Exercise-1

Marked Questions may have for Revision Questions.

E

OBJECTIVE QUESTIONS

Section (A) : Calculation related to nucleus

A-1.	fraction of atom is occupied by nucleus?					
	(1) 10 ⁻²⁰	(2) 10 ⁻¹⁵	(3) 10 ⁻¹²	(4) None		
A-2.ᡭ	(1) it contains electrons	ement is not necessarily s, protons and neutrons r considered indivisible	whole number because (2) it contains allotropic (4) it contains isotopes			
A-3.	The charge on the ator (1) + 1	m having 17 protons, 18 (2) – 1	neutrons and 18 electrons is $(3) - 2$ (4) zero			
A-4.	Which of the following (1) Na ⁺ and Ne	are isoelectronic with on (2) K ⁺ and O	e another ? (3) Ne and O	(4) Na ⁺ and K ⁺		
A-5.	Millikan's oil drop expri (1) e/m ratio of an elec (3) Mass of an electron	ctron	(2) Charge on an electron(4) Velocity of an electron			
A-6.	Which of the following (1) NO	is isoelectronic with N ₂ O (2) N ₂ O ₅	: (3) CO ₂	(4) CO		
A-7.	The e/m is not constan (1) Cathode rays	t for : (2) Positive rays	(3) α-rays	(4) β-rays		
A-8.è	Which one of the follow	ving pairs represents isol	oars -			
	(1) ${}_{2}He^{3}$ and ${}_{2}He^{4}$ (3) ${}_{19}K^{40}$ and ${}_{19}K^{39}$		(2) 12Mg ²⁴ and 12Mg ²⁵ (4) 19K ⁴⁰ and 18Ar ⁴⁰			
A-9.	Cathode rays are made	e up of				
	(1) Positively charged particles(3) Neutral particles		(2) Negatively charged particles(4) None of these			
A-10.	 Cathode rays have (1) Mass only (3) No mass and charge 		(2) Charge only (4) Mass and charge both			
A-11.	Which one of the following pairs is not correctly (1) Rutherford-Proton (3) J.H. Chadwick-Neutron		y matched (2) J.J. Thomsom-Electron (4) Bohr-Isotope			
A-12.	.,		(2) Nature of gas(4) All the above			

CHEMISTRY FOR JEE Exercise-1 The ratio of the "e/m" (specific charge) values of a electron and an α -particle is -A-13. (1) 2 : 1(2) 1 : 1 (3) 1 : 2 (4) None of these A-14. The positive charge of an atom is (1) Spread all over the atom (2) Distributed around the nucleus (3) Concentrated at the nucleus (4) All of these A-15. The mass of an atom is constituted mainly by (1) Neutron and neutrino (2) Neutron and electron (3) Neutron and proton (4) Proton and electron A-16. Neutrons are found in atoms of all elements except in (1) Chlorine (2) Oxygen (3) Argon (4) Hydrogen A-17. Six protons are found in the nucleus of (1) Boron (2) Lithium (3) Carbon (4) Helium A-18. When atoms are bombarded with alpha particles, only a few in million suffer deflection, others pass out undeflected. This is because (1) The force of repulsion on the moving alpha particle is small (2) The force of attraction on the alpha particle to the oppositely charged electrons is very small (3) There is only one nucleus and large number of electrons (4) The nucleus occupies much smaller volume compared to the volume of the atom Section (B) : Quantum theory of light and photoelectric Effect B-1. AIR service on Vividh Bharati is transmitted on 219 m band. What is its transmission frequency in Hertz? (2) 1.9 × 10⁶ Hz (3) 1 × 10⁶ Hz (4) 6.5×10^{6} Hz (1) 1.3×10^{6} Hz

B-2. If 10^{-17} J of light energy is needed by the interior of human eye to see an object. The number of photons of green light ($\lambda = 550$ nm) needed to see the object are : (1) 27 (2) 28 (3) 29 (4) 30

B-3. Which of the following statements is false :

:

- (1) The energy of red photon is more than the energy of violet photon
- (2) The momentum of photon is inversely proportional to its wave length
- (3) The energy of a photon is inversely proportional to its wave length
- (4) The particle nature of electromagnetic radiations is able to explain the photoelectric effect
- **B-4.** Light of wavelength λ falls on metal having work function hc/ λ_0 . Photoelectric effect will take place only if

(1) $\lambda \ge \lambda_0$ (2) $\lambda \ge 2\lambda_0$ (3) $\lambda \le \lambda_0$	(4) λ <u><</u> λ ₀ /2
--	-------------------------------------

B-5. A photon in X region is more energetic than in the visible region ; X is : (1) IR (2) UV (3) Microwave (4) Radio wave

B-6. A bulb of 40 W is producing a light of wavelength 620 nm with 80% of efficiency then the number of photons emitted by the bulb in 20 seconds are $(1eV = 1.6 \times 10^{-19} \text{ J}, \text{ hc} = 12400 \text{ eV} \text{ Å})$ (1) 2×10^{18} (2) 10^{18} (3) 10^{21} (4) 2×10^{21}

)				
B-7.¤̀ B-8.	 Which one of the following is not the characteristic of Planck's quantum theory of radiation- (1) The energy is not absorbed or emitted in whole number multiple of quantum. (2) Radiation is associated with energy. (3) Radiation energy is not emitted or absorbed continously but in the form of small packets called quanta. (4) This magnitude of energy associated with a quantum is proportional to the frequency. Calculate the frequency of a photon of wavelength 4000 Å 					
		(2) 7.5 × 10 ⁻¹⁶ s ⁻¹	•	(4) 6.5 × 10 ⁻¹⁵ s ⁻¹		
B-9.	Calculate the waveleng (1) 6.204 × 10 ⁻⁷ m		n energy of 2 electron vol (3) 6.204 × 10 ⁻⁹ m	t (4) 6.204 × 10 ^{–8} m		
B-10.	Photoelectric effect is r (1) Cs	naximum in : (2) Na	(3) K	(4) Li		
B-11.ൔ		sonance imaging) body ength corresponding to th (2) 0.75 cm		als operate with 400 MHz radio (4) 2 cm		
B-12.	Photon of which light h (1) red	as maximum energy : (2) blue	(3) violet	(4) green		
Section	on (C) : Bohr Mode	I				
C-1.ൔ	The ionization energy (be: (1) 84.2 × 10^{-18} J/atom (3) 63.2 × 10^{-18} J/atom		atom ⁻¹ . The energy of the (2) 44.10 × 10 ⁻¹⁸ J/ator (4) 21.2 × 10 ⁻¹⁸ J/atom			
C-2.	Energy required to pull		orbit of hydrogen atom to	ydrogen atom to infinity is 100 units. The amount to infinity is :		
C-3.	The ionization energy of (1) 54.4 eV	of H-atom is 13.6 eV. The (2) 122.4 eV	e ionization energy of Li⁺ (3) 13.6 eV	² ion will be : (4) 27.2 eV		
C-4.ங	-	-	•	e the largest amount of energy ? (4) From n = 3 to n = 5		
C-5.ൔ	 What is likely to be orbit number for a circular orbit of diameter 20 nm of the hydrogen atom if we assume Bohr orbit to be the same as that represented by the principal quantum number? (1) 10 (2) 14 (3) 12 (4) 16 					
C-6.	If velocity of an electron (1) V	n in I orbit of H atom is V (2) V/3	/, what will be the velocity (3) 3 ∨	y of electron in 3 rd orbit of Li ⁺² (4) 9 V		
C-7.⊫̀	Match the following (A) Energy of ground s (B) Potential energy of (C) Kinetic energy of II	I orbit of H-atom	(i) + 6.04 eV (ii) −27.2 eV (iii) 54.4 V			

