001, 1/35]
	(A) K _P increases with incre	ease of P	(B) K _P increases with ir	ncrease of x
	(C) K _P increases with dec	rease of x	(D*) KP remains consta	int with change in P and x
6.	Consider the following eq		ontainer	[JEE 2002, 3/90]
	N ₂ O ₄ (g)	\rightleftharpoons 2NO ₂ (g)		
	At a fixed temperature, the	he volume of the read	ction container is halved	I. For this change, which of the
	following statements hold	s true regarding the ec	quilibrium constant (K _P) a	and degree of dissociation (α)?
	(A) neither K_P nor α chang	ges	(B) both K_P and α chan	ige
	(C) K_P changes, but α doe	es not change	(D*) K _P does not chang	je but α changes
7.	The value of $log_{10}K$ for a r			
	(Given : $\Delta_{r}H_{298K}^{\circ} = -54.07$	kJ mol ⁻¹ , $\Delta_{r} S_{298K}^{\circ} = 10$	$JK^{-1} mol^{-1}$ and R = 8.314	I JK⁻¹ mol⁻¹; 2.303 x 8.314 x 298
	= 5705)			[JEE 2007, 3/162]
	(A) 5 (I	B*) 10	(C) 95	(D) 100

Sheet Repeat Question

- F-8.The correct relationship between free energy change in a reaction and the corresponding equilibrium
constant K is
 $(1^*) \Delta G^\circ = RT \ln K$ (Repeated with F-1)[Correction by AGA_25.9.17] $(1^*) \Delta G^\circ = RT \ln K$ (2) $\Delta G = RT \ln K$ (3) $\Delta G = RT \ln K$ (4) $\Delta G^\circ = RT \ln K$
- **F-9.** The effect of temperature on equilibrium constant is expressed as $(T_2 > T_1)$

 $\log K_2 / K_1 = \frac{-\Delta H}{2.303} \left[\frac{1}{T_2} - \frac{1}{T_1} \right].$ For endothermic reaction false statement is (1*) $\left[\frac{1}{T_2} - \frac{1}{T_1} \right]_{=}$ positive (2) ΔH = positive

(3) $\log K_2 > \log K_1$ (4) $K_2 > K_1$

Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks : 120

Important Instructions

- 1. The test is of 1 hour duration.
- 2. The Test Booklet consists of **30** questions. The maximum marks are **120**.
- 3. Each question is allotted 4 (four) marks for correct response.
- 4. Candidates will be awarded marks as stated above in Instructions No. 3 for correct response of each question.

¹/₄ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.

- 5. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 4 above.
- 1. 1 mole of N₂ and 2 moles of H₂ are allowed to react in a 1 dm³ vessel. At equilibrium, 0.8 mole of NH₃ is formed. The concentration of H₂ in the vessel is : (1) 0.6 mole (2^{*}) 0.8 mole (3) 0.2 mole (4) 0.4 mole

2. For the following mechanism,
$$P + Q \xrightarrow{K_{A_{A_{B}}}} PQ \xrightarrow{K_{C_{D}}} R$$
 at equilibrium $\frac{[R]}{[P] [Q]}$ is :
[k represents rate constant]

3. Select the reaction for which the equilibrium constant is written as $[MX_3]^2 = K_{eq.} [MX_2]^2 [X_2]$

(1)
$$MX_3 \xrightarrow{} MX_2 + \frac{1}{2}X_2$$

(2) $2MX_3 \xrightarrow{} 2MX_2 + X_2$
(3*) $2MX_2 + X_2 \xrightarrow{} 2MX_3$
(4) $MX_2 + \frac{1}{2}X_2 \xrightarrow{} MX_3$.

4. What should be the value of K_C for the reaction $2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)}$. If the amount are $SO_3 = 48g$, SO₂ = 12.8 g and O₂ = 9.6 g at equilibrium and the volume of the container is one litre ? (1) 64 (2*) 0.30 (3) 42 (4) 8.5

5. If 0.5 mole H₂ is reacted with 0.5 mole I₂ in a ten-litre container at 444°C and at same temperature value of equilibrium constant K_c is 49, the ratio of [HI] and [I₂] will be :

(1*) 7 (2)
$$\frac{1}{7}$$
 (3) $\sqrt{\frac{1}{7}}$ (4) 49

Max. Time : 1 Hr.

