Exercise-1 Marked Questions may have for Revision Questions. **OBJECTIVE QUESTIONS** (OBJECTIVE QUESTIONS) Section (A) : Daltons law of partial pressure A-1. A cylinder is filled with a gaseous mixture containing equal masses of CO and N₂. The partial pressure ratio is : (2) $Pco = 0.875 P_{N_2}$ (3) $Pco = 2 P_{N_2}$ (1) $P_{N_2} = P_{CO}$ (4) Pco = 1/2A-2. The ratio of partial pressure of a gaseous component to the total vapour pressure of the mixture is equal to: (1) mass of the component (2) mole fraction of the component (3) mass % of the component (4) molecular mass of the component A-3. Equal volumes of two gases which do not react together are enclosed in separate vessel. Their pressure at 100 mm and 400 mm respectively. If the two vessel are joined together, then what will be the pressure of the resulting mixture (temperature remaining constant) ? (1) 125 mm (2) 500 mm (3) 1000 mm (4) 250 mm a gaseous mixture contains 56 g of N2, 44 g CO2 and 16 g of CH4. The total pressure of the mixture is A-4. 720 mm Hg. The partial pressure of CH4 is (1) 180 mm (2) 360 mm (3) 540 mm (4) 720 mm A-5. Equal weights of two gases of molecular weight 4 and 40 are mixed. The pressure of the mixture is 1.1 atm. The partial pressure of the light gas in this mixture is (4) 0.11 atm (1) 0.55 atm (2) 0.11 atm (3) 1 atm What will be the partial pressure of H₂ in a flask containing 2 g of H₂, 14 g of N₂ and 16 g of O₂ : s A-6. (1) 1/2 the total pressure (2) 1/3 the total pressure (3) 1/4 the total pressure (4) 1/16 the total pressure Equal weights of ethane and hydrogen are mixed in an empty container at 25°C. The fraction of the total A-7. pressure exerted by hydrogen is : (3) 1 : 16 (4) 15 : 16 (1) 1 : 2(2) 1 : 1 A-8. A sample of O₂ gas is collected over water at 23°C at a barometric pressure of 751 mm Hg (vapour pressure of water at 23°C is 21 mm Hg). The partial pressure of O2 gas in the sample collected is (1) 21 mm Hg (2) 751 mm Hg (3) 0.96 atm (4) 1.02 atm A-9. Same mass of CH₄ and H₂ is taken in a container. The partial pressure caused by H₂ (where total pressure is P) is 8 (2) ¹/₉ P (3) $\frac{1}{2}$ P (1) 9 P (4) P Section (B) : Grahams Law of diffusion B-1. If 4g of oxygen diffuse through a very narrow hole, how much hydrogen would have diffused under identical conditions ? (1) 16 g (2) 1 g (3) 1/4 g (4) 64 g