CHE	MISTRY FOR JEE				
	Exercise	-1 =====			
	(D) Ionisation potential (1) A – (i), B – (ii), C – (3) A – (iv), B – (ii), C –	(iii), D – (iv)	(iv) – 54.4 eV (2) A – (iv), B – (iii), C (4) A – (ii), B – (iii), C -		
C-8.	S ₃ : Number of waves	ng out of any light sourc present in unit length is	e is integral multiple of er wave number. ependent of the nature of (3) F T T T		
C-9.ൔ	S_2 : When an electron S_3 : When an electron increases.	make transition from hig make transtition from	her orbit to lower orbit it	the decrease in distance. s kinetic energy increases. energy state its potential energy ion. (4) F F F F	
C-10.	If r_1 is the radius of the terms of r_1 are : (1) r_1^2 , r_1^3 , r_1^4	e first orbit of hydrogen (2) 8r1, 27r1, 64r1		second, third and fourth orbits in (4) 2r ₁ , 6r ₁ , 8r ₁	
C-11.	 Bohr's model can explain : (1) The spectrum of hydrogen atom only (2) The spectrum of atom or ion containing one electron only (3) The spectrum of hydrogen molecule only (4) The solar spectrum 				
C-12.	If electron falls from na (1) 10.2 eV	= 3 to n = 2, then emitter (2) 12.09 eV	d energy is : (3) 1.9 eV	(4) 0.65 eV	
C-13.	The maximum energy (1) Nucleus (3) First excited state	is present in any electro	n at (2) Ground state (4) Infinite distance fro	m the nucleus	
Secti	on (D) : Spectrum				
D-1.⊾		velength of the Lyman s Balmer series of the hyc (2) 912 × 2 Å		oms is 912Å, then the series limit (4) 912/2 Å	
D-2.ൔ		()	nen series when R _H = 10 (3) 1127.30 Å	()	
D-3.è⊾	According to Bohr's the (1) 2.5 h/π	eory, the angular mome (2) 5 h/π	ntum for an electron in 5 ^t (3) 25 h/π	^h orbit is : (4) 5π /2h	
D-4.	Transition of an electro	on from n = 3 to n = 1 lev (2) band spectrum	vel results in (3) infrared spectrum	(4) X-ray spectrum	
D-5.	If r is the radius of first	orbit, the radius of n th or	bit of H atom is given by	-	

CHE	MISTRY FOR JEE					
	Exercise	-1				
	(1) r n	(2) r n ²	(3) r/n	(4) r ² n ²		
D-6.	The radius of hydrogen in ground state will be (1) 1.06 Å		Å. In normal state the ra	adius of Li ²⁺ (atomic number = 3) (4) 0.53 Å		
D-7.	. ,		ogen atom from its groun (3) – 13.6 eV	()		
D-8.⊾	The separation energy excited state –	of the electron present i	n the shell n = 3 is $1.51 e$	eV. What is the energy in the first		
	(1) –1.51 eV	(2) –3.4 eV	(3) +1.51 eV	(4) +3.4 eV		
D-9.	The wavelength of a s	pectral line for an electro	onic transition is inversel	y related to :		
	 (1) number of electrons undergoing transition (2) the nuclear charge of the atom (3) the velocity of an electron undergoing transition (4) the difference in the energy levels involved in the transition 					
D-10.⊉		n electrons make transit ons, then number of lines (2) 5		te to ground state, producing all (4) 3		
D-11.ւ̀≊	Calculate wavelength	of 3 rd line of Bracket serie	es in hydrogen spectrum			
	(1) ⁷⁸⁴ / _{33R}	(2) ^{33R} / ₇₈₄	(3) ^{784R} / ₃₃	(4) ³³ / _{784R}		
D-12.	In Balmer series of hyd (1) Fifth Bohr orbit to s (3) Fourth Bohr orbit to	econd one	hich electronic transition (2) Fifth Bohr orbit to fi (4) Fourth Bohr orbit to	irst one		
D-13 .	-		to satisfy the expression	for the energy change. ΔE (in		
	$\Delta E =$ joules) such that lines correspond to Pa (1) n ₁ = 1 and n ₂ = 2, 3 (3) n ₁ = 1 and n ₂ = 3, 4	schen series to 5, 4	here n ₁ = 1, 2, 3 and (2) n ₁ = 3 and n ₂ = 4, 5 (4) n ₁ = 2 and n ₂ = 3, 3			
D-14.è	Calculate the waveleng (1) 6656 Å	gth of 1 st line of Balmer s (2) 6266 Å	eries in Hydrogen spect (3) 6626 Å	rum. (4) 6566 Å		
D-15.	Different lines in Lyma (1) ultraviolet	n series of hydrogen spe (2) infrared	ectrum lie in (3) visible	(4) none of these		

Exercise-1

D-16. The transition of the electron in hydrogen atom from the fourth to first energy shell emits a spectral line which falls in following series.

(1) Lyman	(2) Balmer	(3) Pashen	(4) Bracket

D-17.№ When an electron in an excited hydrogen atom jumps from an energy level for which n = 5 to a lower level for which n = 2, the spectral line is observed in theregion and inseries of the hydrogen spectrum.
(1) Visible, Balmer
(2) Visible, lyman
(3) Infrared, lyman
(4) Infrared, Balmer

D-18. Which of the following transition is correct for Balmer series ? (1) $3 \rightarrow 1$ (2) $1 \rightarrow 2$ (3) $4 \rightarrow 2$ (4) $2 \rightarrow 4$

Section (E) : De broglie wavelength & Uncertainity principle

- E-1. What possibly can be the ratio of the de Broglie wavelengths for two electrons each having zero initial energy and accelerated through 50 volts and 200 volts ?
 (1) 3 : 10
 (2) 10 : 3
 (3) 1 : 2
 (4) 2 : 1
- **E-2.** The speed of a proton is one hundredth of the speed of light in vacuum. What is its de-Broglie wavelength? Assume that one mole of protons has a mass equal to one gram.

