Exercise-1

Marked Questions may have for Revision Questions.

E

OBJECTIVE QUESTIONS

Section	Section (A) : Atoms, molecules, moles & avogadro's hypothesis			
A-1.	If the atomic mass of So	odium is 23, the number	of moles in 46 g of sodiu	ım is :
	(1) 1	(2) 2	(3) 2.3	(4) 4.6
A-2.	Which of the following of (1) 1.0 g of butane (C ₄ F (3) 1.0 g of silver (Ag)	contains the greatest nun 110)	nber of atoms ? (2) 1.0 g of nitrogen (N₂ (4) 1.0 g of water (H₂O)	2)
A-3.	A sample of aluminium atoms? (At. wt. Al = 27, (1) 12 g	has a mass of 54.0 g. Mg=24) (2) 24 g	What is the mass of th (3) 48 g	e same number of magnesium (4) 96 g.
A-4.	The weight of a molecu (1) 1.09 × 10^{-21} g	le of the compound C ₆ H ₁ (2) 2.988 × 10 ⁻²² g	₁₂ O ₆ is : (3) 5.025 × 10 ⁻²³ g	(4) 16.023 × 10 ^{−23} g
A-5.	Four 1-1 litre flasks are	e seperately filled with the	e gases N ₂ , Ne, N ₂ O and	d SO ₃ at the same temperature
	and pressure. The ratio	of total number of atoms	s of these gases present	in different flask would be :
	(1) 1 : 1 : 1 : 1	(2) 1 : 2 : 2 : 3	(3) 2 : 1 : 3 : 4	(4) 3 : 2 : 2 : 1
A-6.	The total number of g-n	nolecules of SO ₂ Cl ₂ in 13	3.5 g of sulphuryl chloride	e is
	(1) 0.1	(2) 0.2	(3) 0.3	(4) 0.4
A-7.ゐ	The number of sodium	atoms in 2 moles of sodi	um ferrocyanide Na₄[Fe(CN) ₆] is :
	(1) 12 × 23	(2) 26 × 10 ²³	(3) 34 × 10 ²³	(4) 48 × 10 ²³
A-8.	4.4 g of an unknown ga	s occupies 2.24 litres of	volume at STP, the gas	may be :
	(1) N ₂ O	(2) CO	(3) CO ₂	(4) 1 & 3 Both
A-9.	5.6 litre of oxygen at ST (1) 6.02 × 10 ²³ atoms	P contains : (2) 3.01 × 10 ²³ atoms	(3) 1.505 × 10 ²³ atoms	(4) 0.7525 × 10 ²³ atoms
A-10.	If V ml of the vapours o	f substance at NTP weig	ht W g. Then mol w. of s	ubstance is :
	(1) (W/V) × 22400	(2) $\frac{V}{W} \times 22.4$	(3) (W–V) × 22400	$\frac{W \times 1}{V \times 22400}$
A-11	If N _A is Avogadro's num	ber then number of vale	nce electrons in 4.2 <i>g</i> of	nitride ions (N ^{3–})
	(1) 2.4 N _A	(2) 4.2 N _A	(3) 1.6 N _A	(4) 3.2 N _A
A-12	The weight of 1 × 10 ²² r (1) 41.59 <i>g</i>	nolecules of CuSO4. 5H2 (2) 415.9 <i>g</i>	2O is : (3)4.159 <i>g</i>	(4) None of these
A-13	Rearrange the following (I to IV) in the order of increasing masses and choose the correct answer from (a), (b), (c) and (d) (Atomic mass: $N=14$, $O=16$, $Cu=63$). I. 1 molecule of oxygen II. 1 atom of nitrogen III. 1×10^{-10} g molecular weight of oxygen			

	IV. (1)	1×10 ^{−10} g atom II <i<iii<iv< th=""><th>nic weight of copper (2) IV<iii<ii<i< th=""><th>(3) < < V (4) </th><th> < V< < </th></iii<ii<i<></th></i<iii<iv<>	nic weight of copper (2) IV <iii<ii<i< th=""><th>(3) < < V (4) </th><th> < V< < </th></iii<ii<i<>	(3) < < V (4)	< V< <
A-14	1.520 <i>g</i> is	of the hydroxid	e of a metal on ignition (gave 0.995 <i>gm</i> of oxid	e. The equivalent weight of metal
	(1) 1.52	0	(2) 0.995	(3) 19.00	(4) 9.00
A-15	How mu (1) 5.2 > (3) 6.6 >	uch coulomb cha < 10 ⁶ Couloumb < 10 ⁶ Couloumb	arge is present on 1 <i>g</i> ion	of N ⁻³ (2) 2.894 × 10 ⁵ Coulo (4) 8.2 × 10 ⁶ Coulour	oumb nb
A-16	Ratio of will be	$^{\rm E}C_{\rm p}$ and $C_{\rm u}$ of a	gas X is 1.4, the number	r of atom of the gas 'X	' present in 11.2 litres of it at NTP
	(1) 6.02	× 10 ²³	(2) 1.2 × 10 ²³	(3) 3.01 × 10 ²³	(4) 2.01 × 10 ²³
Sectio	on (B) :	Percentage	composition and n	nolecular formula	
B-1.	The nur	nber of atoms o is-	of Cr and O in a compou	nd are 4.8 × 10 ¹⁰ & 9.6	5×10^{10} respectively. Its empirical
	(1) Cr ₂ C) ₃	(2) CrO ₂	(3) Cr ₂ O ₄	(4) None
B-2.	The em compou	pirical formula (of a compound of molec	cular mass 120 is CH	2O. The molecular formula of the
	(1) C ₂ H	4 O 2	(2) C ₄ H ₈ O ₄	(3) C ₃ H ₆ O ₃	(4) all of these
B-3.	A comp Molecul (1) X ₂ Y ₂	ound of X and ar formula of tha	Y has equal mass of the at compound (its mol wt. (2) X ₃ Y ₃	em. If their atomic we is 120) could be : (3) X ₂ Y ₃	ights are 30 and 20 respectively. (4) X ₃ Y ₂
B-4.	1 litre o hydroca	of a hydrocarbo Irbon is :	on weights as much as	s one litre of CO2.Th	en the molecular formula of the
	(1) C ₃ H ₈	8	(2) C ₂ H ₆	(3) C ₂ H ₄	(4) C_3H_6
B-5.ൔ	Percent of perox (1) 1 56	age of Se in per kidase anhydrou 8 x 104	roxidase anhydrous enzy s enzymes is : (2) 1 568 x 10 ³	/me is 0.5% by weight	(at. wt. = 78.4) then min. mol. wt. (4) 2 136 $\times 10^4$
PC	Which c	o x io		correction formula as that	
D-0.	(1) CH ₃	CHO	(2) CH ₃ COOH	(3) CH ₃ OH	(4) C_2H_6
B-7.	Caffeine nitroger	e has a molecu n in one molecul	lar weight of 194. It cor e of it :	ntains 28.9% by mass	of nitrogen number of atoms of
	(1) 2		(2) 3	(3) 4	(4) 5
B-8.	Insulin ((1) 941.	constans 3.4% s 176	ulphur. The minimum mo (2) 944	ol. wt. of insulin is – (3) 945.27	(4) None
B-9	Vapour	density of a me	tal chloride is 66. Its oxi	de contains 53% meta	I. The atomic weight of the metal
	ıs (1) 21		(2) 54	(3) 27.06	(4) 2.086
B-10	The per (1) 46	centage of nitro	gen in urea is about (2) 85	(3) 18	(4) 28