B-2.	Two gram of hydrogen through the same conta	diffuse from a container a container in the same time un	n 10 minutes. How many der similar conditions ?	/ grams of oxygen would diffuse
	(1) 0.5 g	(2) 4 g	(3) 6 g	(4) 8 g
B-3.	If some moles of O2 dif molecular weight of the	ffuse in 18 sec. and sam unknown gas ?	e moles of other gas dif	fuse in 45 sec. then what is the
	(1) $\frac{45^2}{18^2} \times 32$	(2) $\frac{18^2}{45^2} \times 32$	(3) $\frac{18^2}{45^2 \times 32}$	(4) $\frac{45^2}{18^2 \times 32}$
B-4.	The ratio of the rate of element is	diffusion of a given elem	ent to that of helium is 1	: 4. The molecular weight of the
	(1) 32	(2) 64	(3) 16	(4) None of these
B-5.	The molecular weight ounder identical condition	of a gas which diffuse th ns is	rough a porous plug at	1/6th of the speed of hydrogen
	(1) 27	(2) 72	(3) 36	(4) 48
B-6.	The time taken for a ce minutes for oxygen to c	rtain volume of a gas 'X' liffuse under the similar o (2) 4	to diffuse through a smal conditions. The molecular (3) 16	I hole is 2 minutes. It takes 5.65 r weight of 'X' is (4) 32
D 7				(4) 52
В-7.	(1) 1:	(2) 1 : 32	(3) 1:2	(4) 1:4
B-8.	The ratio of rates of diff	usion of SO ₂ , O ₂ and CH	l4 is :	
	(1) 1 : √ ² : 2	(2) 1 : 2 : 4	(3) 1 : √ ² : 1	(4) 1:2: $\sqrt{2}$
B-9.	X ml of H ₂ gas effuses t volume of the gas spec	through a hole in a conta ified below under identic	iner in 5 sec. The time ta al conditions is :	ken for the effusion of the same
	(1) 10 sec. He	(2) 20 sec. O ₂	(3) 25 sec. CO ₂	(4) 55 sec. CO ₂
B-10.	50 ml of gas A diffuse th temperature conditions	rough a membrane in the . If the molecular weight	e same time as 40 ml of a of A is 64, that of B would	gas B under identical pressure-
	(1) 100	(2) 250	(3) 200	(4) 80
B-11.	The densities of hydrog then that of oxygen in the	gen and oxygen are 0.09 he same units will be :	and 1.44 g L-1. If the ra	ate of diffusion of hydrogen is 1
	(1) 4	(2) 1/4	(3) 10	(4) 1/10
B-12.	Molecular weight of a g (1) 16	as that diffuses twice as (2) 8	rapidly as the gas with m (3) 64	nolecular weight 64 is (4) 6.4
B-13.	If rate of diffusion of A i (1) 1/25	s 5 times that of B, what (2) 1/5	will be the density ratio c (3) 25	of A and B ? (4) 4
B-14.	50 ml of hydrogen diffus ml of oxygen to diffuse (1) 12 min	ses out through a small h out is (2) 64 min	nole from a vessel in 20 n	ninutes. The time needed for 40
B /-				
B-15.	I ne densities of two ga(1) 16 : 1	ses are in the ratio of 1 : (2) 4 : 1	16. The ratio of their rate(3) 1:4	es of diffusion is (4) 1:16