					[h	i = 6.6	626 ×	10-27	erg sec] :
(1) 13.31 × 10 ⁻⁷ Å	Å (2) 1.33 × 10 ^{−3} /	Å (3)) 13.13 × 10)−5 Å	(4	l) 1.3′	1 × 10)−² Å	
An a-particle is	accelerated through	a notontial	difference	of V	volte	from	roct	Tho	do-Broalio'

E-3. An α-particle is accelerated through a potential difference of V volts from rest. The de-Broglie's wavelength associated with it is

150 %	0.286 _Å	0.101 _Å	0.983 _Å
(1) $\sqrt{\frac{150}{V}}$ Å	(2) $\frac{0.286}{\sqrt{V}}$ Å	(3) $\frac{0.101}{\sqrt{V}}$ Å	(4) $\frac{0.983}{\sqrt{V}}$ Å

E-4. The uncertainity in position and velocity of a particle are 10^{-10} m and 5.27×10^{-24} ms⁻¹ respectively. Calculate the mass of the particle (h = 6.625×10^{-34} Joule sec.) (1) 0.099 Kg (2) 0.089 Kg (3) 0.99 Kg (4) Can not predict

E-5. It the uncertainity in position of a moving particle is 0 then find out ΔP (1) 0 (2) 1 (3) \propto

(4) Can not predict

(4) SO₂

E-6. The de Broglie equation suggests that an electron has
(1) Particle nature
(2) Wave nature
(3) Particle-wave nature
(4) Radiation behaviour

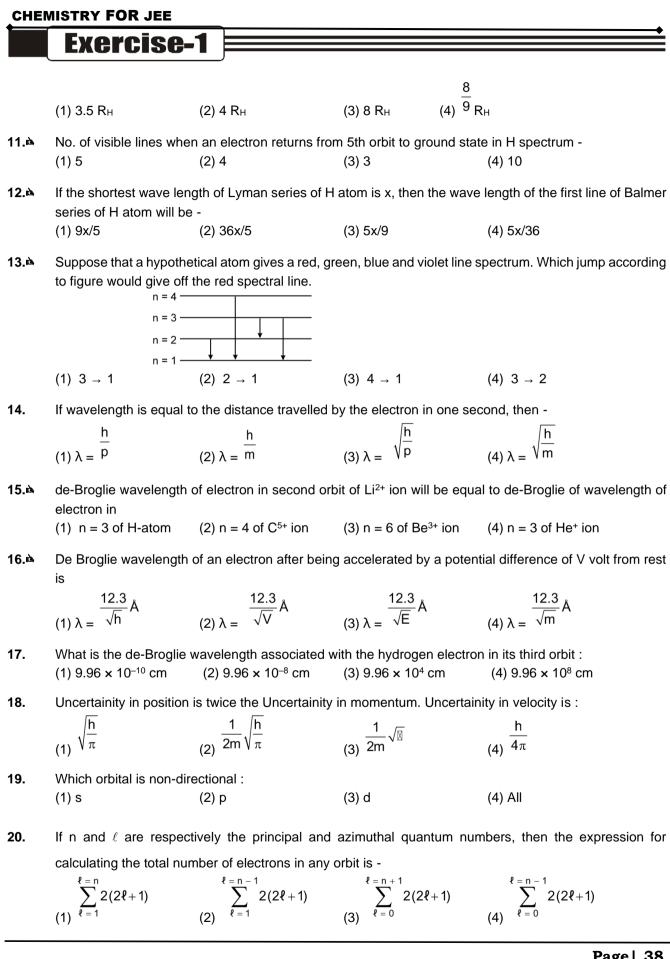
E-7. The Uncertainity in the momentum of an electron is 1.0×10^{-5} kg m s⁻¹. The Uncertainity in its position will be: (h = 6.626×10^{-34} Js) (1) 1.05×10^{-28} m (2) 1.05×10^{-26} m (3) 5.27×10^{-30} m (4) 5.25×10^{-28} m

- **E-8.** Which of the following has least de Broglie λ (1) e⁻ (2) p (3) CO₂
- **E-9.** A helium molecule is moving with a velocity of 2.40 x 10² ms⁻¹ at 300k. The de-Broglie wave length is about
 - (1) 0.416 nm (2) 0.83 nm (3) 803 Å (4) 8000 Å

Exercise-1

E-10.	E-10. In H-atom, if 'x' is the radius of the first Bohr orbit, de Broglie wavelength of an electron in 3 rd orbit is :					
			(3) $\frac{9x}{2}$	x		
	(1) 3 π x	(2) 6 π x	(3) 2	(4) $\frac{x}{2}$		
E-11.內	The wavelength of a ch it is accelerated :	narged particle	the square root of the p	potential difference through which		
	(1) is inversely proporti(3) is independent of	onal to	(2) is directly proportion(4) is unrelated with	onal to		
E-12.	A ball weight 25 g mov	es with a velocity of 6.6	× 10 ⁴ cm/sec then find c	out the de Broglie wavelength.		
	(1) 0.4 × 10 ^{−33} cm	(2) 0.4 × 10 ^{−31} cm	(3) 0.4 × 10 ^{−30} cm	(4) 0.4 × 10 ²⁰ cm		
E-13.	Calculate the uncertain the order of 1 Å (h = 6.		t ball of mass 150 g if tl	ne uncertainity in its position is of		
	(1) 3.499 × 10 ⁻²⁴ ms ⁻¹	(2) 3.499 × 10 ⁻²¹ ms ⁻¹	(3) 3.499 × 10 ⁻²⁰ ms ⁻¹	(4) 3.499 × 10 ⁻³⁰ ms ⁻¹		
E-14.	The de-Broglie equatio	n applies				
	 To electrons only To protons only 		(2) To neutrons only(4) All the material obj	ect in motion		
E-15.	The uncertainty in mon = 6.62×10^{-34} kg-m ² /s)		1 × 10 ⁻⁵ kg-m/s. The un	certainty in its position will be : (h		
	ų,	(2) 1.05 × 10 ⁻²⁶ m	(3) 5.27 × 10 ^{−30} m	(4) 5.27 × 10 ⁻²⁸ m		

Section (F) : Quantum numbers & Electronic configuration


F-1.					L	
	(1) $\frac{h}{4\pi}$	(2) zero	(3) $\frac{n}{2\pi}$. (4)	$\sqrt{2} \frac{n}{2\pi}$	
F-2.	Which of the following (1) $n = 3$, $l = 2$, $m = -2$ (3) $n = 2$, $l = 2$, $m = +1$	2, s = +1/2	numbers	are permitted (2) n = 3, <i>l</i> = 2, m = (4) n = 2, <i>l</i> = 2, m =	-	
F-3.	A given orbital is labele (1) s - orbital	ed by the magne (2) p-orbital	tic quan	tum number m = -1. 7 (3) d-orbital	his could not be (4) f-orbital	
F-4.₾	Magnetic quantum number specifies - (1) Size of orbitals (3) Orientation of orbitals			(2) Shape of orbitals (4) Nuclear stability		
F-5.	For the energy levels in an atom which one of the following statements is correct : (1) The 4s sub-energy level is at a higher energy than the 3d sub-energy level					