on (C) : Density an	d vapour density		
22.4 litre of water vapo (Given : density of wat	our at NTP, when conden er = 1 g/ml)	sed to water occupies ar	approximate volume of :
(1) 18 litre	(2) 1 litre	(3) 1 ml	(4) 18 ml
Vapour density of a ga	s if its density is 0.178 g/	L at NTP is :	(1) 0.000
(1) 0.178	(2) 2	(3) 4	(4) 0.089
Vapour density of a vo (1) 8	latile substance w.r.t. CH (2) 32	4 is 4 (CH₄ = 1). Its mole(3) 64	cular weight would be – (4) 128
A gas is found to have (1) 7	the formula (CO) _x . It's V (2) 4	/D is 70 the value of x mι (3) 5	ust be : (4) 6
on (D) : Balanced o	hemical equation a	nalysis	
	3		
The equation 2AI(S) +	$\frac{1}{2}$ O ₂ (g) - \rightarrow Al ₂ O ₃ (S) sh	ow that :	
	$\frac{3}{2}$	$\frac{7}{2}$	
(1) 2 mole of Al reacts	with $\frac{2}{2}$ mole of O ₂ to pro	pduce 2 mole of Al ₂ O ₃	
	$\frac{3}{2}$		
(2) 2g of Al reacts with	2 g of O ₂ to produce or 3	ne mole of Al ₂ O ₃	
(3) 2g mole of Al react	s with $\overline{2}$ litre of O ₂ to pro	oduce 1 mole of Al ₂ O ₃	
	<u>3</u>		
(4) 2 mole of Al reacts	with 2 mole of O ₂ to pro	oduce 1 mole of Al ₂ O ₃	
Volume of CO_2 obtained	ed at STP by the complet	e decomposition of 9.85	g BaCO₃ is :
(At. wt. of $Ba = 137$) (1) 2.24 lit	(2) 1.12 lit	(3) 0.84 lit	(4) 0.56 lit
500 ml of a gaseous h	ydrocarbon when burnt ir	n excess of O ₂ gave 2.5 l	itre of CO2 and 3.0 litre of water
vapours under same c	onditions. Molecular form	ula of the hydrocarbon is	3:
(1) C ₄ H ₈	(2) C ₄ H ₁₀	(3) C₅H ₁₀	(4) C ₅ H ₁₂
The moles of O2 requir	ed for reacting with 6.8 g	of ammonia (NH ₃ +	$O_2 - \rightarrow$ NO + H ₂ O) is
(1) 5	(2) 2.5	(3) 1	(4) 0.5
The volume of oxygen	required for complete co	mbustion of 20 ml of ethe	ene is
(1) 30 ml	(2) 60 ml	(3) 40 ml	(4) 50 ml
What weight of CaCC convert 21.2 kg of Na ₂ CaCO ₃ \longrightarrow	9₃ must be decomposed CO₃ completely in to NaF CaO + CO₂	to produce the sufficier ICO3. [Atomic mass Na =	nt quantity of carbon dioxide to = 23, Ca = 40]
	$a + H_0 \longrightarrow 3N_0 +$	2	
(1) 100 Kg	(2) 20 Kg	³ (3) 120 Kg	(4) 30 Kg
	D (C) : Density an 22.4 litre of water vapor (Given : density of wat (1) 18 litre Vapour density of a ga (1) 0.178 Vapour density of a vo (1) 8 A gas is found to have (1) 7 D (D) : Balanced c The equation 2Al(S) + (1) 2 mole of Al reacts (2) 2g of Al reacts with (3) 2g mole of Al reacts (4) 2 mole of Al reacts Volume of CO2 obtaine (At. wt. of Ba = 137) (1) 2.24 lit 500 ml of a gaseous h vapours under same c (1) C4H8 The wolume of O2 requir (1) 5 The volume of oxygen (1) 30 ml What weight of CaCC convert 21.2 kg of Na2 CaCO3 \longrightarrow Na2 CO3 + CO (1) 100 Kg	Den (C) : Density and vapour density 22.4 litre of water vapour at NTP, when condent (Given : density of water = 1 g/ml) (1) 18 litre (2) 1 litre Vapour density of a gas if its density is 0.178 g/ (1) 0.178 (2) 2 Vapour density of a volatile substance w.r.t. CH (1) 8 (2) 32 A gas is found to have the formula (CO) _x . It's V (1) 7 (2) 4 Dn (D) : Balanced chemical equation at The equation 2AI(S) + $\frac{3}{2}$ O ₂ (g) -→ Al ₂ O ₃ (S) sh (1) 2 mole of Al reacts with $\frac{3}{2}$ mole of O ₂ to produce or (2) 2g of Al reacts with $\frac{3}{2}$ g of O ₂ to produce or (3) 2g mole of Al reacts with $\frac{3}{2}$ mole of O ₂ to produce or (4) 2 mole of Al reacts with $\frac{3}{2}$ mole of O ₂ to produce or (4) 2 mole of Al reacts with $\frac{3}{2}$ mole of O ₂ to produce or (4) 2 mole of Al reacts with $\frac{3}{2}$ mole of O ₂ to produce or (5) 0 ml of a gaseous hydrocarbon when burnt in vapours under same conditions. Molecular form (1) C ₄ H ₈ (2) C ₄ H ₁₀ The moles of O ₂ required for reacting with 6.8 g (1) 5 (2) 2.5 The volume of cxygen required for complete co (1) 30 ml (2) 60 ml What weight of CaCO ₃ must be decomposed convert 21.2 kg of Na ₂ CO ₃ completely in to NaH CaCO ₃ → CaO + CO ₂ Na ₂ CO ₃ + CO ₂ + H ₂ O → 2NaHCO (1) 100 Kg (2) 20 Kg	Son (C) : Density and vapour density 22.4 litre of water vapour at NTP, when condensed to water occupies an (Given : density of water = 1 g/ml) (1) 18 litre (2) 1 litre (3) 1 ml Vapour density of a gas if its density is 0.178 g/L at NTP is : (1) 0.178 (2) 2 (3) 4 Vapour density of a volatile substance w.r.t. CH ₄ is 4 (CH ₄ = 1). Its mole (1) 8 (2) 32 (3) 64 A gas is found to have the formula (CO)x. It's VD is 70 the value of x mu (1) 7 (2) 4 (3) 5 On (D) : Balanced chemical equation analysis The equation 2AI(S) + $\frac{3}{2}$ O ₂ (g) AI ₂ O ₃ (S) show that : (1) 2 mole of AI reacts with $\frac{3}{2}$ mole of O ₂ to produce $\frac{7}{2}$ mole of AI ₂ O ₃ (2) 2g of AI reacts with $\frac{3}{2}$ g of O ₂ to produce one mole of AI ₂ O ₃ (3) 2g mole of AI reacts with $\frac{3}{2}$ mole of O ₂ to produce 1 mole of AI ₂ O ₃ (4) 2 mole of AI reacts with $\frac{3}{2}$ mole of O ₂ to produce 1 mole of AI ₂ O ₃ Volume of CO ₂ obtained at STP by the complete decomposition of 9.85 (At. wt. of Ba = 137) (1) 2.2.4 lit (2) 1.12 lit (3) 0.84 lit 500 ml of a gaseous hydrocarbon when burnt in excess of O ₂ gave 2.5 I vapours under same conditions. Molecular formula of the hydrocarbon is (1) C ₄ H ₈ (2) C ₄ H ₁₀ (3) C ₅ H ₁₀ The wolume of oxygen required for complete combustion of 20 ml of ethe (1) 30 ml