6.	4.5 moles each of hydrogen and iodine heated in a sealed ten litre vessel. At equilibrium 3 moles of HI were found. The equilibrium constant for $H_2(g) + I_2(g) \longrightarrow 2HI(g)$ is :						
	were found. The ed (1*) 1	quilibrium constant for H ₂ (2) 10	(g) + I ₂ (g) (3) 5	is : (4) 0.33			
7.	In a 20 litre vessel initially each have 1 mole CO, H_2O CO ₂ is present, then for the equilibrium of						
	(1) H ₂ , more then 1	CO ₂ + H ₂ following is true 1 mole h more than 1 mole	(2*) CO, H ₂ O, H ₂ le	ss then 1 mole			
8.	At 1000 K, the val value of $K_{\rm C}$ in term		A(g) + 2B(g) = 3C	(g) + D(g) is 0.05 atmosphere. The			
	(1) 20000 R	(2) 0.02 R	(3) 5 × 10 ^{−5} R	(4*) 5 × 10 ^{−5} × R ^{−1}			
9.^	In which of the follo	owing reactions is $K_p < K_c$?				
	(1*) CO(g) + Cl ₂ (g)) — CO(g) + 3H ₂ (g)			
	(3) 2BrCl(g)	$cl_2(g) + Br_2(g)$	(4) I ₂ (g) 2I(g))			
10.	K for the synthesis	of HI is 50. K for dissoci	ation of HI is :	[Roorkee 1990]			
	(1) 50	(2) 5	(3) 0.2	(4*) 0.02			
11.	The equilibrium co	nstant of the reaction H ₂ ((g) + I ₂ (g) - 2HI(g)	is 64. If the volume of the container			
	is reduced to one f	ourth of its original volum	e, the value of the equilit	prium constant will be [MP PET 1996]			
	(1) 16	(2) 32	(3*) 64	(4) 128			
12.	In equilibrium CH ₃ COOH + H ₂ O \longrightarrow CH ₃ COO ⁻ + H ₃ O ⁺ . The equilibrium constant may change when (1) CH ₂ COOH is added						
	(1) CH₃COO⁻ is a		(2) CH ₃ COOH is ac	lded			
		dded					
13.	(1) CH_3COO^- is ac (3) Catalyst is add $CH_3COOH(I) + C_2$	dded ed .H₅OH(I) ◯◯ CH₃COO	(2) CH ₃ COOH is ac (4*) Mixture is heat $C_2H_5(I) + H_2O(I)$ In the a	ed above reaction, one mole of each of			
13.	 (1) CH₃COO⁻ is additional (3) Catalyst is added CH₃COOH(I) + C₂ acetic acid and alcomposition (1) 1 mole of ethyl 	dded ed H₅OH(I) ← CH₃COO cohol are heated in the pre acetate is formed	(2) CH ₃ COOH is ac (4*) Mixture is heat $C_2H_5(I) + H_2O(I)$ In the a esence of little conc. H ₂ S (2) 2 mole of ethyl a	ed above reaction, one mole of each of O4. On equilibrium being attained [CPMT 1985; MP PET 1992] acetate are formed			
13.	 (1) CH₃COO⁻ is additional (3) Catalyst is added CH₃COOH(I) + C₂ acetic acid and alcomposition (1) 1 mole of ethyl 	dded ed .H₅OH(I)	(2) CH ₃ COOH is ac (4*) Mixture is heat $C_2H_5(I) + H_2O(I)$ In the a esence of little conc. H ₂ S (2) 2 mole of ethyl a	ed above reaction, one mole of each of O4. On equilibrium being attained [CPMT 1985; MP PET 1992]			
13. 14.	 (1) CH₃COO⁻ is at (3) Catalyst is added CH₃COOH(I) + C₂ acetic acid and alc (1) 1 mole of ethyl (3) 1/2 moles of eth In the following read 	dded ed H₅OH(I) ← CH₃COO cohol are heated in the pre acetate is formed hyl acetate is formed action started only with A₅	(2) CH ₃ COOH is ac (4*) Mixture is heat $C_2H_5(I) + H_2O(I)$ In the a esence of little conc. H ₂ S (2) 2 mole of ethyl a (4*) 2/3 moles of et	ed above reaction, one mole of each of iO4. On equilibrium being attained [CPMT 1985; MP PET 1992] acetate are formed hyl acetate is formed + 3 A ₂ (g) + A ₄ (g) mole fraction of A ₂			
