Exercise-1

Marked Questions may have for Revision Questions.

PART - I : SUBJECTIVE QUESTIONS

- **1.** How much time (in years) would it take to distribute one Avogadro number of wheat grains if 10¹⁰ grains are distributed each second ?
- 2. The weight of one atom of Uranium is 238 amu. Its actual weight is g.
- **3.** Calculate the weight of 12.044×10^{23} atoms of carbon.
- 4. How many grams of silicon is present in 35 gram atoms of silicon (Given at. wt. of Si = 28).
- 5. Find the total number of nucleons present in 12 g of ¹²C atoms.
- **6.** Find (i) the total number of neutrons, and (ii) the total mass of neutrons in 7 mg of ¹⁴C. (Assume that the mass of a neutron = mass of a hydrogen atom)
- 7.A Calculate the number of electrons, protons and neutrons in 1 mole of ¹⁶O⁻² ions.
- 8. How many atoms are there in 100 amu of He?
- **9.** The density of liquid mercury is 13.6 g/cm³. How many moles of mercury are there in 1 litre of the metal? (Atomic mass of Hg = 200.)
- 10. Calculate the atomic mass (average) of chlorine using the following data :

	% Natural Abundance	Molar Mass
³⁵ Cl	75	35.0 g
³⁷ Cl	25	37.0 g

- **11.** Average atomic mass of Magnesium is 24.31 amu. This magnesium is composed of 79 mole % of ²⁴Mg and remaining 21 mole % of ²⁵Mg and ²⁶Mg. Calculate mole % of ²⁶Mg.
- **12.** The number of molecules in 16 g of methane is :
- **13.** Calculate the number of molecules in a drop of water weighing 0.09 g.
- **14.** A sample of ethane has the same mass as 10.0 million molecules of methane. How many C₂H₆ molecules does the sample contain?
- **15.** The number of neutrons in 5 g of D_2O (D is ${}^{1}H$) are :
- **16.** Calculate the weight of 6.022×10^{23} formula units of CaCO₃.
- 17. From 200 mg of CO₂, 10²¹ molecules are removed. How many moles of CO₂ are left ?

PART - II : OBJECTIVE QUESTIONS

Single Correct Questions (SCQ)

- 1. Which is not a basic postulate of Dalton's atomic theory ?
 - (1) Atoms are neither created nor destroyed in a chemical reaction.
 - (2) Different elements have different types of atoms.
 - (3) Atoms of an element may be different due to presence of isotopes.
 - (4) Each element is composed of extermely small particles called atoms.

2.	The modern atomic we (1) ¹² C	eight scale is based on : (2) ¹⁶ O	(3) ¹ H	(4) ¹⁸ O					
3.ो≥	1 amu is equal to								
	$(1)^{\frac{1}{12}}$ of C-12	(2) $\frac{1}{14}$ of O–16	(3) 1 g of H ₂	(4) 1.66 × 10 ⁻²³ kg					
4.	If the atomic mass of s (1) 1	odium is 23, the number (2) 2	of moles in 46 g of soc (3) 2.3	lium is : (4) 4.6					
5.	How many grams are contained in 1 gram-atom of Na?								
	(1) 13 g	(2) 23 g	(3) 1 g	(4) $\frac{1}{23}$ g					
6.	of atoms in 1 g of He is		e atomic weight of heliu	um is 4. It follows that the number					
	$(1)\frac{1}{4} \times 6 \times 10^{23}$	(2) $4 \times 6 \times 10^{23}$	(3) 6 × 10 ²³	(4) 12 × 10 ²³					
7.ւ⊾	The atomic weights of how many atoms are p		re 40u and 80u respect	ively. If x g of A contains y atoms,					
	(1) $\frac{y}{2}$	(2) $\frac{y}{4}$	(3) y	(4) 2y					
8.	A sample of aluminium atoms? (At. wt. Al = 27 (1) 12 g		 What is the mass of (3) 48 g (4) 9 	the same number of magnesium 6 g.					
9.🖎	The number of atoms (1) Twice that in 60 g o (3) Half in 8 g He	in 558.5 g of Fe (at wt.= carbon	55.85) is : (2) 6.022 × 10 ²² (4) 558.5 × 6.023 × 1	0 ²³					
10.	.,	has the Maximum mass							
	(1) 1 g-atom of C (3) 10 mL of water		(2) $\frac{1}{2}$ mole of CH ₄ (4) 3.011 × 10 ²³ atoms of oxygen						
11.	The total number of pr (1) 1.084 × 10 ²⁵	otons, electrons and neu (2) 6.022 × 10 ²³	utrons in 12 g of ¹² 6 is : (3) 6.022×10 ²²	(4) 18					
12.		as mass, 3/10 times the m ne mass of one atom of ¹ (2) 15.77		nt Y. One average atom of element weight of Y ? (4) 40.0					
13.⊾		ions of AI^{3+} is : ($N_A = Av$ 1	-						
	(1) $\overline{27}$ N _A e coulomb	(2) $\frac{1}{3} \times N_{A}e$ coulomb	(3) $\overline{9} \times N_A e$ coulomb	(4) 3 × N _A e coulomb					
14.	half of its original value			ne mass of neutron is assumed to fits original value, then the atomic					
	mass of ${}^{6}C$ will be : (1) same	(2) 114.28 % less	(3) 14.28 % more	(4) 28.56 % less					