D-8.	Sulphur trioxide is prepared by the following two reactions $S_8(s) + 8O_2(g) \rightarrow 8SO_2(g)$ $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$			
	(1) 1280.0	(2) 640.0	(3) 960.0	(4) 320.0
D-9.	Butane C ₄ H ₁₀ , burns w What is the amount (in	with the oxygen in air to gin moles) of carbon dioxide $a_{1} \longrightarrow c_{2}(a_{1}) + H_{2}(a_{2})$	ve carbon dioxide and wa e produced from 0.15 mo	ater. I C ₄ H ₁₀ ?
	$C_4 \Pi_{10}(g) + O_2(g)$ (1) 0.15 mol CO ₂	(2) 0.30 mol $CO_2(g) + H_2O(g)$	(3) 0.45 mol CO ₂	(4) 0.60 mol CO ₂
D-10	The mass of BaCO₃ pr (1) 81 <i>g</i>	oduced when excess CC (2) 40.5 <i>g</i>	0₂ is bubbled through a so (3) 20.25 <i>g</i>	blution of 0.205 mol Ba(OH)₂ is (4) 162 <i>g</i>
D-11	When 100% pure sam weight of residual CaC	ple of CaCO₃ was heated) left ?	d strongly 6.72 L of CO ₂	was produced at STP. Find the
	(1) 30 g	(2) 0.56 g	(3) 16.8 g	(4) None of these
D-12	When sodium bicarbor bicarbonate heated.	hate is heated 3.6 \times 10 ₂₄ m	nolecules of water are obt	ained. Find the moles of sodium
	NaHCO ₃ (1) 6	 → Na₂CO₃ + CO₂ + H₂O (2) 12 	(3) 9	(4) 8
Sectio	on (E) : Limiting re	agent		
E-1.	If 0.5 mol of $BaCl_2$ is m be formed is :	ixed with 0.1 mole of Na ₃	PO4, the maximum numb	er of mole of $Ba_3(PO_4)_2$ that can
	(1) 0.7	(2) 0.05	(3) 0.30	(4) 0.10
E-2.	For the reaction 2P + 0 (1) 8 mol of R	$Q \rightarrow R, 8 \text{ mol of } P \text{ and } 5$ (2) 5 mol of R	mol of Q will produce (3) 4 mol of R	(4) 13 mol of R
E-3.	0.5 mole of H_2SO_4 is m	nixed with 0.2 mole of Ca	(OH)2. The maximum nur	mber of moles of CaSO ₄ formed
	is: (1) 0.2	(2) 0.5	(3) 0.4	(4) 1.5
E-4.	For the reaction : A + 2 5 mole of A and 8 mole (1) 5 mole of C	2B → C e of B will produce : (2) 4 mole of C	(3) 8 mole of C	(4) 12 mole of C
E-5	Calculate the amount of	of H2 which is left unreact	ed in the given reaction :	
	$2H_2 + O_2$	\rightarrow 2H ₂ O		
	(1) 3 g	(2) 6 g	(3) 1 g	(4) 4 g
E-6.	Zinc and hydrochloric	acid react according to th	e reaction.	
	Zn(s) + 2HCl(a If 0.30 mole of Zn are produced ?	aq.)	+ H2(g) id containing 0.52 mole I	HCl, how many moles of H_2 are

СНЕ	MISTRY FOR J	EE		MOLE CONCEPT
•	(1) 0.26	(2) 1.04	(3) 0.52	(4) 0.13
E-7.ൔ	A mixture of 1.0 m	ole of AI and 3.0 mole of	Cl ₂ are allowed to rea	act as :
Section	2AI (s) + 3 (a) Which is limitin (b) How many mo (c) Moles of exces (1) (a) AI, (b) 1.0 (3) (a) AI, (b) 0.5 on (F) : Princip	$BCl_2(g) \longrightarrow 2AICl_3(g)$ ag reagent ? les of AICl_3 are formed as reagent left unreacted is (c) 1.5 (c) 1.5 le of Atom Conserva	(s) s (2) (a) Cl ₂ , (b) (4) (a) Cl ₂ , (b) 7 ation (POAC)	2.0 (c) 2.0 1.0 (c) 1.5
F-1.	25.4 g of iodine a	nd 14.2g of chlorine are	made to react compl	etely to yield a mixture of ICI and ICI3.
	Calculate the num (1) 0.1 mole, 0.1 r	ber of moles of ICI and IC nole (2) 0.1 mole, 0.2 m	Cl₃ formed. ole (3) 0.5 mole, 0.9	5 mole (4) 0.2 mole, 0.2 mole
F-2.⊾̀	21.6 g of silver co as AgCl. The weig (1) 50%	in is dissolved in HNO ₃ . In the of AgCI is found to be (2) 75%	When NaCl is added 14.35 g then % of silv (3) 100%	to this solution, all silver is precipitated er in coin is : (4) 15%
F-3	Carbon and oxygen are taken in mass ratio 3 : 4. In the reaction $C(s) + O_2(g) \longrightarrow CO_2(g)$ (1) Carbon is limiting reagent.(2) Oxygen is limiting reagent.(3) None is limiting reagent.(4) Both are limiting reagent.			
F-4	An equimolar mix AgNO₃ to above n (1) 143.5 mg	ture of NaCl and KCl wei nixture. (2) 574 mg	gh 266 mg. Find ma (3) 287 mg	(4) None of these
Section	on (G) : Concer	ntration terms		
G-1.	If 500 ml of 1 M so will be :	lution of glucose is mixed	with 500 ml of 1 M sol	ution of glucose final molarity of solution
	(1) 1 M	(2) 0.5 M	(3) 2 M	(4) 1.5 M
G-2.ൔ	What approximate in which the molar	volume of 0.40 M Ba(OH) ity of the OH [_] ions is 0.50)2 must be added to 50) M?	0.0 mL of 0.30 M NaOH to get a solution
	(1) 33 mL	(2) 66 mL	(3) 133 mL	(4) 100 mL
G-3.	500 mL of a gluco (1) 0.1 M	se solution contains 6.02 (2) 1.0 M	× 10 ²² molecules. Th (3) 0.2 M	e concentration of the solution is (4) 2.0 M
G-4.	What is the conce	entration of nitrate ions if	equal volumes of 0.1	I M AgNO $_3$ and 0.1 M NaCl are mixed
	together : (1) 0.1 M	(2) 0.2 M	(3) 0.05 M	(4) 0.25 M
G-5.ൔ	The volume of wa obtain 0.25 M solu (1) 750 ml	ter that must be added to ition of HCl is : (2) 100 ml	a mixture of 250 ml c (3) 200 ml	of 0.6 M HCl and 750 ml of 0.2 M HCl to (4) 300 ml
G-6.	The molarity of the (1) M/10	e solution containing 2.8% (2) M/2	mass-volume solutio (3) M/5	on of KOH is (4) 1 M