	 (1) CH₃COO⁻ is at (3) Catalyst is added CH₃COOH(I) + C₂ acetic acid and alc (1) 1 mole of ethyl (3) 1/2 moles of eth In the following read 	dded ed H₅OH(I) ← CH₃COO cohol are heated in the pre acetate is formed hyl acetate is formed action started only with A₅	(2) CH ₃ COOH is ac (4*) Mixture is heat $C_2H_5(I) + H_2O(I)$ In the a esence of little conc. H ₂ S (2) 2 mole of ethyl a (4*) 2/3 moles of et	ed above reaction, one mole of each of O4. On equilibrium being attained [CPMT 1985; MP PET 1992] acetate are formed hyl acetate is formed			
	 (1) CH₃COO⁻ is an (3) Catalyst is added CH₃COOH(I) + C₂ acetic acid and alcontrol (1) 1 mole of ethyle (3) 1/2 moles of eth In the following reading found to 0.36 at (1*) 0.28 In a 0.25 litre tube 	dded ed $H_5OH(I) \longrightarrow CH_3COO$ cohol are heated in the pre- acetate is formed hyl acetate is formed action started only with A ₈ a total pressure of 100 att (2) 0.72 e dissociation of 4 moles of	(2) CH ₃ COOH is ac (4*) Mixture is heat $C_2H_5(I) + H_2O(I)$ In the a esence of little conc. H ₂ S (2) 2 mole of ethyl a (4*) 2/3 moles of et , 2A ₈ (g) \longrightarrow 2 A ₃ (g) + m at equilibrium. The mo (3) 0.18 of NO is take place. If its	ed above reaction, one mole of each of O4. On equilibrium being attained [CPMT 1985; MP PET 1992] acetate are formed hyl acetate is formed + 3 A ₂ (g) + A ₄ (g) mole fraction of A ₂ le fraction of A ₈ (g) at equilibrium is :			
14.	 (1) CH₃COO⁻ is an (3) Catalyst is added CH₃COOH(I) + C₂ acetic acid and alcontrol (1) 1 mole of ethyle (3) 1/2 moles of eth In the following reading found to 0.36 at (1*) 0.28 In a 0.25 litre tube 	dded ed $H_5OH(I) \longrightarrow CH_3COO$ cohol are heated in the pre- acetate is formed hyl acetate is formed action started only with A ₈ a total pressure of 100 att (2) 0.72 e dissociation of 4 moles of ction 2NO $\longrightarrow N_2 + O_2$	(2) CH ₃ COOH is ac (4*) Mixture is heat $C_2H_5(I) + H_2O(I)$ In the a esence of little conc. H ₂ S (2) 2 mole of ethyl a (4*) 2/3 moles of et , 2A ₈ (g) \longrightarrow 2 A ₃ (g) + m at equilibrium. The mo (3) 0.18 of NO is take place. If its	ed above reaction, one mole of each of iO4. On equilibrium being attained [CPMT 1985; MP PET 1992] acetate are formed hyl acetate is formed + 3 A ₂ (g) + A ₄ (g) mole fraction of A ₂ le fraction of A ₈ (g) at equilibrium is : (4) None of these			
14.	 (1) CH₃COO⁻ is an (3) Catalyst is added CH₃COOH(I) + C₂ acetic acid and alcontrol (1) 1 mole of ethyle (3) 1/2 moles of eth In the following reading found to 0.36 at (1*) 0.28 In a 0.25 litre tube 	dded ed $H_5OH(I) \longrightarrow CH_3COO$ cohol are heated in the pre- acetate is formed hyl acetate is formed action started only with A ₈ a total pressure of 100 att (2) 0.72 e dissociation of 4 moles of	(2) CH ₃ COOH is ac (4*) Mixture is heat $C_2H_5(I) + H_2O(I)$ In the a esence of little conc. H ₂ S (2) 2 mole of ethyl a (4*) 2/3 moles of et , 2A ₈ (g) \longrightarrow 2 A ₃ (g) + m at equilibrium. The mo (3) 0.18 of NO is take place. If its	ed above reaction, one mole of each of iO4. On equilibrium being attained [CPMT 1985; MP PET 1992] acetate are formed hyl acetate is formed + 3 A ₂ (g) + A ₄ (g) mole fraction of A ₂ le fraction of A ₈ (g) at equilibrium is : (4) None of these			