GASEOUS STATE

B-16.	. Three footballs are respectively filled with nitrogen, hydrogen and helium. If the leaking of the gas occurs						
	with time from the filling footballs (in equal time	g hole, then the ratio of th interval) is	e rate of leaking of gase	s $(r_{N_2}: r_{H_2}: r_{H_e})$ from three			
	(1) $\left(1:\sqrt{14}:\sqrt{7}\right)$	(2) $\left(\sqrt{14} : \sqrt{7} : 1\right)$	$(3) \left(\sqrt{7} : 1 : \sqrt{14} \right)_{b}$	$(4) \begin{pmatrix} 1:\sqrt{7} & : & \sqrt{14} \end{pmatrix}$			
Section	on (C) : Kinetic theo	ory of gases					
C-1.	The ratio of root mean s (1) 1.086 : 1	square velocity to averag (2) 1 : 1.086	e velocity of gas molecul (3) 2 : 1.086	es at a particular temperature is (4) 1.086 : 2			
C-2.	Kinetic energy of a gas (1) Molecules mass	depends upon its (2) Atomic mass	(3) Equivalent mass	(4) None of these			
C-3.	 Which of the following is valid at absolute zero ? (1) Kinetic energy of the gas becomes zero but the molecular motion does not become zero (2) Kinetic energy of the gas becomes zero and the molecular motion also becomes zero (3) Kinetic energy of the gas decreases but does not become zero (4) None of the above 						
C-4.	If a gas is expanded at constant temperature (1) the pressure increase (2) the kinetic energy of the molecules remains the same (3) the kinetic energy of the molecules decrease (4) the number of molecules of the gas increases						
C-5.	At the same temperatur	re and pressure, which o	f the following gases will	have the highest kinetic energy			
	(1) Hydrogen	(2) Oxygen	(3) Methane	(4) All the same			
C-6.	The ratio among most p	probable velocity, mean v	velocity and root mean so	quare velocity is given by			
	(1) 1 : 2 : 3	(2) 1 : $\sqrt{2}$: $\sqrt{3}$	(3) $\sqrt{2}$: $\sqrt{3}$: $\sqrt{8}/\pi$	(4) $\sqrt{2}$: $\sqrt{8/\pi}$: $\sqrt{3}$			
C-7.	The root mean square s (1) H ₂ < N ₂ < O ₂ < HBr	speeds at STP for the ga (2) HBr < O2 < N2 < H2	ses H2, N2, O2 and HBr a (3) H2 < N2 = O2 < HBr	are in the order : (4) HBr < O2 < H2 < N2			
C-8.	What is the relationsh probable velocity (1)?	ip between the average	e velocity (ν), root mear	a square velocity (u) and most			
	(1) α : ν : u : : 1 : 1.128	: 1.224	(2) α : ν : u : : 1.128 : 1	: 1.224			
	(3) α : ν : u : : 1.128 : 1	.224:1	(4) α : ν : u : : 1.124 : 1.228 : 1				
C-9.	The kinetic energy of kinetic energy of 2 x. The kinetic energy of 2 x.	N molecules of O ₂ is x ne latter sample contains	joule at - 123ºC. Anoth	her sample of O2 at 27ºC has a			
	(1) N	(2) N/2	(3) 2 N	(4) 3 N			
C-10.	The average kinetic end (1) 6.21 × 10-20 J/molec (3) 6.21 × 10-22 J/mole	ergy in joules of molecule cule cule	es in 8.0 g of methane at (2) 6.21 × 10-21 J/molec (4) 3.1 × 10-22 J/molec	27º C is : cule ule			
C-11.	The kinetic energy for 2 constant = 8.31 JK ₋₁ m	14 grams of nitrogen gas ol-1)	at 127°C is nearly (mol.	mass of nitrogen = 28 and gas			

(1) 1.0 J (2) 4.15 J (3) 2493 J (4) 3.3 J

C-12.	12. The temperature at which RMS velocity of SO2 molecules is half that of He molecules at 300 (1) 150 K(2) 600 K(3) 900 K(4) 1200 K						
C-13.	The rms velocity of an (1) 3.0	ideal gas at 27°C is 0.3 r (2) 2.4	0.3 ms_1. Its rms velocity at 927°C (in m_1) is : (3) 0.9 (4) 0.6				
C-14.	At 27°C, the ratio of rm	s velocities of ozone to c	oxygen is :				
	(1) ^{√3/5}	(2) $\sqrt{4/3}$	(3) $\sqrt{2/3}$	(4) 0.25			
C-15.	The average kinetic en	ergy of an ideal gas per	molecule in SI units at 25	5°C will be :			
	(1) 6.17 × 10–21 kJ	(2) 6.17 × 10 ₋₂₁ J	(3) 6.17 × 10 ₋₂₀ J	(4) 7.16 × 10– ₂₀ J			
Section	on (D) : Real gases						
D-1.	The values of Vander V	Vaals constant "a" for the	gases O2, N2, NH3 & C	H4 are 1.36, 1.39, 4.17, 2.253 L2			
	atm mole-2 respectively	. The gas which can mo	st easily be liquified is:				
	(1) O ₂	(2) N2	(3) NH₃	(4) CH4			
D-2.	NH ₃ gas is liquefied more easily than N ₂ . Hence: (1) van der Waal's constants 'a' and 'b' of NH ₃ > that of N ₂ (2) van der Waal's constants 'a' and 'b' of NH ₃ < that of N ₂ (3) a (NH ₃) > a (N ₂) but b (NH ₃) < b (N ₂) (4) a (NH ₃) < a (N ₂) but b (NH ₃) > b (N ₂)						
D-3.	The pressure of real ga (1) increase in the num	ases is less than that of id	deal gas because of (2) finite size of particle	es			
	(3) intermolecular attra	ction	(4) increase in kinetic energy of the molecules				
D-4.	At lower temperature, a	all gases show					
	(1) negative deviation		(2) positive deviation				
	(3) positive and negative	ve deviation	(4) None				
D-5.	The units of the van de	r Waal's constant 'a' are					
	(1) atm L ² mol ⁻²	(2) atm L ⁻² mol ⁻²	(3) atm L mol ⁻¹	(4) atm mol L ⁻¹			
D-6.	The units of the van de	r Waal's constant 'b' are					
	(1) atmosphere	(2) joules	(3) L mol–1	(4) mol L ₋₁			
D-7.	For the non-zero value	s of force of attraction be	tween gas molecules, ga	as equation will be :			
	<u>n²a</u>			nRT			
	(1) $PV = nRT - V$	(2) $PV = nRT + nbP$	(3) PV = nRT	(4) $P = V - b$			
D-8.	At low pressures, the v	an der Waal's equation i	s written as :				