G-7.	The mole fraction of w (1) 0.0632	ater in a solution contain (2) 0.038	ing 117 g sodium chlorid (3) 0.9615	le and 900 g of water is ? (4) 1.000
G-8.	300 ml of 3.0 M NaCl is resulting solution is	s added to 200 ml of 4.0) M BaCl ₂ solution. The	concentration of Cl ⁻ ions in the
	(1) 7 M	(2) 1.6 M	(3) 1.8 M	(4) 5 M
G-9.ൔ	The molality of a sulp 1000 gm of solvent.	huric acid solution is C	0.2. Calculate the total	weight of the solution having
	(1) 1000 g	(2) 1098.6 g	(3) 980.4 g	(4) 1019.6g
G-10.	25 mL of 3.0 M HNO $_3$ a the final mixture would I	re mixed with 75 mL of be-	4.0M HNO ₃ . If the volum	nes are additive, the molarity of
	(1) 3.25 M	(2) 4.0 M	(3) 3.75 M	(4) 3.50 M
G-11.	15 gram of methyl alcoh in solution ?	ol is dissolved in 35 gram	of water. What is the ma	ss percentage of methyl alcohol
	(1) 30%	(2) 50%	(3) 70%	(4) 75%
G-12.è⊾	Density of a 2.05 M solu (1) 3.28 mol Kg ⁻¹	ution of acetic acid in wat (2) 2.28 mol Kg ⁻¹	ter is 1.02 g/mL. The mo (3) 0.44 mol Kg ⁻¹	lality of the solution is (4) 1.14 mol Kg ⁻¹
G-13.ൔ	A 5.2 molal aqueous so solution ?	olution of CH₃OH is supp	blied. What is the mole f	raction of methyl alcohol in the
	(1) 0.050	(2) 0.100	(3) 0.190	(4) 0.086
G-14.è	The molality of 15% (wt (1) 1.2	./vol.) solution of H ₂ SO ₄ ((2) 1.4	of density 1.1 g/cm ³ is ap (3) 1.8	oproximately- (4) 1.6
G-15.ൔ	The density of a solutio	n containing 13% by ma	ss of sulphuric acid is 1.	09 g/mL. Calculate the molarity
	(1) 1.445 M	(2) 14.45 M	(3) 144.5 M	(4) 0.1445 M
G-16	250 <i>ml</i> of a sodium carb to one litre, what is the (1) 0.1 M	conate solution contains concentration of the resu (2) 0.001 M	2.65 grams of Na ₂ CO ₃ . I Itant solution (mol. wt. of (3) 0.01 M	f 10 <i>ml</i> of this solution is diluted f Na ₂ CO ₃ =106) (4) 10 ⁻⁴ M
G-17	What is the concentrati together :	on of nitrate ions if equa	al volumes of 0.1 M AgN	IO_3 and 0.1 M NaCl are mixed
	(1) 0.1 M	(2) 0.2 M	(3) 0.05 M	(4) 0.25 M
G-18	How much water should (1) 200 cc	be added to 200 cc of se (2) 400 cc	emimolar solution of NaC (3) 800 cc	DH to make it exactly decimolar: (4) 600 cc
G-19	A 300 g solution of dens of this solution.	ity 1.5 g/ml is prepared by	y adding 90 g of glucose	$(C_6H_{12}O_6)$ in water. Find molarity
	(1) 5/3	(2) 5/2	(3) 2/5	(4) 3/5
Sectio	on (H) : Calculation	of oxidation number	er	
H-1.	The oxidation number of (1) + 1	of Oxygen in Na ₂ O ₂ is : (2) + 2	(3) – 2	(4) – 1

H-2.	One of the following ha	s both positive and nega (2) Cl	tive oxidation states (3) He	(4) Na
Цэ	The evidetion state of a		(0)	
п-э.	(1) + 7	(2) + 6	(3) + 4	(4) + 8
H-4.	Oxidation number of nit	trogen in (NH₄)₂SO₄ is		
	$(1) - \overline{3}$	(2) – 1	(3) + 1	(4) – 3
H-5.	In which of the following	g compounds, the oxidat	ion number of iodine is f	ractional?
м а-н	(1) IF ₇ The oxidation number ((2) I₃⁻ of cobalt in K₂[Co(NO₂)₂]	(3) IF ₅	(4) IF ₃
11-0.44	(1) 0	(2) + 4	(3) + 3	(4) + 6
H-7.	The oxidation number of	of Phosphorus in Mg ₂ P ₂ C	D ₇ is :	
	(1) + 3	(2) + 2	(3) + 5	(4) – 3
H-8.	In which of the following	g compounds, nitrogen h	as an oxidation state of	-1 ?
	(1) N ₂ O	(2) NO ₂ -	(3) NH ₂ OH	(4) N ₂ H ₄
Section	on (I) : Balancing o	f redox reactions		
I-1.	A reducing agent is a s (1) in which an element (2) in which an element (3) which gains electron (4) which shares electron	ubstance : t undergoes increase in o t undergoes decrease in n(s) on(s)	oxidation number. oxidation number.	
l-2.≧	Consider the following	reaction :		
	$3Br_2 + 6CO_3^2 + 3H_2O$ Which of the following s (1) Bromine is oxidized (2) Bromine is reduced (3) Bromine is neither r (4) Bromine is both red	\rightarrow 5Br ⁻ + BrO ₃ ⁻ + 6 statements is true regard and the carbonate radic and the carbonate radic educed nor oxidized. uced and oxidized.	SHCO₃ ⁻ ling this reaction: al is reduced. al is oxidized.	
I-3.	Which of the following i	s a redox reaction:		
	(1) $2 \operatorname{CrO}_{4^{2-}} + 2H^+ \rightarrow C$	r ₂ O ₇ ^{2–} + H ₂ O	(2) CuSO ₄ + 4 NH ₃ \rightarrow [Cu (NH3)4] SO4
	(3) $2Na_2S_2O_3 + I_2 \rightarrow N$	a ₂ S ₄ O ₆ + 2NaI	(4) $Cr_2O_7^{2-} + 2OH^- \rightarrow 2$	2 CrO ₄ ^{2–} + H ₂ O
I-4.	Consider the reaction, 2	$Zn + Cu^{2+} \longrightarrow Zn^{2+} +$	Cu	
	(1) Zn is reduced to Zn	2+	(2) Zn is oxidised to Zn	2+
	(3) Zn ²⁺ is oxidised to Z	Zn	(4) Cu ²⁺ is oxidised to (Cu.
I-5.	Which reaction does no	ot represent auto redox o	or disproportionation read	tion :
	(1) $Cl_2 + OH^- \longrightarrow Cl$	⁻ + ClO ₃ ⁻ + H ₂ O	$(2) 2H_2O_2 \longrightarrow H_2O -$	+ O ₂
	(3) $2Cu^{+} \longrightarrow Cu^{2+} +$	Cu	(4) $(NH_4)_2Cr_2O_7 \longrightarrow$	$N_2 + Cr_2O_3 + 4H_2O$