- (2) The second principal energy level can have five orbitals and contain a maximum of 10 electrons
- (3) The M-energy level can have maximum of 32 electrons
- (4) None of these

F-6.	Which of the following represents the correct set of quantum numbers of a 4d electron ?					
	(1) 4, 3, 2, + 2	(2) 4, 2, 1, 0	(3) 4, 3, -2 , $+\frac{1}{2}$	(4) 4, 2, 1, $-\frac{1}{2}$		
F-7.⊾̀	A p-orbital can accom (1) 4 electrons (3) 2 electrons with pa		(2) 6 electrons (4) 2 electrons with op	posite spins		
F-8.	An orbital containing e (1) 3s orbital	electron having quantum (2) 3p orbital	number n = 4, <i>l</i> = 3, m = (3) 4d orbital	0 and s = $-\frac{1}{2}$ is called (4) 4f orbital		
F-9.ൔ	The maximum numbe	r of electrons in a subshe	ell is given by the expres	sion		
	(1) 4ℓ − 2	(2) 4ℓ + 2	(3) 2ℓ + 2	(4) 2 <i>n</i> ²		
F-10.	The electrons present (1) principal quantum (3) magnetic quantum		ll differ in (2) azimuthal quantum (4) spin quantum num			
F-11.മ	Magnetic moment of respectively are :(1) 4, 2	X^{n+} (Z = 26) is $\sqrt{24}$ B.N (2) 2, 4	 Hence number of un (3) 3, 1 	paired electrons and value of n (4) 0, 2		
F-12.è	For an electron, with r	n = 3 has only one radial	node. The orbital angul	ar momentum of the electron will		
	(1) 0	(2) $\sqrt{6} \frac{h}{2\pi}$	(3) $\sqrt{2} \frac{h}{2\pi}$	$(4) 3^{\left(\frac{h}{2\pi}\right)}$		
F-13.	The maximum numbe (1) 10	r of 3d-electrons having s (2) 14	spin quantum number s = (3) 5	= +1/2 are - (4) None of these		
F-14.ঐ	In which $(n + \ell)$ rules r		(-) -	()		
	(1) Cu, Cr	(2) Cu, Zn	(3) Ag, Zn	(4) All of these		
F-15.	The quantum numbers $\frac{1}{2}$ = + $\frac{1}{2}$. The atoms is :	s for the outermost electr	on of an element are give	en below as n = 2, l = 0, m = 0, s		
	(1) Lithium	(2) Beryllium	(3) Hydrogen	(4) Boron		
F-16.໖	An element has the ele	ctronic configuration 1s ² , (2) 2	2s ² 2p ⁶ , 3s ² 3p ² . Its vale (3) 3	ency electrons are : (4) 4		
F-17.	The number of orbitals	s in 2p sub-shell is :				
			(0)			
	(1) 6	(2) 2	(3) 3	(4) 4		

CHE	MISTRY FOR JEE			
	Exercise -	.1		•
F-19.	-	principles/rules limits th		f electrons in an orbital to two [CBSE PMT 1989]
	(1) Aufbau principle(3) Hund's rule of maximum	mum multiplicity	(2) Pauli's exclusion (4) Heisenberg's ur	
	Exercise	-2		
🖻 Mar	ked Questions may hav	/e for Revision Questi	ons.	
	F	PART - I : OBJE	CTIVE QUESTIC	DNS
1.	For $\ell = 1$, $n = 3$ the contrast of $\ell = 1$, $n = 3$ the contrast of $\ell = 1$.	rresponding orbitals are	9 -	
	(1) s, p _x , p _y	(2) s, p _z , p _y	(3) s , p _x , d _{xy}	(4) p _x , p _y , p _z
2.	A sodium cation has di (1) O ^{2–}	fferent number of electr (2) F [_]	rons from : (3) Li+	(4) Al ³⁺
3.	Number of electrons in (1) 22	-CONH ₂ is : (2) 24	(3) 20	(4) 28
4.	If the atomic weight of an element is 23 times that of the lightest element and it has 11 protons, th contains : (1) 11 protons, 23 neutrons, 11 electrons (3) 11 protons, 12 neutrons, 11 electrons (4) 11 protons, 11 neutrons, 23 electrons			
5.¤	A photon of 300 nm is a nm then the wavelengt (1) 759			s. One photon has a wavelength 496 (4) 659
6.ൔ	If the energy of an elec required to excite the e (1) 328 kJ/mol		• • •	, –1312/n² kJ mol⁻¹, then the energy (4) 1312 kJ/mol
7.	The ionization energy ((1) - 54.4 ev and - 12.2 (3) 54.4 ev and 122.4	ev	at will be ionization er (2) 122.4 ev and 5 (4) 12.1 ev and 13	
8.¤	The frequency correspo (1) 15.66 × 10 ¹⁰ Hz	onding to transition n = $(2) 24.66 \times 10^{14} \text{ Hz}$	2 to n = 1 in hydroger (3) 30.57 × 10 ¹⁴ Hz	
9.ൔ	The difference between Li ²⁺ ion is :	n the wave number of 1	st line of Balmer serie	s and last line of paschen series for
	$\frac{R}{22}$	<u>5R</u>		$(4) \frac{R}{4}$
	(1) 36	(2) 36	(3) 4R	(4) 4
10. ₪		electromagnetic radiatio	•	ransition of electron in between two erence is 2 is :

Page | 37

Page | 38

21.		np orbital + 1) s	s are fil		next orbital filled + 2) p	will be : (3) (n -	+ 1) d		(4) (n	ı + 2) s	i	
22.🖎	Which	of the a	bove st	atement	: (s) is/are <u>false.</u>							
	I. Orb	ital angu	lar mor	nentum	of the electron h	-	= 5 and <u>h</u>	having	y value c	of the a	azimuthal	quantum
				•	ciple quantum nu last valence she	mber is	π.	he pos	sible ato	mic nu	mber ma	y be 12 or
	13. 7											
	$\frac{7}{2}$ III. Total spin of electrons for the atom ₂₅ Mn is $\pm \frac{7}{2}$. IV. Spin magnetic moment of inert gas is 0											
	(1) I, I	I and III		(2) II	and III only		(3) I a	nd IV o	nly		(4) Non	e of these
23.ù	(1) Pr (2) Pr (3) Pr	obability obability	of findir of findir of findir	ng the el ng the el ng the el	lectron along x-ax lectron along y-ax lectron is maximu lectron is zero in x	kis is zero Im along	o. x and y	-axis.				
24.🖎	Match	ı List-I wi	th List-I	I and se	elect the correct a	nswer us	sing the	codes	given be	low the	e lists (ℓ	and m are
	respe	ctively th	e azimu	ithal and	d magnetic quanti	um no.)						
			List-I				List-II					
	. ,				n energy level				(n			
	(B) Va	alue of ℓ f	or a pa	rticular t	type of orbital		(2) + ℓ to $-\ell$ through zero					
	. ,	umber of					(3) 5					
	、		' for a p	particula	r type of orbital		(4) n					
	Code	: A	В	С	D		A	В	С	D		
	(1)	4	1	2	3	(2)	4	1	3	2		
	(3)	1	4	2	3	(4)	1	4	3	2		
25.		en has nined by	the ele	ectronic	configuration 1s	² ,2s ² 2p _x ¹	¹ 2p _y 12p _z	¹ and	not 1s²,	2s²2px	² 2p _y ¹ 2p _z ⁰	' which is
		ıfbau's pr ınd's rule	-			. ,	uli's exc certainty	•	orinciple ple			
26.🖻		odium ato	om the i		of electrons with		ll be :					
	(1) 2			(2) 7		(3) 9			(4) 8			