 $\left\lfloor p + \frac{a}{V^2} \right\rfloor V = RT$

The compressibility factor is then equal to:

$$(1) \begin{pmatrix} 1 - \frac{a}{RTV} \end{pmatrix}$$

$$(2) \begin{pmatrix} 1 - \frac{RTV}{a} \end{pmatrix}$$

$$(3) \begin{pmatrix} 1 + \frac{a}{RTV} \end{pmatrix}$$

$$(4) \begin{pmatrix} 1 + \frac{RTV}{a} \end{pmatrix}$$

D-9. Gases deviate from the ideal gas behaviour because their molecules

(1) possess negligible volume (2) have forces of attraction between them

- (3) are polyatomic (4) are not attracted to one another D-10. In van der Wall's equation of state for a non-ideal gas, the term that accounts for intermolecular forces is
- (3) $\left(p + \frac{a}{V^2}\right)$ (1) (V-b) (2) (RT)-1 (4) RT A real gas most closely approaches the behaviour of an ideal gas at D-11. (1) 15 atm and 200 K (2) 1 atm and 273 K (3) 0.5 atm and 500 K (4) 15 atm and 500 K D-12. For a real gas the P-V curve was experimentally plotted, and it had the following appearance. With respect to liquefaction. Choose the *correct* statement. (1) at T = 500 K, P = 40 atm, the state will be liquid. 50 atm (2) at T = 300 K, P = 50 atm, the state will be gas 20 atm (3) at T < 300 K, P > 20 atm, the state will be gas (4) at 300 K < T < 500 K, P > 50 atm, the state will be liquid. D-13. The compressibility factor for an ideal gas is (1) 1.5(3) 2.0(2) 1.0(4) ∞ D-14. When is deviation more in the behaviour of a gas from the ideal gas equation PV = nRT? (1) At high temperature and low pressure (2) At low temperature and high pressure (3) At high temperature and high pressure
 - (4) At low temperature and low high pressure

T_c = 500 K

T = 300 K

The van der Waal's parameters for gases W,X,Y and Z are D-15.

Gas	а	(atm	L ²	mol ⁻²)	b	(L	mol ⁻¹)	
W			4.0			0.0)27	
Х			8.0	0.030				
Y	6.0					0.032		
Z			12.0			0.0)27	

Which one of these gases has the highest critical temperature ?