MOLE CONCEPT

I-6.	In the reaction X^- + (1) 1 : 5	$ XO_{3^{-}} + H^{+} \longrightarrow X_{2} + H $ (2) 5 : 1	H ₂ O, the molar ratio in w (3) 2 : 3	vhich X ⁻ and XO₃⁻ react is : (4) 3 : 2
I-7.	The compound that (1) KMnO4	can work both as an oxi (2) H ₂ O ₂	dising as well as a reduction (3) Fe ₂ (SO ₄) ₃	cing agent is : (4) K ₂ Cr ₂ O ₇
	Exercise	e-2 🚞		
🔺 Mar	ked Questions may	have for Revision Que	stions.	
		OBJECTI	VE QUESTIONS	
1.	How many moles of	electron weigh one kilo	gram :	
	(1) 6.023 × 10 ²³	(2) $\frac{1}{9.108} \times 10^{31}$	(3) $\frac{6.023}{9.108} \times 10^{54}$	(4) $\frac{1}{9.108 \times 6.023} \times 10^8$
2.	The molar ratio of F in both ferrous and t (1) 1 : 2	e ²⁺ to Fe ³⁺ in a mixture o ferric sulphate is (2) 3 : 2	of FeSO4 and Fe ₂ (SO4) ₃ (3) 2 : 3	having equal number of sulphate ion (4) can't be determined
3.ເ≧	Molarity of H ₂ SO ₄ is (1) 18	18 M. Its density is 1.8 (2) 100	g/cm³, hence molality is (3) 36	(4) 500
4.	A sample of ammore atoms in the sample (1) 0.265	nium phosphate (NH₄)₃F e is : (2) 0.795	PO₄ contains 3.18 mol o (3) 1.06	f H atoms. The number of mol of O (4) 3.18
5.⊾	The mass of carbo aluminium metal fro (1) 180 kg	on anode consumed (gi m bauxite by the Hall pro (2) 270 kg	iving only carbon dioxid ocess is : (3) 240 kg	de) in the production of 270 Kg of (4) 90 kg
6.	Two elements X (at different masses of of X combines with (1) 14 parts by mass (3) 70 parts by mass	-mass 16) and Y (at-mas Y which combines with a 84 parts by mass of Y in s of Y s of Y	ss 14) combine to form a fixed mass of X in A,B b B, then in C 16 parts by (2) 42 parts by mas (4) 84 parts by mas	compounds A, B and C. The ratio of and C is 1 : 3 : 5. If 32 parts by mass y mass of X will combine with : ss of Y ss of Y
7.🖻	If LPG cylinder con required for combus (1) 1.8 kg	tains mixture of butane stion of 1 kg of it will be : (2) 2.7 kg	and isobutane, then th (3) 4.5 kg	ne amount of oxygen that would be (4) 3.58 kg
8.	X g of Ag was disso was precipitated the (1) 1.08 g	lved in HNO₃ and the so value of X is (2) 2.16 g	lution was treated with e	excess of NaCl. When 2.87 g of AgCl (4) 1.62 g
9.ൔ	Calculate the weigh VO + Fe ₂ O ₃ $- \rightarrow$ Fe (1) 4.32	t of FeO produced from O +V ₂ O ₅ (At. wt. of V = 5 (2) 7.755	6.7 g VO & 4.8 g Fe ₂ O ₃ 51, At. wt. of Fe = 56) (3) 2.585	(4) 0.0718
10.	Calculate the wt. of	CaO required to remove	the hardness of 10 ⁶ litre	of water containing 1.62 g of calcium

10. Calculate the wt. of CaO required to remove the hardness of 10⁶ litre of water containing 1.62 g of calcium bicarbonate per litre.

	Ca(HCO ₃) ₂	+ CaO – → 2CaCO ₃ + 2H	1 ₂ O			
	(1) 5.6 × 10 ³ g	(2) 5.6 × 10 ⁴ g	(3) 5.6 × 10 ⁵ g	(4) 5.6 × 10 ⁶ g		
11.	How many mole of Z (1) 2 mole	2n(FeS₂) can be made fr (2) 3 mole	om 2 mole zinc, 3 mole (3) 4 mole	iron and 5 mole sulphur. (4) 5 mole		
12.	Equal moles of H_2O	and NaCl are present in	a solution. Hence, mola	lity of NaCl solution is :		
13.	 (1) 0.33 (2) 3 (2) 3 (2) 4 (2) 5 (3) 5 (4) 5 (4) 5 (5) 5 (5) 5 (4) 5 (5) 5 (5) 5 (5) 5 (6) 5 (7) 5 (7) 5 (7) 5 (7) 5 (7) 5 (7) 5 (8) 5 (8) 5 (9) 5 (9) 5 (9) 5 (1) 5 (1) 5 (1) 5 (2) 5 (2) 5 (2) 5 (2) 5 (1) 5 (2) 5 (2) 5 (2) 5 (2) 5 (2) 5 (2) 5 (3) 5 (4) 5<td>mass of pure NaOH in e V) NaOH /V) NaOH (d_{sol} = 1.2 g/m iOH (d_{sol} = 1 g/ml). (2) III, II, I</td><td>(4) 0.10 each of the aqueous solu nl). (3) II, III, I</td><td>ution. (4) III = II = I.</td>	mass of pure NaOH in e V) NaOH /V) NaOH (d _{sol} = 1.2 g/m iOH (d _{sol} = 1 g/ml). (2) III, II, I	(4) 0.10 each of the aqueous solu nl). (3) II, III, I	ution. (4) III = II = I.		
14.	Mole fraction of A in (1) 13.9	H ₂ O is 0.2. The molality (2) 15.5	of A in H ₂ O is : (3) 14.5	(4) 16.8		
15.	A solution of glucose received from some research laboratory has been marked mole fraction x molality (m) at 10°C. When you will calculate its molality and mole fraction in your laboratory at 24°C will find					
	(1) mole fraction (x)(3) mole fraction (x/2)	and molality (m) 2) and molality (m/2)	(2) mole fraction (2) (4) mole fraction (x)	x) and molality (2m) and (m ± dm) molality		
16.	2M of 100 ml Na ₂ SO ₄ is mixed with 3M of 100 ml NaCl solution and 1M of 200 ml CaCl ₂ solution. T the ratio of the concentration of cation and anion.					
	(1) 1/2	(2) 2	(3) 1.5	(4) 1		
17.	What is the quantity as 0.25 :	of water that should be ac	dded to 16 g. methanol to	make the mole fraction of methanol		
	(1) 27 g.	(2) 12 g.	(3) 18 g.	(4) 36 g.		
18. ⊾	Assuming that petro combustion will cons	l is iso-octane (CଃH₁ଃ) ar sume oxygen ?	nd has a density 0.8 g m	I ⁻¹ , 1.425 litre of petrol on complete		
	(1) 50 L	(2) 125 L	(3) 125 mol	(4) 50 mol		
19.	In which of the follow	ving reactions is there a	change in the oxidation	number of nitrogen atom:		
	(1) $2 \operatorname{NO}_2 \longrightarrow \operatorname{N}_2$	O4	(2) NH ₃ + H ₂ O	(2) $NH_3 + H_2O \longrightarrow NH_{4^+} + OH^-$		
	(3) N ₂ O ₅ + H ₂ O —	\rightarrow 2HNO ₃	(4) None of these			
20.	For the redox reaction the correct stoichion	on $MnO_4^- + C_2O_4^{2-} + H^{-1}$	+ \longrightarrow Mn ²⁺ + CO ₂ + D ₄ ⁻ , C ₂ O ₄ ²⁻ and H ⁺ are re	H ₂ O, espectively:		
	(1) 2, 5, 16	(2) 16, 5, 2	(3) 5, 16, 2	(4) 2, 16, 5		
21.🖎	When SO ₂ is passed	d through a solution of po	otassium iodate, the oxid	dation state of iodine changes from:		
	(1) + 5 to 0	(2) + 5 to – 1	(3) – 5 to 0	(4) – 7 to – 1		
22.	The number of elect	rons required to balance	the following equation,			
	NO ₃ - + 4H+	+ e [_] → 2H ₂ O + NO i	is			
	(1) 5	(2) 4	(3) 3	(4) 2		