Exercise-1

- 27. Assertion : Hydrogen has one electron in its orbit but it produces several spectral lines. Reason : There are many excited energy levels available.
 - (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
 - (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
 - $\ensuremath{\textbf{(3)}}$ The assertion is incorrect, but the reason is correct
 - (4) Both are assertion and reason are incorrect
- 28. Assertion : The energy of an electron is largely determined by its principal quantum number.
 Reason : The principal quantum number (n) is a measure of the most probable distance of finding the electron around the nucleus.
 - (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
 - (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
 - (3) The assertion is incorrect, but the reason is correct
 - (4) Both are assertion and reason are incorrect

Exercise-3

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

OFFLINE JEE-MAIN

1.	Which of the following	ions has the maximum r	nagnetic moment?	[AIEEE 2002, 3/225]
	(1) Mn ²⁺	(2) Fe ²⁺	(3) Ti ²⁺	(4) Cr ²⁺
2.	Energy of H-atom in th	ne ground state is -13.6 e	eV, hence energy in the	second excited state is : [AIEEE 2002, 3/225] [AIEEE 2002, 3/225]
	(1) – 6.8 eV	(2) – 3.4 eV	(3) – 1.51 eV	(4) - 4.53 eV
3.	Uncertainity in positior is: (plank's constant, h		pace is 10 ⁻¹⁵ m. Hence,	Uncertainity in velocity (m.sec ⁻¹) [AIEEE 2002, 3/225]
	(1) 2.1 × 10 ⁻¹⁸	(2) 2.1 × 10 ⁻³⁴	(3) 0.5 × 10 ⁻³⁴	(4) 5.0 × 10 ⁻²⁴
4.	The de-Broglie wavele (planck's constant, h =	•	• •	elocity of 10 m/s is approximately. E 2003, 3/225]
	(1) 10 ^{−33} m	(2) 10 ⁻³¹ m	(3) 10 ⁻¹⁶ m	(4) 10 ⁻²⁵ m
5.		of hydrogen spectrum, th it jumps of the electron fo		end corresponds to which one of of hydrogen ? [AIEEE 2003, 3/225]
	(1) 3→ 2	(2) 5 → 2	(3) 4 → 1	$(4) 2 \rightarrow 5$
6.	The numbers of d-elec (1) 3	ctrons retained in Fe ²⁺ (a (2) 4	tomic number Fe = 26) id (3) 5	en is [AIEEE 2003, 3/225] (4) 6

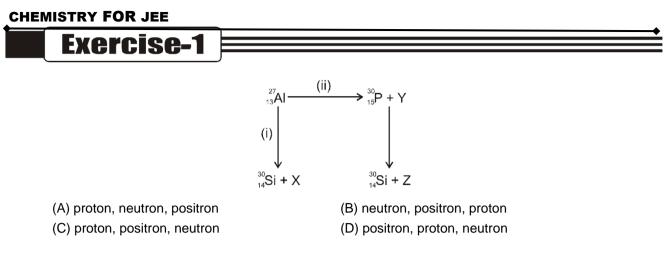
7.	The orbital angular m momentum for an s-ele $\frac{1}{(1)} + \frac{1}{2} \cdot \frac{h}{2\pi}$	nomentum for an electro ectron will be given by (2) Zero	on revolving in an orbit (3) $\frac{h}{2\pi}$	is given by $\sqrt{\ell(\ell+1)} \frac{h}{2\pi}$. This [AIEEE 2003, 3/225] (4) $\sqrt{2} \cdot \frac{h}{2\pi}$
8.	(At. nos. : Cs-55, Br-3	wing groupings represent 5) (2) N³−, F⁻, Na⁺		[AIEEE 2003, 3/225]
9.	The wavelength of the state 1, would be (Ryd	radiation emitted, when i berg constant = 1.097 ×	n a hydrogen atom elect 10 ⁷ m ⁻¹) [AIEE	ron falls from infinity to stationary E 2004, 3/225]
	(1) 91 nm	(2) 192 nm	(3) 406	(4) 9.1 × 10 ^{–6} nm
10.	Which of the following	set a of quantum numbe	rs is correct for an electr	on in 4f orbital ? [AIEEE 2004, 3/225]
	(1) n = 4, l = 3, m = +4	, s = +1/2	(2) n = 4, l = 4, m = −4	, s = −1/2
	(3) n = 4, l = 3, m = +1	, s = +1/2	(4) n = 3, l=2, m =–2, s	5 = +1/2
11.	Consider the ground so numbers, $\ell = 1$ and 2 a). The numbers of electr	ons with the azimuthal quantum [AIEEE 2004, 3/225]
	(1) 12 and 4	(2) 12 and 5	(3) 16 and 4	(4) 16 and 5
12.	Which of the following	atatamanta in relation to	the hydrogen stom is as	rroat 2
12.	which of the following	statements in relation to	the hydrogen atom is co	[AIEEE 2005, 4½/225]
	(2) 3s and 3p orbitals a(3) 3p orbital is lower i	als all have the same end are of lower energy than n energy than 3d orbital n energy than 3p orbital	•••	
13.		e absence of magnetic ar	•	three quantum numbers will have [AIEEE 2005, 3/225] (iv) n = 3, l = 2, m =1
	(1) (iv) and (v)	(2) (iii) and (iv)	(3) (ii) and (iii)	(4) (i) and (ii)
14.	Uncertainity in the pos	sition of an electron (mas	ss = 9.1 × 10 ⁻³¹ Kg) mov	ving with a velocity 300 m.sec ⁻¹ ,
	·	, will be : $(h = 6.63 \times 10^{-3})$,	[AIEEE 2006, 3/165]
	(1) 19.2 × 10 ^{−2} m	(2) 5.76 × 10 ^{−2} m	(3) 1.92 × 10 ^{−2} m	(4) 3.84 × 10 ^{−2} m
15.	According to Bohr's the	eory, the angular momen	itum to an electron in 5 th	orbit is : [AIEEE 2006, 3/165]
	<u>h</u>	<u>h</u>	<u>h</u>	<u>h</u>
	(1) 25 π	(2) 1.0 <i>π</i>	(3) 10 ^π	(4) 2.5 <i>π</i>