(2) X	(3) Y

(4) Z

Exercise-2

(1) W

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

1. Two flasks of equal volume are connected by a narrow tube (of negligible volume) all at 27°C and contain 0.70 mole of H₂ at 0.5 atm. One of the flask is then immersed into a bath kept at 127°C, while the other remains at 27°C. The final pressure in each flask is : (1) Final pressure = 0.5714 atm (2) Final pressure = 1.5714 atm (3) Final pressure = 0.5824 atm (4) None of these 2. Two flasks of equal volume are connected by a narrow tube (of negligible volume) all at 27°C and contain 0.70 moles of H₂ at 0.5 atm. One of the flask is then immersed into a bath kept at 127°C, while the other remains at 27°C. The number of moles of H₂ in flask 1 and flask 2 are : (1) Moles in flask 1 = 0.4, Moles in flask 2 = 0.3 (2) Moles in flask 1 = 0.2, Moles in flask 2 = 0.3(3) Moles in flask 1 = 0.3, Moles in flask 2 = 0.2 (4) Moles in flask 1 = 0.4, Moles in flask 2 = 0.2

CHEMISTRY FOR JEE 3. One litre of a gaseous mixture of two gases effuses in 311 seconds while 2 litres of oxygen takes 20 minutes. The vapour density of gaseous mixture containing CH₄ and H₂ is : (2) 4.3(1) 4(4) 5 (3) 3.4

4.🖎 Pure O₂ diffuses through an aperture in 224 second, whereas mixture of O₂ and another gas containing 80% O₂ diffuses from the same in 234 second. The molecular mass of gas will be (1) 51.5(2) 48.6 (3) 55 (4) 46.6

5. A straight glass tube as shown, has 2 inlets X & Y at the two ends of 200 cm long tube. HCl gas through inlet X and NH₃ gas through inlet Y are allowed to enter in the tube at the same time and under the identical conditions. At a point P inside the tube both the gases meet first. The distance of point P from X is :

(1) 118.9 cm (3) 91.1 cm (2) 81.1 cm (4) 108.9 cm

- 6.🖎 A teacher enters a classroom from front door while a student from back door. There are 13 equidistant rows of benches in the classroom. The teacher releases N₂O, the laughing gas, from the first bench while the student releases the weeping gas (C6H11OBr) from the last bench. At which row will the students starts laughing and weeping simultaneously
 - (4) 8(1)7(2) 10(3)9
- 7. A certain volume of argon gas (Mol. Wt. = 40) requires 45 s to effuse through a hole at a certain pressure and temperature. The same volume of another gas of unknown molecular weight requires 60 s to pass through the same hole under the same conditions of temperature and pressure. The (1) 53(3)71(2) 35 (4) 120
- A sample of an ideal gas was heated from 30°C to 60°C at constant pressure. Which of the following 8. statement(s) is/are true.
 - (1) Kinetic energy of the gas is doubled (2) Boyle's law will apply (3) Volume of the gas will be doubled (4) None of the above
- 9. A real gas obeying Vander Waal's equation will resemble ideal gas, if the :

(1) constants a & b are small	(2) a is large & b is small
(3) a is small & b is large	(4) constant a & b are large

- 10. The correct order of normal boiling points of O₂, N₂, NH₃ and CH₄, for whom the values of vander Waal's constant 'a' are 1.360, 1.390, 4.170 and 2.253 L₂, atm. mol-2 respectively, is : (1) $O_2 < N_2 < NH_3 < CH_4$ (2) $O_2 < N_2 < CH_4 < NH_3$
 - (3) NH₃ < CH₄ < N₂ < O₂ (4) NH₃ < CH₄ < O₂ < N₂
- 11.🖎 What is the compressibility factor (Z) for 0.02 mole of a van der Waals' gas at pressure of 0.1 atm. Assume the size of gas molecules is negligible. Given : RT = 20 L atm mol-1 and a = 1000 atm L₂ mol-2

(1) 2	(2) 1	(3) 0.02	(4) 0.5

- 12.🖎 Which of following statement (s) is true
 - I Slope of isotherm at critical point is maximum.
 - II Larger is the value of Tc easier is the liquification of gas.
 - III Vander waals equation of state is applicable below critical temperature at all pressure.