15.	The isotopic abundance of C–12 and C–14 is 98% and 2% by mass respectively. What would be the number of C–14 isotope in 12 g carbon sample ?							
	(1) 1.032×10 ²²	(2) 3.01×10 ²³	(3) 5.88×10 ²³	(4) 6.02×10 ²³				
16.			topic mixture of X atoms	s (X ²⁰ , X ²¹ , X ²²) is approximately				
	equal to : (X ²⁰ has 99 p (1) 20.002	percent abundance) (2) 21.00	(3) 22.00	(4) 20.00				
				()				
17. ⊾	Indium (atomic weight = 114.8) has two naturally occurring isotopes, the predominant one form has isotopic weight 115 and abundance of 95.00%. Which of the following isotopic weights is the most likely for the other isotope ?							
	(1) 111	(2) 112	(3) 113	(4) 114				
18.	The number of molecu	les of CO2 present in 44	g of CO ₂ is :					
	(1) 6.0×10^{23}	(2) 3×10^{23}	(3) 12×10^{23}	(4) 3×10^{10}				
19.		f ammonia in 4.25 g of ar						
	(1) 0.425	(2) 0.25	(3) 0.236	(4) 0.2125				
20.	Which one of the follow (1) 16 g of O_2 and 14 g (3) 28 g of N_2 and 22 g	g of N ₂	ins the same number of (2) 8 g of O ₂ and 22 g (4) 32 g of O ₂ and 32 g	of CO ₂				
21.🖎	The weight of a molect	ule of the compound C_{60}	H ₂₂ is :					
	(1) 1.09×10^{-21} g	(2) 1.24×10^{-21} g	(3) 5.025 × 10 ⁻²³ g	(4) 16.023 × 10 ⁻²³ g				
22.	Number of electrons in	1.8 mL of $H_2O(\ell)$ is abo	ut :					
	(1) 6.02 × 10 ²³	(2) 3.011 × 10 ²³	(3) 0.6022 × 10 ²¹	(4) 60.22 × 10 ²⁰				
23.	One mole of P ₄ molecules contain : (1) 1 molecule (2) 4 molecules 1							
	(3) $\overline{4} \times 6.022 \times 10^{23}$ a	IS						
24.🖻	A sample of ammoniur atoms in the sample is		contains 3.18 mole of H	atoms. The number of mole of O				
	(1) 0.265	(2) 0.795	(3) 1.06	(4) 3.18				
25.	Torr is unit of : (1) Temperature	(2) Pressure	(3) Volume	(4) Density				
26.		sure on Mars is 0.61 kPa	. What is the pressure in	mm Ha ?				
	(1) 0.63	(2) 4.6	(3) 6.3	(4) 3.2				
27.	Centigrade and Fahrer	nheit scales are related a	IS :					
	-	(2) $\frac{C}{9} = \frac{F - 32}{5}$						
	(1) 5 9	(2) 9 5	(3) 8^{-5}	(4) None of these				
28.	At what temperature, b	ooth Celsius and Fahrenh	neit scale read the same	value :				
	(1) 100°	(2) 130°	(3) 60° (4) -40°					
29.	The value of universal	gas constant R depends	on :					
	(1) temperature of gas		(2) volume of gas					
	(3) number of moles of	-	(4) units of volume and pressure					
30.	The value of gas constant in calorie per degree temperature per mol is approximately :							