Exercise-1 🗮

	٦)		
16.	The 'spin-only' magne	etic moment [in units of E	Sohr magneton (μ_{β})] of N	i ²⁺ in aqueous solution would be
	(Atomic number : Ni =	= 28)		[AIEEE 2006, 3/165]
	(1) 2.84	(2) 4.90	(3) 0	(4) 1.73
17.	Which of the following	nuclear reactions will ge	enerate an isotope ?	[AIEEE 2007, 3/120]
	(1) Neutron particle ei	mission	(2) Positron emission	
	(3) α-particle emissior	า	(4) β-particle emission	
18.	Which of the following	set of quantum numbers	s represents the highest e	energy of an atom ?
				[AIEEE 2007, 3/105]
		<u>1</u>		<u>1</u>
	(1) n = 3, l = 0, m = 0,	s = + 2	(2) n = 3, l = 1, m =1, s	s = + 2
		1	(4) n = 4, l = 0, m = 0,	1
	(3) n = 3, l = 2, m = 1,	s = + 2	(4) $n = 4$, $l = 0$, $m = 0$,	s = + 2
19.	The ionisation enthal	py of hydrogen atom is	1.312 × 10 ⁶ J mol ⁻¹ . Th	e energy required to excite the
	electron in the atom fr	from $n_1 = 1$ to $n = 2$ is		[AIEEE 2008, 3/105]
	(1) 8.51 × 10⁵ J mol⁻¹	(2) 6.56 × 10⁵ J mol⁻¹	(3) 7.56 × 10 ⁵ J mol ^{−1}	(4) 9.84 × 10 ⁵ J mol ⁻¹
20 .	Which one of the follo	wing constitutes a group	of the isoelectronic spec	ies? [AIEEE 2008, 3/105]
		(2) CN^{-} , N ₂ , O ₂ ²⁻ , C ₂ ²⁻	•	
21.	Calculate the waveler	nath (in nanometer) asso	ciated with a proton mo	ving at 1.0 × 10 ³ m s ⁻¹ (Mass of
		kg and h = 6.63 × 10^{-34} J	•	[AIEEE 2009, 4/144]
	(1) 0.40 nm	(2) 2.5 nm	, (3) 14.0 nm	(4) 0.032 nm
22.	In an atom, an electro	on is moving with a spee	d of 600 m/s with an acc	uracy of 0.005%. Certainity with
22.		•		n^2 s ⁻¹ , mass of electron, $e_m = 9.1$
	× 10 ^{−31} kg):			[AIEEE 2009, 4/144]
	(1) 5.10 × 10⁻³ m	(2) 1.92 × 10⁻³ m	(3) 3.83 × 10⁻³ m	(4) 1.52 × 10 ^{−4} m
23.	The energy required t	o break one mole of CI–(I bonds in Clais 242 k.L	mol ⁻¹ . The longest wavelength of
_0.	•••	ing a single CI–CI bond is		
	0	0 0	,	[AIEEE 2010, 8/144]
	(1) 594 nm	(2) 640 nm	(3) 700 nm	(4) 494 nm
24.	Ionisation energy of H	le⁺ is 19.6 × 10 ⁻¹⁸ J atom	⁻¹ . The energy of the firs	t stationary state (n = 1) of Li^{2+} is
	:		0,	[AIEEE 2010, 8/144]
	(1) 4.41 × 10 ⁻¹⁶ J ato	om ⁻¹	(2) − 4.41 × 10 ⁻¹⁷ J at	om ⁻¹
	(3) – 2.2 × 10 ⁻¹⁵ J ato	m ^{−1}	(4) 8.82 × 10 ^{−17} J atom	J ^{_1}
25.	A gas absorbs a photo	on of 355 nm and emits a	t two wavelengths. If one	of the emission is at 680 nm, the
	other is at :		J	[AIEEE 2011, 4/120]
	(1) 1035 nm	(2) 325 nm	(3) 743 nm	(4) 518 nm
26.	The frequency of light	t emitted for the transition	n n = 4 to n = 2 of He+ is	sequalto the transition in H atom
	corresponding to whic			[AIEEE 2011, 4/120]
	(1) $n = 2$ to $n = 1$	(2) n = 3 to n = 2	(3) n = 4 to n = 3	(4) n = 3 to n = 1
27	The electrone identific	d by quantum numbers r	and f	
27.		ed by quantum numbers r		[AIEEE 2012, 4/120]

Exercise-1

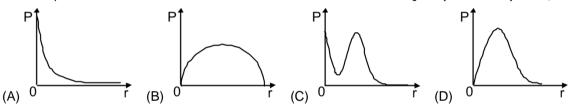
	-ر)		
	(a) n = 4, ℓ = 1 can be placed in orde	(b) $n = 4$, $\ell = 0$ er of increasing energy as	(c) n = 3, ℓ = 2	(d) n = 3, ℓ = 1
	(1) (c) < (d) < (b) < (a) (2) (d) < (b) < (c) < (a)	(3) (b) < (d) < (a) < (c)	(4) (a) < (c) < (b) < (d)
			$\left(\frac{Z^2}{r^2}\right)$	gth of light required to excite ar
28.		n is given by E = -2.178 en atom from level n = 1 to		gth of light required to excite ar [JEE(Main)2013, 4/120]
	(h = 6.62 × 10 ^{−34} Js a	and $c = 3.0 \times 10^8 \text{ ms}^{-1}$)		
	(1) 1.214 × 10 ⁻⁷ m	(2) 2.816 × 10 ^{−7} m	(3) 6.500 × 10 ⁻⁷ m	(4) 8.500 × 10 ⁻⁷ m
29.	The correct set of fou	r quantum numbers for the	e valence electrons of ru	bidium atom (Z = 37) is : [JEE(Main)2014, 4/120]
	1	1	1	1
	(1) 5, 0, 0, + 2	(2) 5, 1, 0, + ¹ / ₂	(3) 5,1, 1, + 2	(4) 5, 0, 1, + 2
30 .	Which of the following	n is the energy of a possib	le excited state of hydror	gen ? [JEE(Main) 2015, 4/120
0.	(1) +13.6 eV	(2) –6.8 eV	(3) –3.4 eV	(4) +6.8 eV
1.			•	harged plates kept at a potentia vely, then the value of h/λ (wher
	λ is wavelength asso	ciated with electron wave)	is given by : [JEE(N	lain) 2016, 4/120]
	(1) 2meV	(2) √meV	(3) ^{√2meV}	(4) meV
32.	(Planck's Const. h =	ond Bohr orbit for hydroge ∈ 6.6262 × 10 ⁻³⁴ Js; mas C; permittivity of vacuum ∈	s of electron = 9.1091	× 10 ⁻³¹ kg; charge of electron
	e = 1.00210 x 10 ° C		0 - 0.004100 × 10 Kg	[JEE(Main) 2017, 4/120]
	(1) 4.76 Å	(2) 0.529 Å	(3) 2.12 Å	(4) 1.65 Å
		ONLINE	JEE-MAIN	
I .	0,			e energy value of electron in the
	excited state of Li ²⁺ is		- 、 /	Online (09-04-14), 4/120]
	(1) – 27.2 eV	(2) 30.6 eV	(3) – 30.6 eV	(4) 27.2 eV
2.	If λ_0 and λ be the the ejected from the meta	-		ht, the velocity of photoelectron Online (11-04-14), 4/120]
	(1) $\sqrt{\frac{2h}{m}(\lambda_0 - \lambda)}$	(2) $\sqrt{\frac{2hc}{m}(\lambda_0 - \lambda)}$	$(3) \sqrt{\frac{2hc}{m} \left(\frac{\lambda_0 - \lambda}{\lambda \lambda_0}\right)}$	(4) $\sqrt{\frac{2h}{m}\left(\frac{1}{\lambda_0}-\frac{1}{\lambda}\right)}$
		$\left(\begin{array}{c} 1 \end{array} \right)$	$-\frac{1}{n_1^2}$	
		$\sqrt{n_2^2}$	n_1^2	