16. For the given reaction at constant pressure ,

Initial moles

Moles at equilibrium

$$n A (g) \xrightarrow{} A_n (g)$$

$$1 \qquad 0$$

$$1 - \alpha \qquad \alpha/n$$

Then the correct relation between initial density (di) & final density (df) of the system is

$$(1) \left[\frac{n-1}{n} \right] \left[\frac{d_{f} - d_{i}}{d_{f}} \right]_{=\alpha} \qquad (2^{*}) \frac{n}{n-1} \left[\frac{d_{f} - d_{i}}{d_{f}} \right]_{=\alpha}$$

$$(3) \left[\frac{n-1}{n} \right] \left[\frac{d_{i} - d_{f}}{d_{i}} \right]_{=\alpha} \qquad (4) \frac{1}{(n-1)} \left[\frac{d_{i} - d_{f}}{d_{i}} \right]_{=\alpha}$$

17. On decomposition of NH₄HS, the following equilibrium is established :

 $\begin{array}{c|c} \mathsf{NH_4HS}(s) & \overbrace{}^{\blacktriangleright} \mathsf{NH_3}(g) + \mathsf{H_2S}(g) \\ \\ \mbox{If the total pressure is P atm, then the equilibrium constant K_P is equal to} \\ (1) \mbox{P atm} & (2) \mbox{P^2 atm^2} & (3^*) \mbox{P^2 / 4 atm^2} & (4) \mbox{2P atm} \end{array}$

18. At room temperature, the equilibrium constant for the reaction P + Q R + S was calculated to be 4.32. At 425°C the equilibrium constant became 1.24 × 10⁻². This indicates that the reaction (1*) is exothermic
(3) is difficult to predict
(4) no relation between ΔH and K

 19.
 Calculate ΔG° for conversion of oxygen to ozone 3/2 O₂(g) → O₃(g) at 298 K, if K_p for this conversion is 2.47 × 10⁻²⁹
 [DPMT 2004]

 (1*) 163 kJ mol⁻¹
 (2) 2.4 × 10² kJ mol⁻¹
 (3) 1.63 kJ mol⁻¹
 (4) 2.38 × 10⁶ kJ mol⁻¹

20. For the reaction,
$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \stackrel{\frown}{\longleftarrow} 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(\ell)$$
, $\Delta H = \text{positive}$.
At equilibrium which factor will not effect the concentration of NH₃ is :

(1) change in pressure (2) change in volume (3*) catalyst (4) None of these

21. The effect of adding krypton (Kr) gas on position of equilibrium, keeping the volume of the system constant is

(1) If $\Delta n = 0$, backward reaction is favoured.	(2) If, $\Delta n = +ve$, forward reaction is favoured
(3) If $\Delta n = -ve$, forward reaction is favoured	(4*) No effect watever be the value of Δn

- 22.
 Le-Chatelier's principle is applicable only to a
 [USS]

 (1*) System in equilibrium
 (2) Irreversible reaction

 (3) Homogeneous reaction
 (4) Heterogeneous reaction
- **23.** Two solid compounds X and Y dissociates at a certain temperature as follows

X(s) = A(g) + 2B(g); $K_{p1} = 9 \times 10^{-3} \text{ atm}^3$

$$Y(s) = 2B(g) + C(g)$$
; $K_{p2} = 4.5 \times 10^{-3} \text{ atm}^3$

The total pressure of gases over a mixture of X and Y is : (1) 4.5 atm (2*) 0.45 atm (3) 0.6 atm (4) None of these