CHE	MISTRY FOR	JEE		GASEOUS STATE
-	(1) only I	(2) I & II	(3) II & III	(4) only II
13.	Consider the foll a (atm lit Gas X: Gas Y: then (i) : Vc () Select correct alt (1) (i) alone	owing statements: If the va t ₂ mol ₋₂) b (lit mol ₋₁ 6.5 0.056 8.0 0.011 K) < Vc (Y) (ii) : Pc (X ternate: (2) (i) and (ii)	an der Waal's parameters)) < Pc (Y) (iii) : Tc (X) (3) (i), (ii) and (iii)	of two gases are given as < Tc(Y) (4) (ii) and (iii)
14.🖎	The critical densi	ity of the gas CO_2 is 0.44 g	cm-3 at a certain temperat	ure. If r is the radius of the molecule
	r₃ in cm₃ is appro	oximately. (N is Avogadro	number)	
	25	100	6	25
	(1) πN	(2) ^π N	(3) ^π N	(4) ^{4Nπ}
	Exerci	se-3		
	PART-I:	JEE (MAIN) / AIEE	E PROBLEMS (P	REVIOUS YEARS)
		OFFL	INE JEE-MAIN	
1.	Value of gas cor	istant R is :		[AIEEE 2002, 3/225]
	(1) 0.082 litre atr	n. (2) 0.987 cal mol	-1 K-1 (3) 8.3 J mol-1 K-1	(4) 83 erg mol ₋₁ K ₋₁
2.	Kinetic theory of (1) Only Boyle's (3) Only Avagad	gases proves : law ro's law	(2) Only Charles la (4) All of these	[AIEEE 2002, 3/225] w
3.	For an ideal gas is:	, number of moles per litre	in terms of its pressure P	e, gas constant R and temperature T [AIEEE 2002, 3/225]
	(1) PT/R	(2) PRT	(3) P/RT	(4) RT/P
4.	According to kin travels:	etic theory of gases in an	ideal gas between two s	uccessive collisions a gas molecule [AIEEE 2003, 3/225]
	(1) In a straight I (3) In a circular p	ine path bath	(2) With an acceler (4) In a wavy path	ated velocity
5.	What volume of elemental boron	hydrogen gas, at 273 K (atomic mass = 10.8) fron	and 1 atm pressure will n the reduction of boron tr	be consumed in obtaining 21.6g of ichloride by hydrogen? [AIEEE 2003, 3/225] [AIEEE 2003, 3/225]
	(1) 89.6 L	(2) 67.2 L	(3) 44.8 L	(4) 22.4 L
6.	As the temperatu	ure is raised from 20₀C to	40₀C, the average kinetic	energy of neon atoms changes by a [AIEEE 2004, 3/225]
		313	313	1
	(1) 2	(2) ^{√293}	(3) 293	(4) 2
7.	In vander Waal's (1) Intermolecula	equation of state of the g ar collisions per unit volum	as law, the constant 'b' is e (2) Intermolecular a	a measure of: [AIEEE 2004, 3/225] attractions

(3) Volume occupied by the molecules (4) Intermolecular repulsions

- 8. Which one of the following statements regarding helium is incorrect ? [AIEEE 2004, 3/225]
 - (1) It is used to fill gas balloons instead of hydrogen because it is lighter and non-inflammable
 - (2) It is used as a cryogenic agent for carrying out experiments at low temperatures
 - (3) It is used to produce and sustain powerful superconducting magnets
 - (4) It is used in gas-cooled nuclear reactors
- Which one of the following statements is not true about the effect of an increase in temperature on the distribution of molecular speeds in a gas ?
 [AIEEE 2005, 3/225]
 - (1) The area under the distribution curve remains the same as under the lower temperature
 - (2) The distribution becomes broader
 - (3) The fraction of the molecules with the most probable speed increases
 - (4) The most probable speed increases
- **10.** For gaseous state, if most probable speed is denoted by C*, average speed by \overline{C} and mean square speed by C, then for a large number of molecules the ratios of these speeds are :

[JEE(Main) 2013, 4/120]