3. Based on the equation : $\Delta E = 2.0 \times 10^{-18} J^{\left(\frac{1}{n_2^2} - \frac{1}{n_1^2}\right)}$

Exercise-1

the wavelength of the light that must be absorbed to excite hydrogen electron from level n = 1 to level n = 2 will be : (h = 6.625 × 10–34 Js, C = 3 × 108 ms–1) [JEE(Main) 2014 Online (09-04-14), 4/120] (1) 1.325×10^{-7} m (2) 1.325×10^{-10} m (3) 2.650×10^{-7} m (4) 5.300×10^{-10} m

If m and e are the mass and charge of the revolving electron in the orbit of radius r for hydrogen atom, 4. the total energy of the revolving electron will be : [JEE(Main) 2014 Online (12-04-14), 4/120] $(4) = \frac{1}{2} \frac{e^2}{r}$ $1 e^{2}$ e^2 me² (2) – r (1) 2 r r (3) The de-Broglie wavelength of a particle of mass 6.63 g moving with a velocity of 100 ms⁻¹ is : 5. [JEE(Main) 2014 Online (12-04-14), 4/120] (1) 10⁻³³ m (2) 10⁻³⁵ m (3) 10⁻³¹ m (4) 10⁻²⁵ m 6. Excited hydrogen atom emits light in the ultraviolet region at 2.47 x 10¹⁵ Hz With thi frequency, the energy of a single photon is : (h = $6.63 \times 10^{-34} \text{ Js}$) [JEE(Main) 2014 Online (12-04-14), 4/120] (2) 8.041 × 10⁻¹⁹ J (1) 8.041 × 10^{-40} J (3) 1.640 × 10⁻¹⁸ J (4) 6.111 × 10^{-17} J 7. Ionization energy of gaseous Na atom is 495.5 kJ mol⁻¹. The lowest possible frequency of light that ionizes a sodium atom is (h = 6.626×10^{-34} Js. N_A = 6.022×10^{23} mol⁻¹) [JEE(Main) 2014 Online (19-04-14), 4/120] (2) 4.76 × 10¹⁴ s⁻¹ (1) 7.50 \times 10⁴ s⁻¹ (3) 3.15 × 10¹⁵ s⁻¹ (4) 1.24 × 10¹⁵ s⁻¹ 8. If the principal quantum number n = 6, the correct sequence of filling of electrons will be : [JEE(Main) 2015 Online (10-04-15), 4/120] (1) $ns \rightarrow np \rightarrow (n-1)d \rightarrow (n-2)f$ (2) $ns \rightarrow (n-1)d \rightarrow (n-2)f \rightarrow np$ (3) ns \rightarrow (n – 2)f \rightarrow np \rightarrow (n – 1)d (4) ns \rightarrow (n – 2)f \rightarrow (n – 1)d \rightarrow np At temperatuere T, the average kinetic energy of any particle is 2 KT. The de Broglie wavelength follows 9. [JEE(Main) 2015 Online (11-04-15), 4/120] the order : (1) Visible photon > Thermal neutron > Thermal electron (2) Thermal proton > Thermal electon > Visible photon (3) Thermal proton > Visible photon > Thermal electron (4) Visible photon > Thermal electron > Thermal neutron 10. The total number of orbitals associated with the principal quantum number 5 is: [JEE(Main) 2016 Online (09-04-16), 4/120] (1)5(2) 20 (3) 25 (4) 10 11. Aqueous solution of which salt will not contain ions with the electronic configuration 1s²2s²2p⁶3s²3p⁶ ? [JEE(Main) 2016 Online (10-04-16), 4/120] (2) CaI_2 (3) NaF (1) NaCl (4) KBr 12. If the shortest wavelength in Lyman series of hydrogen atom is A, then the longest wavelength in Paschen series of He+ is : [JEE(Main) 2017 Online (08-04-17), 4/120]


CHE	MISTRY FOR JEE				
	Exercise	B-1			
	(1) ^{36A} / ₅	(2) ^{9A} / ₅	(3) ^{5A} / ₉	(4) 36A 7	
13.	The electron in the pm. This transition is (1) Paschen series	hydrogen atom undergoe s associated with : (2) Brackett series	-		(09-04-17), 4/120]
	•	ADVANCED)/IIT-		6 (PREVIC	OUS YEARS)
* Mar 1.	Rutherford's experir (A) β-particles, whic	nave more than one corr nent, which established th h impinged on a metal foi pinged on a metal foil & e	ne nuclear model of the	atom, used a	beam of : [JEE 2002(S), 3/90]
	(C) helium atoms, w	hich impinged on a metal hich impinged on a metal	foil & got scattered.		
2.	•	ertainty principle		be close to n	ucleus, yet 1s ⁷ is not [JEE 2002(S), 3/90]
3.	The orbit having Bo (A) n = 2 of He ⁺	hr radius equal to 1 st Bohr (B) n = 2 of B ⁺⁴	orbit of H–atom is (C) n = 3 of Li ⁺²	(D) n = 2	[JEE 2004(S), 3/84] of Be ⁺³
4.	Number of radial no (A) 2, 0 (B)	des in 3s and 2p orbitals (2, 1 (C) 3		2, 2	[JEE 2004(S), 3/84]
		Paragraph for G	Question Nos. 5 to 7		
	light the ion undergo	pecies Li ²⁺ is in a spherica bes transition to a state S energy of the hydrogen at	2. The state S_2 has one		
5.	The state S1 is : (A) 1s	(B) 2s	(C) 2p	(D) 3s	[JEE 2010, 3/163]
6.	Energy of the state (A) 0.75	S₁ in units of the hydroger (B) 1.50	n atom ground state ene (C) 2.25	ergy is : (D) 4.50	[JEE 2010, 3/163]
7.	The orbital angular ((A) 0	momentum quantum num (B) 1	ber of the state S ₂ is : (C) 2	(D) 3	[JEE 2010, 3/163]
8.		uminum by α-particle lead Y and Z respectively are,		gration in two	o ways, (I) and (ii) as [JEE 2011, 3/180]

9. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is [a₀ is Bohr radius] : [JEE 2012, 3/136]

(A)
$$\frac{h^2}{4\pi^2 ma_0^2}$$
 (B) $\frac{h^2}{16\pi^2 ma_0^2}$ (C) $\frac{h^2}{32\pi^2 ma_0^2}$ (D) $\frac{h^2}{64\pi^2 ma_0^2}$

10.P is the probability of finding the 1s electron of hydrogen atom in a spherical shell of infinitesimal
thickness, dr, at a distance r from the nucleus. The volume of this shell is $4\pi r^2 dr$. The qualitative sketch
of the dependence of P on r is[JEE(Advanced) 2016, 3/124]

Answer Q.11, Q.12 and Q.13 by appropriately matching the information given in the three columns of the following table.