24. The value of ΔG° for the phosphorylation of glucose in glycolysis is 15 kJ/mole. Find the value of K_c at 300 K.

(1)
$$e^{6}$$
 (2*) $10^{\frac{6}{2.303}}$ (3) $\frac{1}{e^{-6}}$ (4) $10^{\frac{2.303}{6}}$
25. Which of the following statements is correct for a reversible process in a state of equilibrium ?
(1) $\Delta G = 2.30 \text{ RT log K}$ (2*) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(3) $\Delta G^{\circ} = 2.30 \text{ RT log K}$ (4) $\Delta G = -2.30 \text{ RT log K}$
(1) $\Delta G = 2.30 \text{ RT log K}$ (2*) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(1) $\Delta G = 2.30 \text{ RT log K}$ (2*) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(3) $\Delta G^{\circ} = 2.30 \text{ RT log K}$ (2*) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(3) $\Delta G^{\circ} = 2.30 \text{ RT log K}$ (4) $\Delta G = -2.30 \text{ RT log K}$
(3) $\Delta G^{\circ} = 2.30 \text{ RT log K}$ (4) $\Delta G = -2.30 \text{ RT log K}$
(3) $\Delta G^{\circ} = 2.30 \text{ RT log K}$ (4) $\Delta G = -2.30 \text{ RT log K}$
(5) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (4) $\Delta G = -2.30 \text{ RT log K}$
(5) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (4) $\Delta G = -2.30 \text{ RT log K}$
(5) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (4) $\Delta G = -2.30 \text{ RT log K}$
(5) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (4) $\Delta G = -2.30 \text{ RT log K}$
(5) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (7) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(5) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (7) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(6) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (7) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(7) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(8) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
(9) $\Delta G^{\circ} = -2.30 \text{ RT log K}$ (9) $\Delta G^{\circ} = -2.30 \text{ RT log$

27. In the reaction PCl₅(g) PCl₃(g) + Cl₂(g) a graph in plotted to show the variation of rate of forward and backward reactions against time. Which of the following is correct ? **(SID Sir) (CEQ-RQ) (MCQ) (M)**

		Rate	forward 1 2 3 backward
			Time
	Q > K	Q = K	Q < K
(1*)	3	2	1
(2)	1	2	3
(3)	2	3	1
(4)	2	1	3

28. For the reaction : $PCI_5(g) \xrightarrow{} PCI_3(g) + CI_2(g)$.

The backward reaction at constant temperature is favoured by

(1*) introducing chlorine gas at constant volume (2) introducing an inert gas at constant pressure

(3) increasing the volume of the container (4) introducing PCI₅ at constant volume

29. Find out InK_{eq} for the formation of NO₂ from NO and O₂ at 298 K :

 $NO_{(g)} + \frac{1}{2}O_2 \xrightarrow{\sim} NO_2 g$

Given :

 ΔG_{f}° (NO₂) = 52.0 KJ/mole ΔG_{f}° (NO) = 87.0 KJ/mole ΔG_{f}° (O₂) = 0 KJ/mole $\begin{array}{c} 35 \times 10^{3} \\ \hline (3) \ \hline 2.303 \times 8.314 \times 298 \\ \hline (4) \ \hline 2 \times 298 \end{array}$ 35×10^3 35×10^3 (1*) 8.314×298 (2) $-\frac{8.314 \times 298}{}$

If a reaction vessel at 400°C is charged with equimolar mixture of CO and steam such that $P_{CO} = P_{H_{2O}} =$ 30. 4 bar what will be that partial pressure of H₂ at equilibrium

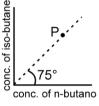
$$CO_{if} + H_2O \longrightarrow CO_2 + H_2 \qquad K_P = 9$$
(1*) 0.3 bar (2) 0.4 bar (3) 0.2 bar (4) 0.1 bar

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

Practice Test (JEE-Main Pattern) OBJECTIVE RESPONSE SHEET (ORS)

Ρ

PART - II : PRACTICE QUESTIONS


- 1. The value of K_p for the reaction, $2H_2O(g) + 2Cl_2(g) = 4HCl(g) + O_2(g)$ is 0.03 atm at 427° C, when the partial pressure are expressed in atmosphere then the value of K_c for the same reaction is (1*) 5.23×10^{-4} (2) 7.34×10^{-4} (3) 3.2×10^{-3} (4) 5.43×10^{-5}
- 2. The equilibrium $N_2(g) + O_2(g) \longrightarrow 2NO(g)$ estabilished in a reaction vessel of 2.5 L capacity. The amounts of N_2 and O_2 taken at the start were respectively 2 moles and 4 moles. Half a mole of nitrogen has been used up at equilibrium. The molar concentration of nitric oxide is (1) 0.2 (2*) 0.4 (3) 0.6 (4) 0.1
- 3. N₂ and H₂ are taken in 1 : 3 molar ratio in a closed vessel to attained the following equilibrium

$$N_{2}(g) + 3H_{2}(g) \xrightarrow{} 2NH_{3}(g) \text{. Find } K_{p} \text{ for reaction at total pressure of } 2p \text{ if } P_{N_{2}} \text{ at equilibrium is } \overline{3}$$

$$(1) \frac{1}{3 P^{2}} \qquad (2^{*}) \frac{4}{3 P^{2}} \qquad (3) \frac{4 P^{2}}{3} \qquad (4) \text{ none}$$