(1) C* : \overline{C} : C = 1.225 : 1.128 : 1	(2) C* : \overline{C} : C = 1.128 : 1.225 : 1
(3) C* : \overline{C} : C = 1 : 1.128 : 1.225	(4) C* : \overline{C} : C = 1 : 1.225 : 1.128

- 11.A gaseous hydrocarbon gives upon combustion 0.72 g of water and 3.08 g. of CO2. The empirical formula
of the hydrocarbon is :[JEE(Main) 2013, 4/120](1) C2H4(2) C3H4(3) C6H5(4) C7H8
- 12. If Z is a compressibility factor, vander Waals equation at low pressure can be written as :

[JEE(Main) 2014,

4/120]

[JEE(Main) 2014, 4/120]

- (1) $Z = 1 + \frac{RT}{Pb}$ (2) $Z = 1 \frac{a}{VRT}$ (3) $Z = 1 \frac{Pb}{RT}$ (4) $Z = 1 + \frac{Pb}{RT}$
- **13.** Two closed bulbs of equal volume (V) containing an ideal gas initially at pressure p_i and temperature T_1 are connected through a narrow tube of negligible volume as shown in the figure below. The temperature of one of the bulbs is then raised to T_2 . The final pressure p_f is: [JEE(Main) 2016, 4/120]

ONLINE JEE-MAIN

1. Vander Waal's equation for a gas is stated as, P = $\frac{nRT}{V-nb} - a\left(\frac{n}{V}\right)^2$.

				A					
•			nRT	•					
	This equation reduce	This equation reduces to the perfect gas equation, $P = V$ when, LEE(Main) 2014 Online (00.04-14) 4(120)							
	(1) temperature is s(2) temperature is s(3) both temperature(4) both temperature	sufficiently high and press sufficiently low and press re and pressure are very re and pressure are very	נסבב(שמוח sure is low. ure is high. high. low.) 2014 Online (09-04-14), 4/120]					
2.	The temperature at have at 300 K is : (, (1) 300 K	t which oxygen molecules Atomic masses : He = 4 ע (2) 600 K	s have the same root me u, O = 16 u) [JEE(Main (3) 1200 K	an square speed as helium atoms) 2014 Online (09-04-14), 4/120] (4) 2400 K					
3.	The initial volume of 840.0 mm Hg to 36	of a gas cylinder is 750.0 0.0 mm Hg, the final volu	mL. If the pressure of ga me the gas will be :	s inside the cylinder changes from					
	(1) 1.750 L	(2) 3.60 L	[JEE(Ma i (3) 4.032 L	in) 2014 Online (11-04-14), 4/120] (4) 7.50 L					
4.	Sulphur dioxide an through the porous condition in 30 sectors	d oxygen were allowed to partition is 60 seconds. onds will be (atomic mass	to diffuse through a porput The volume of O_2 in dress of sulphur = 32 u) :	is partition. 20 dm ₃ of SO ₂ diffuses m_3 which diffuses under the similar					
	(1) 7.09	(2) 14.1	(3) 10.0	(4) 28.2					
5.	Which of the follow	ing is not an assumption	of the kinetic theory of ga	ses ? in) 2015 Online (10-04-15) 4/1201					
	 (1) Gas particles had (2) A gas consists of (3) At high pressure (4) Collisions of gas 	ave negligible volume of many identical particels e, gas particles are difficu s particles are perfectly el	s which are in continual m It to compress lastic	notion					
6.	When does a gas c	leviate the most from its i	deal behaviour ?						
	(1) At low pressure (3) At high pressure	and low temperature e and low temperature	[JEE(Ma i (2) At low pr (4) At high p	in) 2015 Online (11-04-15), 4/120] ressure and high temperature pressure and high temperature					
7.	At very high pressu	res, the compressibility fa	actor of one mole of a gas [JEE(Mai	s is given by : in) 2016 Online (09-04-16), 4/120]					
	(1) 1 + ^{pb} / _{RT}	(2) ^{pb} / _{RT}	(3) 1 – ^b (VRT)	(4) 1 – RT					
8.	Initially, the root r temperature is dou velocity will be :	nean square (rms) velo bled and all the nitrogen	city of N ₂ molecules at molecules dissociate into [JEE(Mai	certain temperature is u. If this nitrogen atoms, then the new <i>rms</i> in) 2016 Online (10-04-16), 4/120]					
	(1) 2 u	(2) 14 u	(3) u / 2	(4) 4 u					
9.	At 300 K, the densi The molar mass of (1) 56 g mol ^{_1}	ty of a certain gaseous m gaseous molecule is : (2) 112 g mol ⁻¹	nolecule at 2 bar is double [JEI (3) 224 g mol ⁻¹	e to that of dinitrogen (N ₂) at 4 bar. E(Main) 2017 Online [09-04-2017] (4) 28 g mol ⁻¹					