- 23. One mole of calcium phosphide on reaction with excess of water gives
 - (1) One mole of phosphine
 - (2) Two moles of phosphoric acid
 - (3) Two moles of phosphine
 - (4) One mole of phosphorus pentoxide

Exercise-3

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

OFFLINE JEE-MAIN

1.	In an organic compound Molecular formula can b	d of molar mass 108 g mo be :	ol ^{−1} C, H and N atoms are	e present in 9 : 1 : 3.5 by weight. [AIEEE 2002, 3/225]
	(1) C ₆ H ₈ N ₂	(2) C7H10N	(3) C ₅ H ₆ N ₃	(4) C ₄ H ₁₈ N ₃
2.	When KMnO ₄ acts as a number of electrons train	n oxidising agent and ult nsferred in each case is	imately forms MnO ₄ ²-, M	InO ₂ , Mn ₂ O ₃ and Mn ²⁺ , then the [AIEEE 2002, 3/225]
	(1) 4, 3, 1, 5	(2) 1, 5, 3, 7	(3) 1, 3, 4, 5	(4) 3, 5, 7, 1
3.	Which of the following is	s a redox reaction?		[AIEEE 2002, 3/225]
	(1) NaCl + KNO ₃ \longrightarrow	NaNO₃ + KCl	(2) CaC ₂ O ₄ + 2 HCl —	\longrightarrow CaCl ₂ + H ₂ C ₂ O ₄
	(3) Mg (OH) ₂ + 2 NH ₄ Cl	\longrightarrow MgCl ₂ + 2 NH ₄ O	H (4) Zn + 2 AgCN	→ 2 Ag + Zn (CN) ₂
4.	Which of the following c (1) Molarity	concentration factor is aff (2) Molality	ected by change in temp (3) Mole fraction	erature ? [AIEEE 2002, 3/225] (4) Weight fraction
5.	What volume of hydrog elemental boron (atomic	gen gas at 273 K and 1 c mass = 10.8) from the i	atm pressure will be co reduction of boron trichlo	nsumed in obtaining 21.6 g of ride by hydrogen- [AIEEE 2003, 3/225]
	(1) 44.8 lit.	(2) 22.4 lit.	(3) 89.6 lit.	(4) 67.2 lit.
6.	6.02×10^{20} molecules of	of urea are present in 100) ml of its solution. The c	oncentration of urea solution is- [AIEEE 2004, 3/225]
	(1) 0.001 M	(2) 0.01 M	(3) 0.02 M	(4) 0.1 M
7.	The oxidation state of C	r in [Cr(NH₃)₄Cl₂]+ is :		[AIEEE 2005, 1½/225]
	(1) + 3	(2) + 2	(3) + 1	(4) 0
8.	Two solution of a subs solution + 520 ml of 1.2	tance (non electrolyte) a M second solution. What	are mixed in the following t is the molarity of the fina	g manner. 480 ml of 1.5M first al mixture ?
	(1) 2.70M	(2) 1.344M	(3) 1.50M	[AIEEE 2005, 3/225] (4) 1.20M
9.	Which of the following c	hemical reactions depict	s the oxidizing behaviou	r of H ₂ SO ₄ ? [AIEEE-2006, 3/165]
	(1) 2HI + H ₂ SO ₄ \rightarrow I ₂ +	SO ₂ + 2H ₂ O	(2) Ca(OH) ₂ + H ₂ SO ₄ \rightarrow	$CaSO_4 + 2H_2O$
	(3) NaCl + $H_2SO_4 \rightarrow Na$	HSO4 + HCI	(4) $2PCI_5 + H_2SO_4 \rightarrow 2F$	POCI ₃ + 2HCI + SO ₂ Cl ₂

10.	How many moles of ma	agnesium phosphate, Mg	J3(PO4)2 will contain 0.25	mole of oxygen atoms ?
	(1) 0.02	(2) 3.125 × 10 ^{−2}	(3) 1.25 × 10 ⁻²	(4) 2.5×10^{-2}
11.	Density of a 2.05M solu	ution of acetic acid in wat	er is 1.02 g/ml. The mola	ality of the solution is : [AIEEE-2006, 3/165]
	(1) 1.14 mol kg ⁻ '	(2) 3.28 mol kg ⁻¹	(3) 2.28 mol kg ⁻¹	(4) 0.44 mol kg ⁻¹
12.	In the reaction $2AI_{(s)} + 6HCI_{(aq)} \rightarrow 2AI^{3}$ (1) 6L HCI _(aq) is consum (2) 33.6 L H _{2(g)} is produ (3) 67.2 L H _{2(g)} at STP (4) 11.2 L H _{2(g)} at STP	⁺ (aq) + 6Cl ⁻ (aq) + 3H ₂ (g) ned for every 3L H ₂ produ iced regardless temperat is produced for every mo is produced for every mo	uced. ture and pressure for eve le of Al that reacts . le of HCl _(aq) consumed.	[AIEEE-2007, 3/120] ery moles that reacts.
13.	The density (in g mL ⁻¹) by mass will be :	of a 3.60 M sulphuric ac	id solution that is 29% (F	H ₂ SO ₄ molar mass = 98 g mol ⁻¹) [AIEEE-2007, 3/120]
	(1) 1.22	(2) 1.45	(3) 1.64	(4) 1.88
14.	A 5.2 molal aqueous so alcohol in the solution? (1) 0.100	(2) 0.190	(CH₃OH), is supplied. W (3) 0.086	hat is the mole fraction of methyl [AIEEE-2011, 3/120] (4) 0.050
15.	The molality of a ureas STP is: (1) 5.55 \times 10 ⁻⁴	solution in which 0.0100	g of urea, [(NH ₂) ₂ CO] is a	added to 0.3000 dm ³ of water at [AIEEE-2011, 3/120] (4) 0 555 m
16.	The density of a solution 1.15 g/mL. The molarity	on prepared by dissolving y of this solution is :	g 120 g of urea (mol. ma	(1) 0.000 m uss = 60 u) in 1000 g of water is [AIEEE-2012, 4/120]
	(1) 0.50 M	(2) 1.78 M	(3) 1.02 M	(4) 2.05 M
17.	The molarity of a soluti (1) 0.875 M	on obtained by mixing 75	50 mL of 0.5 M HCI with 2	250 mL of 2 M HCl will be : [JEE(Main)-2013, 4/120] (4) 0.975 M
18	Consider the following	reaction :	(-)	
10.	Consider the following	Z		
	$xMnO_4^- + yC_2O_4^{2-} + zH$ The values of x, y and (1) 5, 2 and 16	$ ^+ \rightarrow xMn^{2+} + 2yCO_2 + \frac{2}{2}$ z in the reaction are, resp (2) 2, 5 and 8	H ₂ O pectively : (3) 2, 5 and 16	[JEE(Main)-2013, 4/120] (4) 5, 2 and 8
19.	In which of the followin (a) $H_2O_2 + 2H^+ + 2$ (b) $H_2O_2 - 2e^$ (c) $H_2O_2 + 2e^$ (d) $H_2O_2 + 2OH^$	g reactions H_2O_2 acts as $2e^ \rightarrow 2H_2O$ $\Rightarrow O_2 + 2H^+$ $\Rightarrow 2OH^-$ $- 2e^ \rightarrow O_2 + 2H_2O$	a reducing agent ?	[JEE(Main)-2014, 4/120]
	(1) (a), (b)	(2) (c), (d)	(3) (a), (c)	(4) (b), (d)
20.	The ratio of masses of	oxygen and nitrogen in a	a particular gaseous mixt	ure is 1 : 4. The ratio of number