 $\begin{array}{c} \mathsf{CH}_{\scriptscriptstyle 3} \\ | \\ \mathsf{CH}_{\scriptscriptstyle 3} - \overset{}{\mathsf{C}} - \mathsf{CH}_{\scriptscriptstyle 3}(\mathsf{g}) \end{array}$

4. For the equilibium $CH_3-CH_2-CH_2-CH_3(g) \longrightarrow H$ equilibrium constant is found to be 1.732 at 298 K. Now if in a vessel at 298 K, a mixture of these two gases be taken as represented by the point P in the figure, predict what will happen.

- (1) Immediately, above equilibrium will be setup
- (2) Above reaction will go in the forward direction till it attains equilibrium
- (3*) Above reaction will go in the backward direction till it attains equilibrium
- (4) Nothing can be said
- 6. For the reaction $H_2(g) + I_2(g) 2HI(g)$ $K_c = 66.9 \text{ at } 350^{\circ}\text{C} \text{ and } K_c = 50.0 \text{ at } 448^{\circ}\text{C}.$ The reaction has (1) $\Delta H = + \text{ ve}$ (2*) $\Delta H = - \text{ ve}$ (3) $\Delta H = \text{ zero}$ (4) ΔH sign can not be determined
- 7.An equilibrium mixture in a vessel of capacity 100 litre contain 1 mol N2, 2 mol O2 and 3 mol NO. Number
of moles of O2 to be added so that at new equilibrium the conc. of NO is found to be 0.04 mol/lit.:
 $(1^*) (101/18)$ (2) (101/9)(3) (202/9)(4) None of these
- 8. $PCI_5 \longrightarrow PCI_3 + CI_2$ in the reversible reaction the moles of PCI_5 , PCI_3 and CI_2 are a, b and c respectively and total pressure is P then value of K_P is : [RPMT 1999]

	bc	b	bc.P	с			
	(1) a.RT	(2) $\overline{(a+b+c)}$.P	$(3^*) \frac{bc.P}{a (a+b+c)}$	(4) $\overline{(a+b+c)}$.P			
9.	For the chemical re (1*) temperature an (3) pressure only		 → X₃Y(g), the amount of (2) temperature only (4) temperature, pre 				
10.	For hypothetical eq (1) litre mole ⁻¹	uilibrium, 4A + 5B (2*) mole litre ⁻¹	4X + 6Y. The unit of K _C (3) litre mole ⁻²	will be : [RPMT 2000] (4) mole ² litre ⁻²			
11.	9.2 gram of N ₂ O ₄ (g) is taken in a closed one litre vessel and heated till the following equilibrium is reached $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ At equilibrium 50% N ₂ O ₄ (g) is dissociated. What is the equilibrium constant (in mol lit ⁻¹) molecular weight of N ₂ O ₄ = 92) [EAMCET 2001, RPMT 2008]						
	(1) 0.1	(2*) 0.2	(3) 0.4	(4) 2			
12.	occurs.			ure is suddenly decreased, cooling			
	$AB \Longrightarrow \frac{1}{2}_{A_2+} \frac{1}{2}_{I_1}$	constant for the reaction, B ₂ , the equilibrium constants s a reaction more exotherr (2) F T F	nt is $\frac{1}{K}$.	K, then for the backward reaction (4) F T T			
13.		exothermic reaction increa					
13.	\mathbf{S}_2 : For the reaction	n, CaCO₃(s) ⊂⊂⊂⊂ CaO(s)) + $CO_2(g)$, $K_p = P_{CO2}$.				
	S ₃ : A catalyst incre (1) T F F	eases the value of the equ (2*) F T F	(3) T T F	eaction. (4) F T T			
14.	 The role of catalyst in a chemical reaction is : (1) To help attain equilibrium in a shorter time. (2) To lower the activation energy. (3) To shift the equilibrium in such a way as to increase the concentration of the product (4*) Both 1 & 2 						
15.				$\stackrel{\frown}{\longrightarrow}$ PCI ₃ (g) + CI ₂ (g). At Equilibrium, illibrium constant of the reaction is [KCET 2001]			
	(1*) 0.04	(2) 0.025	(3) 0.02	(4) 0.05			
16.	The rate of forward concentration. Kequit		of the reverse reaction a	at a given temperature and identical [KCET 2002]			
	(1) 0.5	(2) 1.5	(3) 2.5	(4*) 2.0			