PART - II : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

CHE	IEMISTRY FOR JEE				GASEOUS STATE				
•	(A) 1.0		(B) 4	.5	(C) 1.5		(D) 3.0		•
10.	One mole of The relationsh	a monoa ip of inte	atomic ratomi	real gas satisfies c potential V(r) an	s the equa d interatom	tion p(V – b) ic distance r fe	= RT wh or the gas [JEE(Ad	nere b is a co is given by vanced)-2015	onstant , 4/168
		r	(B)	/(r) 0 r	V(r) 0-	r	V(r) 0	r	
		ore		•	(0)		(8)		
	HII2M	CI 3							
				EXERO	CISE - '	1			
A-1.	(1)	A-2.	(2)	A-3.	(4)	A-4.	(1)	A-5.	(3)
A-6.	(1)	A-7.	(4)	A-8.	(3)	A-9.	(1)	B-1.	(2)
B-2.	(4)	B-3.	(1)	B-4.	(2)	B-5.	(2)	B-6.	(2)
B-7.	(1)	B-8.	(1)	B-9.	(2)	B-10.	(1)	B-11.	(2)
B-12.	(1)	B-13.	(1)	B-14.	(2)	B-15.	(2)	B-16.	(1)
C-1.	(1)	C-2.	(4)	C-3.	(2)	C-4.	(2)	C-5.	(4)
C-6.	(4)	C-7.	(2)	C-8.	(1)	C-9.	(1)	C-10.	(2)
C-11.	(3)	C-12.	(4)	C-13.	(4)	C-14.	(3)	C-15.	(2)
D-1.	(3)	D-2.	(3)	D-3.	(3)	D-4.	(1)	D-5.	(1)
D-6.	(3)	D-7.	(1)	D-8.	(1)	D-9.	(2)	D-10.	(3)
D-11.	(3)	D-12.	(4)	D-13.	(2)	D-14.	(2)	D-15.	(4)
				EXER	CISE - 2	2			
1.	(1)	2.	(1)	3.	(2)	4.	(1)	5.	(2)
6.	(3)	7.	(3)	8.	(4)	9.	(1)	10.	(2)
11.	(4)	12.	(2)	13.	(4)	14.	(4)		
				EXER	CISE - 3	3			
				PAI OFFLINE	RT - I JEE-MA	IN			
1.	(3)	2.	(4)	3.	(3)	4.	(1)	5.	(2)
6.	(3)	7.	(3)	8.	(3)	9.	(3)	10.	(3)
11.	(4)	12.	(2)	13.	(2)				
				ONLINE	JEE-MAI	N			

CH	CHEMISTRY FOR JEE					GASEOUS STATE			
1.	(1)	2.	(4)	3.	(1)	4.	(2)	5.	(3)
6.	(3)	7.	(1)	8.	(1)	9.	(2)		
				PA	RT - II				
1.	(B)	2.	(C)	3.	(C)	4.	(D)	5.	(C)
6.	(A)	7.	(D)	8.	(B)	9.	(C)	10.	(C)