The wave function, Ψ_{n, l, m_l} is a mathematical function whose value depends upon spherical polar coordinates (r, θ , ϕ) of the electron and characterized by the quantum numbers *n*, *l* and *m_l*. Here r is distance from nucleus, θ is colatitude and ϕ is azimuth. In the mathematical functions given in the Table, Z is atomic number and a_0 is Bohr radius.

Column 1	Column 2	Column 3
(I) 1s orbital	(i) $\Psi_{n, l, m_{l}} \propto \left(\frac{Z}{a_{o}}\right)^{\frac{3}{2}} e^{-\left(\frac{Zr}{a_{o}}\right)}$	$(P) \qquad \qquad$
(II) 2s orbital	(ii) One radial node	(Q) Probability density at nucleus $ \frac{1}{\alpha^{3}} $
(III) 2p _z orbital	(iii) $\Psi_{n, l, m_{l}} \propto \left(\frac{Z}{a_{o}}\right)^{\frac{5}{2}} re^{-\left(\frac{Zr}{2a_{o}}\right)} \cos\theta$	(R) Probability density is maximum at nucleus

Exercise-1

		(S) Energy needed to excite electron from n = 2 state to
(IV) 3d _z ² orbital	(iv) xy-plane is a nodal plane	n = 4 state is $\frac{27}{32}$ times the energy needed to excite electron from n = 2 state to n = 6 state

11.	For He+ ion, the only IN	ICORRECT combination	ı is	[JEE(Advanced) 2017, 3/122]
	(A) (I) (i) (S)	(B) (II) (ii) (Q)	(C) (I) (iii) (R)	(D) (I) (i) (R)
12.	For the given orbital in	n Column 1, the only C	ORRECT combi	nation for any hydrogen-like species is
				[JEE(Advanced) 2017, 3/122]
	(A) (II) (ii) (P)	(B) (I) (ii) (S)	(C) (IV) (iv) (R)	(D) (III) (iii) (P)
13.	For hydrogen atom, the	e only CORRECT combin	nation is	[JEE(Advanced) 2017, 3/122]
	(A) (I) (i) (P)	(B) (I) (iv) (R)	(C) (II) (i) (Q)	(D) (I) (i) (S)

	Ans	swers							
	·			EXER	CISE - ²	1			
A-1.	(2)	A-2.	(4)	A-3.	(2)	A-4.	(1)	A-5.	(2)
A-6.	(3)	A-7.	(2)	A-8.	(4)	A-9.	(2)	A-10.	(4)
A-11.	(4)	A-12.	(2)	A-13.	(4)	A-14.	(3)	A-15.	(3)
A-16.	(4)	A-17.	(3)	A-18.	(4)	B-1.	(1)	B-2.	(2)
B-3.	(1)	B-4.	(3)	B-5.	(2)	B-6.	(4)	B-7.	(1)
B-8.	(1)	B-9.	(1)	B-10.	(1)	B-11.	(1)	B-12.	(3)
C-1.	(2)	C-2.	(3)	C-3.	(2)	C-4.	(3)	C-5.	(2)
C-6.	(1)	C-7.	(3)	C-8.	(3)	C-9.	(2)	C-10.	(3)
C-11.	(2)	C-12.	(3)	C-13.	(4)	D-1.	(3)	D-2.	(4)
D-3.	(1)	D-4.	(1)	D-5.	(2)	D-6.	(3)	D-7.	(4)
D-8.	(2)	D-9.	(4)	D-10.	(3)	D-11.	(1)	D-12.	(1)
D-13.	(2)	D-14.	(4)	D-15.	(1)	D-16.	(1)	D-17.	(1)
D-18.	(3)	E-1.	(4)	E-2.	(2)	E-3.	(3)	E-4.	(1)
E-5.	(3)	E-6.	(3)	E-7.	(3)	E-8.	(4)	E-9.	(1)
E-10.	(2)	E-11.	(1)	E-12.	(1)	E-13.	(1)	E-14.	(4)
E-15.	(3)	F-1.	(2)	F-2.	(1)	F-3.	(1)	F-4.	(3)
F-5.	(3)	F-6.	(4)	F-7.	(4)	F-8.	(4)	F-9.	(2)
F-10.	(4)	F-11.	(1)	F-12.	(3)	F-13.	(3)	F-14.	(1)
F-15.	(1)	F-16.	(4)	F-17.	(3)	F-18.	(3)	F-19.	(2)
				EXER	CISE - 2	2			
				PAI	RT - I				
1.	(4)	2.	(3)	3.	(2)	4.	(3)	5.	(1)
6.	(3)	7.	(3)	8.	(2)	9.	(4)	10.	(3)
11.	(3)	12.	(2)	13.	(4)	14.	(4)	15.	(2)
16.	(2)	17.	(2)	18.	(3)	19.	(1)	20.	(4)
21.	(1)	22.	(1)	23.	(3)	24.	(2)	25.	(3)
26.	(2)	27.	(1)	28.	(1)				

				EXER	CISE - 3	3			
				РА	RT - I				
				OFFLINE	JEE-MA	IN			
1.	(1)	2.	(3)	3.	(1)	4.	(1)	5.	(2)
6.	(4)	7.	(2)	8.	(2)	9.	(1)	10.	(3)
11.	(2)	12.	(1)	13.	(1)	14.	(3)	15.	(4)
16.	(1)	17.	(1)	18.	(3)	19.	(4)	20.	(1)
21.	(1)	22.	(2)	23.	(4)	24.	(2)	25.	(3)
26.	(1)	27.	(2)	28.	(1)	29.	(1)	30.	(3)
31.	(3)	32.	(3)						
				ONLINE	JEE-MAI	N			
1.	(3)	2.	(3)	3.	(1)	4.	(4)	5.	(1)
6.	(3)	7.	(4)	8.	(4)	9.	(4)	10.	(3)
11.	(3)	12.	(4)	13.	(4)				
				PAI	RT - II				
1.	(D)	2.	(C)	3.	(D)	4.	(A)	5.	(B)
6.	(C)	7.	(B)	8.	(A)	9.	(C)	10.	(D)
11.	(C)	12.	(A)	13.	(D)				