17. $K_c = 9$ for the reaction, A + B - C + D, If A and B are taken in equal amounts, then amount of C in equilibrium is : [RPMT 2004]

	(1) 1	(2) 0.25	(3*) 0.75	(4) None of thes	e	
18.		For this reaction $K_p = 100$, then K_p for reaction, 2N	$O \Longrightarrow N_2 + O_2 w$	ill be :	
	[RPMT 2004] (1*) 0.01	(2)) 0.1	(3) 10	(4) 100		
10		298 K, the value of $\frac{K_{p}}{K_{c}}$ is				
19.	For which reaction at 2 (a) $N_2O_4 \longrightarrow 2NO_2$	298 K, the value of 15 is	(b) $2SO_2 + O_2 \longrightarrow 2$			
	(a) $N_2O_4 < ZNO_2$ (c) X + Y $\overrightarrow{=}$ 4Z		(d) $A + 3B \overrightarrow{} 7C$	2003		
	(1) d,c	(2*) d,b	(3) c,b	(4) d,a		
20.	In a reversible reaction	if the concentration of re	eactants and products are	e doubled, the valu	ie of Kc will be	
	(1) half of the initial val	lue	(2*) double of initial va	lue		
	(3) one fourth of the ini	itial value	(4) same the initial value	he		
21.	2A + 2B = 2C + 2	סי				
		n, the correct relationship	o is :		[RPMT 1999]	
			$\frac{K_c}{2}$			
	(1) $K_p = K_C (RT)^{-2}$	(2*) K _p = K _C	(3) $K_p = 2$	(4) $K_p = K_C (RT)^{-1}$	-1	
22.	For the reaction $H_2(g) + (1^*)$ temperature	+ I ₂ (g) = 2HI(g), the (2) total pressure	e equilibrium constant K _p (3) catalyst	change with (4) amount of H ₂	[DCE 1999] and I2	
23.	The equilibrium consta	ints for equilibria :			[RPMT 2000]	
	$SO_2(g) + \frac{1}{2}O_2(g) \longrightarrow SO_3(g)$ and $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$ are K ₁ and K ₂ are respectively, then : [RPMT 200					
	$(1^*) K_2 = K_1^2$	(2) $K_2 = \frac{1}{K_1^2}$	(3) K ₂ = K ₁	(4) $K_2 = \frac{K_1}{K_1}$		
24.	Add 0.01 M HCl in som	ne amount in aqueous so	olution of acetic acid :		[RPMT 2001]	
		ecreases of CH₃COOH. ncreases of CH₃COO⁻.	(2) Equlibrium conc. de (4) No any change.	ecreases of CH₃CO	DO [−] .	
25.	$H_2(g) + I_2(g) \longrightarrow 2$ In this reaction when ir (1*) does not change	HI (g) ncrease pressure the rea (2) forward	ction direction is : (3) backward	(4) decrease	[RPMT 2002]	
	$H_2(g) + I_2(g) \rightleftharpoons 2$			(7) 40010430		
26.		essure of carbon monox	ide from the following da	ta [Orissa	JEE 2004]	
	CaCO ₃ (s)	→ CaO (s) + CO ₂ \uparrow , K _p → 2CO(g), K _p = 2	-	-	-	

27. S₁: In case of endothermic reactions, the equilibrium shifts in backward direaction on increasing the temperature.

 S_2 : The value of K increases with increases in pressure.

S₃: For the reaction, $H_2 + I_2 \xrightarrow{} 2HI$, the equilibrium constant, K is dimensionless. (1) T F F (2) F T F (3) T T F (4*) F F T

28. Densities of diamond and graphite are 3.5 and 2.3 g/mL.

C (diamond) $\overline{\Box}$ C (graphite) $\Delta_r H = -1.9 \text{ kJ/mole}$

favourable conditions for formation of diamond are

(1) high pressure and low temperature

(2) low pressure and high temperature

(3^{*}) high pressure and high temperature (4) low pressure and low temperature

Page | 55