The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is 1 : 4. The ratio of number of their molecule is : [JEE(Main)-2014, 4/120]

СНІ	EMISTRY FOR	JEE		MOLE CONCEPT		
	(1) 1 : 4	(2) 7 : 32	(3) 1 : 8	(4) 3 : 16		
21.	The molecular fo (Mol. wt. 206). W per gram resin ?	rmula of a commercial re /hat would be the maxim	sin used for exchanging um uptake of Ca ²⁺ ions	ions in water softening is C₃H₂SO₃Na by the resin when expressed in mole [JEE(Main)-2015, 4/120]		
	1	1	2			
	(1) 103	(2) 206	(3) 309	(4) 412		
22.	1 gram of a carbo mass of M ₂ CO ₃ i	onate (M ₂ CO ₃) on treatment n g mol ⁻¹ is :	ent with excess HCI prod	uces 0.01186 mole of CO ₂ . The molar [JEE(Main)-2017, 4/120]		
23.	(1) 84.3 The most abunda (22.9%), Hydrog atoms are replac	(2) 118.6 ant elements by mass in th en (10.0%) ; and Nitroger ed by ² H atoms is :	(3) 11.86 he body of a healthy huma n (2.6%). The weight whi l	(4) 1186 an adult are : Oxygen (61.4%); Carbon ch a 75 kg person would gain if all ¹ H [JEE(Main)-2017, 4/120]		
	(1) 37.5 kg	(2) 7.5 kg	(3) 10 kg	(4) 15 kg		
24.	Which of the follo	owing reactions is an exar	mple of a redox reaction	?		
				[JEE(Main)-2017, 4/120]		
	(1) XeF ₂ + PF ₅ –	→ [XeF]+ ^{PF} ₆	(2) XeF ₆ + H ₂ O -	→ XeOF₄ + 2HF		
	(3) XeF ₆ + 2H ₂ O	$- \rightarrow XeO_2F_2 + 4HF$	(4) XeF ₄ + O ₂ F ₂ -	$\rightarrow XeF_6 + O_2$		
		ONL	INE JEE-MAIN			
1.	Dissolving 120 g The molarity of th (1) 1.00 M	of a compound of (mol. w ne solution is : (2) 2.00 M	/t. 60) in 1000 g of water [JEE(Main) 201 4 (3) 2.50 M	gave a solution of density 1.12 g/mL. 4 Online (09-04-14), 4/120] (4) 4.00 M		
2.	The amount of o: (1) 115.2 g	kygen in 3.6 moles of wat (2) 57.6 g	er is : [JEE(N (3) 28.8 g	/lain) 2014 Online (09-04-14), 4/120] (4) 18.4 g		
3.	A gaseous comp the compound re	ound of nitrogen and hyc lative to hydrogen is 16.	Irogen contains 12.5% (I The molecular formula of	by mass) of hydrogen. The density of f the compound is :		
	(1) NH ₂	(2) N ₃ H	(3) NH ₃	(4) N_2H_4		
4.	The amout of BaSO ₄ formed upon mixing 100 mL of 20.8% BaCl ₂ solution with 50 mL of 9.8% H ₂ SO ₄ solution will be : (Ba = 137, Cl = 35.5, S = 32, H = 1 and O = 16) :					
	(1) 23.3 g	(2) 11 65 g	(3) 30 6 g	in) 2014 Online (12-04-14), 4/120] (4) 33.2 g		
5	How many electr	ons are involved in the fo	llowing redox reaction ?	(1) 00.2 g		
5.				/lain) 2014 Online (19-04-14), 4/120]		
	Cr ₂ O ₇ ²⁻ - (1) 3	$+ Fe^{2+} + C_2O_4^{2-} \rightarrow Cr^{3+} +$ (2) 4	(3) 6	(4) 5		
6.	Amongst the follo	owing, identify the species	s with an atom in +6 oxid	ation state :		
	(1) [MnO₄]⁻	(2) [Cr(CN) ₆] ³⁻	[JEE(Ma (3) Cr ₂ O ₃	ain) 2014 Online (19-04-14), 4/120] (4) CrO ₂ Cl ₂		

MOLE CONCEPT

7.	A sample of a hydrate of barium chloride weighing 61 g was heated until all the water of hydration is removed. The dried sample weighed 52 g. The formula of the hydrated salt is: (atomic mass, Ba = 137 amu, Cl = 35.5 amu) [JEE(Main) 2015 Online (10-04-15), 4/120]							
	(1) BaCl ₂ + H ₂ O	(2) BaCl ₂ + 4H ₂ O	(3) BaCl ₂ + 3H ₂ O	(4) BaCl ₂ + 2H ₂ O				
8.	$A + 3B + 3C \iff AB_2C_3$ Reaction of 6.0 g of A, 6.0×10^{23} atoms of B, and 0.036 mol of C yields 4.8 g of compound AB_2C_3 . If the atomic mass of A and C are 60 and 80 amu, respectively, the atomic mass of B is (Avogadro no. = 6 × 10^{23}):[JEE(Main) 2015 Online (11-04-15), 4/120](1) 50 amu(2) 60 amu(3) 70 amu(4) 40 amu							
9.	The non-metal that doe	The non-metal that does not exhibit positive oxidation state is :						
	[JEE(Main) 2016 Online (09-04-16), 4/120]							
10.	(1) Fluorine5 L of an alkane requir constant temperature a(1) Butane	 (2) Oxygen res 25 L of oxygen for its nd pressure, the alkane it (2) Isobutane 	 (3) Chlorine s complete combustion. is ; [JEE(Main) 20 (3) Ethane 	 (4) lodine If all volumes are measured at 016 Online (09-04-16), 4/120] (4) Propane 				
11.	An organic compound contains C, H and S. The minimum molecular weight of the compound8% sulphur is: (atomic weight of S = 32 amu)[JEE(Main) 2016 Online (09-04-1)(1) 300 g mol ⁻¹ (2) 400 g mol ⁻¹ (3) 200 g mol ⁻¹ (4) 600 g mol ⁻¹ (4) 600 g mol ⁻¹							
12.	The amount of arsenic pentasulphide that can be obtained when 35.5 g arsenic acid is treated with excess H ₂ S in the presence of conc. HCI (assuming 100% conversion)							
	(1) 0.25 mol	(2) 0.125 mol	(3) 0.333 mol	(4) 0.50 mol				
13.	Excess of NaOH (aq) was added to 100 mL of FeCl ₃ (aq) resulting into 2.14 g of Fe(OH) ₃ . The molarity of FeCl ₃ (aq) is : [JEE(Main) 2017 Online (08-04-17), 4/120] (Given molar mass of Fe = 56 g mol ⁻¹ and molar mass of Cl = 35.5 g mol ⁻¹) (1) 1.8 M (2) 0.2 M (3) 0.6 M (4) 0.3 M							
14.	The pair of compounds	The pair of compounds having metals in their highest oxidation state is :						
	(1) MnO ₂ and CrO ₂ Cl ₂ (3) [Fe(CN) ₆] ^{3–} and [Cu	ı(CN)4]²−	(2) $[FeCl_4]^-$ and Co_2O_3 (4) $[NiCl_4]^{2-}$ and $[CoCl_4]^{2-}$					
PA	ART - II : JEE (AD	VANCED) / IIT-JE	EE PROBLEMS (F	PREVIOUS YEARS)				
1.	An aqueous solution of 6.3 g oxalic acid dihydrate is made up to 250 mL. The volume of 0.1 N NaOF required to completely neutralise 10 mL of this solution is : [JEE-2001(S), 1/35] (A) 40 mL (B) 20 mL (C) 10 mL (D) 4 mL							
2.	The reaction, 3CIO ⁻ (ac (A) oxidation reaction (C) disproportionation re	ı) → ClO₃⁻ (aq) + 2Cl⁻ (a eaction	a) is an example of :[JEE-2001(S), 1/35](B) reduction reaction(D) decomposition reaction					
3.	How many moles of ele	ctron weigh one kilogran	n :	[JEE-2002(S), 3/90]				
	(A) 6.023 × 10 ²³	(B) $\frac{1}{9.108} \times 10^{31}$	(C) $\frac{6.023}{9.108} \times 10^{54}$	(D) 9.108×6.023 × 10 ⁸				
4.	Which has maximum no (A) 24 g of C (12)	umber of atoms : (B) 56 g of Fe (56)	(C) 27 g of Al (27)	[JEE-2003(S), 3/84] (D) 108 g Ag (108)				

5.	Amongst the following, the pair having both the metals in their highest oxidation state is :						
	[JEE-2004(S), 3/84]						
	(A) [Fe(CN) ₆] ³⁻ and [Co(CN) ₆] ³⁻		(B) CrO ₂ Cl ₂ and MnO ₄ -				
	(C) TiO ₂ and MnO_2		(D) [MnCl ₄] ²⁻ and [NiF ₆] ²⁻				
6.	Given that the abundances of isotopes ⁵⁴ Fe, ⁵⁶ Fe and ⁵⁷ Fe are 5%, 90% and 5%, respectively, the atomic mass of Fe is : [JEE-2009, 3/160]						
	(A) 55.85	(B) 55.95	(C) 55.75	(D) 56.05			
7.	Dissolving 120 g of urea (mol. wt. 60) in 1000 g of water gave a solution of density 1.15 g/mL. The molarity of the solution is : [JEE 2011, 3/160]						
	(A) 1.78 M	(B) 2.00 M	(C) 2.05 M	(D) 2.22 M			
8.	The order of the oxidation state of the phosphorus atom in H ₃ PO ₂ , H ₃ PO ₄ , H ₃ PO ₃ , and H ₄ P ₂ O ₆ is [JEE 2017, 3/160]						
	(A) H ₃ PO ₄ > H ₃ PO ₂ > H	3PO3 > H4P2O6	(B) $H_3PO_4 > H_4P_2O_6 > H_3PO_3 > H_3PO_2$				
	(C) $H_3PO_2 > H_3PO_3 > $	$I_4P_2O_6 > H_3PO_4$	(D) $H_3PO_3 > H_3PO_2 > H_3PO_4 > H_4P_2O_6$				

MOLE CONCEPT

	Answers									
EXERCISE - 1										
A-1. A-6. A-11. B-5.№ B-10. D-1. D-1. D-6. D-11. E-4. F-2. G-3. G-8. G-13.	(2) (1) (1) (1) (1) (1) (1) (4) (2) (3) (2) (1) (3) (4) (4) (4) (2)	A-2. A-7. A-12. B-1. B-6. C-1. D-2. D-7. D-12. E-5 F-3. G-4. G-9. G-14.	 (1) (4) (3) (2) (2) (4) (2) (2) (2) (2) (2) (2) (2) (3) (4) (4) (4) 	A-3. A-8. A-13. B-2. B-7. C-2. D-3. D-8. E-1. E-6. F-4. G-5. G-10. G-15.	(3) (4) (1) (2) (3) (2) (4) (2) (2) (1) (2) (3) (3) (3) (1) (2) (3) (3) (1) (2) (3) (3) (1) (2) (3) (3) (1) (2) (3) (3) (3) (1) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	A-4. A-9. A-14. B-3. B-8. C-3. D-4. D-9. E-2. E-7. G-1. G-1. G-6. G-11. G-16.	 (2) (2) (4) (3) (4) (4) (3) (1) (1) (2) (1) (2) (2) 	A-5. A-10. A-15. B-4. B-9. C-4. D-5. D-10. E-3. F-1. G-2. G-7. G-12. G-17.	 (3) (1) (2) (1) (3) (3) (2) (2) (1) (1) (1) (3) (2) (2) (3) (2) (3) 	
G-18. H-4. I-1. I-6.	(3) (4) (1) (2)	G-19. H-5. I-2. I-7.	(2) (2) (4) (2)	H-1. H-6. I-3.	(4) (3) (3)	H-2. H-7. I-4.	(2) (3) (2)	H-3. H-8. I-5.	(4) (3) (4)	
EXERCISE - 2										
1. 6. 11. 16. 21.	 (4) (3) (1) (4) (2) 	2. 7. 12. 17. 22.	 (2) (4) (2) (1) (3) 	3. 8. 13. 18. 23.	 (4) (2) (2) (3) (3) 	4. 9. 14. 19.	 (3) (1) (1) (4) 	5. 10. 15. 20.	 (4) (3) (1) (1) 	
				EXER	CISE - 3	3				
PART - I OFFLINE JEE-MAIN										
1. 6. 11. 16. 21.	 (1) (2) (3) (4) (4) 	2. 7. 12. 17. 22.	 (3) (1) (4) (1) (1) 	3. 8. 13. 18. 23.	(4) (2) (1) (3) (2)	4. 9. 14. 19. 24.	 (1) (1) (3) (4) (4) 	5. 10. 15. 20.	(4) (2) (1) (2)	
1. 6. 11.	(2) (4) (2)	2. 7. 12.	(2) (4) (2)	3. 8. 13. PAF	(4) (1) (2) RT - II	4. 9. 14.	(2) (1) (3)	5. 10.	(3) (4)	
1. 6.	(A) (B)	2. 7.	(C) (C)	3. 8.	(D) (B)	4.	(A)	5.	(B)	