•	(1) 1 cal	(2) 2 cal	(3) 3 cal	(4) 4 cal					
24	The value of R in SI u		(3) 3 Cal	(4) 4 Cal					
31.	(1) 8.314 × 10^{-7} erg K ⁻¹ (3) 0.082 litre atm K ⁻¹	⁻¹ mol ⁻¹	(2) 8.314 JK ^{−1} mol ^{−1} (4) 2 cal K ^{−1} mol ^{−1}						
32.	The pressure of sodiu container ?	im vapour in a 1.0 L coi	ntainer is 9.5 torr at 92	7ºC. How many atoms are in the					
	(1) 9.7 × 10 ⁷	(2) 7.5 × 10 ¹⁹	(3) 4.2 × 10 ¹⁷	(4) 9.7 × 10 ¹⁹					
33.	The pressure of a gas (1) 1 atm	having 2 mole in 44.8 lit (2) 2 atm	re vessel at 546 K is : (3) 3 atm	(4) 4 atm					
34.ເ≊	According to the ideal (1) 22.4 litre	gas laws, the molar volu (2) RT / P	me of a gas is given by : (3) 8RT / PV (4) RT / PV						
35.		gen gas and a second gas ns. Which of the following (2) SO ₂	•	rams respectively under the same (4) CO					
26 A									
36.⊾	•	would have to be added (2) 1.2		suming ideal gas behaviour, how re to 4.0 × 10 ⁻³ atm ? (4) 2.0					
37.⊾			-	l O ₃ at the same temperature and different flask would be : (4) 3 : 2 : 2 : 1					
38.	Under the same condi (1) be noble gases (3) have a volume of 2	-	same number of molecules. They must (2) have equal volumes (4) have an equal number of atoms						
39.	16 g of an ideal gas So (1) x = 3	O _x occupies 5.6 L. at STI (2) x = 2	P. The value of x is (3) x = 4	(4) none of these					
40.	-	t of one litre of a gas to th eight of the gas would be	• • •	en gas both measured at S.T.P. is					
	(1) 14.002	(2) 35.52	(3) 71.04	(4) 55.56					
41.	Avogadro number is : (1) Number of atoms in one gram of the element (2) Number of mililitre which one mole of a gaseous substance occupies at NTP (1 atm & 0°C) (3) Number of molecules present in one gram molecular mass of a substance. (4) All are correct								
42.	The weight of 1 × 10 ²²	molecules of CuSO4.5H	20 is :						
	(1) 41.59 g	(2) 415.9 g	(3) 4.159 g	(4) None of these					
43.🖎	How many moles of el	ectron weigh one kilogra	m :						
	(4) 0 000 - 4022	(a) $\frac{1}{9,108}$ 1021	6.023	$\frac{23}{08} \times 10^{54} \qquad (4) \frac{1}{9.108 \times 6.023} \times 10^8$					
	(1) 6.023×10^{23}			(4) $3.100 \times 0.023 \times 10^8$					
44.		60 g of Fe (atomic mass N (2) Half that in 20 g H	e ,	(4) None of these					
45.	Which has maximum number of atoms :								

	(1) 24 g of C (12)	(2) 56 g of Fe (56)	(3) 27 g of Al (2	(4) 108 g Ag (108)						
46. ⊾̀	If we consider that 1/6, in place of 1/12 mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will : (1) decrease twice (2) increase two fold (3) remain unchanged (4) be a function of the molecular mass of the substance									
47.	How many moles of ma (1) 0.02	agnesium phosphate, Mg (2) 3.125 × 10 ⁻²	g ₃ (PO₄)₂ will conta (3) 1.25 × 10 ^{−2}	ain 0.25 mole of oxygen atoms ? (4) 2.5 × 10 ⁻²						
48.nà	Given that the abundar mass of Fe is : (1) 55.85	nces of isotopes ⁵⁴ Fe, ⁵⁶ F (2) 55.95	e and ⁵⁷ Fe are 59 (3) 55.75	%, 90% and 5% respectively, the atomic (4) 56.05	;					
Comp	Comprehension # A vessel of 25 L contains 20 g of ideal gas X at 300K. The pressure exerted by the gas is 1 atm. 20 g of ideal gas Y is added to the vessel keeping the same temperature. Total pressure became 3 atm. Upon further addition of 20 g ideal gas Z the pressure became 7 atm. Answer the following questions. (Hint: Ideal gas equation is applicable on mixture of ideal gases) [Take, R = 1/12 L.atm / mol K]									
49.	Find the molar mass of (1) 20 g	f gas X. (2) 10 g	(3) 30 g	(4) 5 g						
50.	Identify the correct statement(s) : I. gas Y is lighter than gas X II. gas Z is lighter than gas Y (1) I only (2) II only (3) Both I and II (4) None of the statements									
51.	Find the average mola (1) 40/7	r mass of the mixture of ((2) 50/7	gases X, Y and Z (3) 20	(4) 60/7						
50										

52. Match the column :

	Column-I				Column-II				
	(Atomic mass (M))				(% composition of heavier isotope)				
	Isotope-I	Isotope-II	Average		(/····································				
(1)	(z – 1)	(z + 3)	Z	(p)	25% by moles				
(2)	(z + 1)	1) (z + 3) (z + 2)		(q)	50% by moles				
(3)	Z	3z	2z	(r)	% by mass dependent on z				
(4)	(z – 1)	(z + 1)	Z	(s)	75% by mass				

Answers

PART-I

1.	1.9 × 10 ⁶ y	ears (appro	ox.)	2.	3.95 >	< 10 ^{_22}	3.	24 g	4.	980 g of Si	
5.	12 × 6.022 × 10 ²³			6.	24.08	8 × 10 ²⁰ ,	0.004 g				
7.	10 × 6.022 × 10 ²³ , 8 × 6.022 ×			10 ²³ , 8	× 6.022	× 10 ²³ .	8.	25	9.	68 mole	
10.	35.5 11 .	. 10		12.	6.02 >	• 10 ²³	13.	3.01 ×	: 10 ²¹ ma	plecules of H ₂ O	
14.	5.33 × 10 ⁶	15.	2.5 NA	16.	100 g		17.	0.0028	38		
PART – II											
1.	(3)	2.	(1)		3.	(1)		4.	(2)	5.	(2)
6.	(1)	7.	(3)		8.	(3)		9.	(1)	10.	(1)
11.	(1)	12.	(1)		13.	(4)		14.	(3)	15.	(1)
16.	(1)	17.	(1)		18.	(1)		19.	(2)	20.	(1)
21.	(2)	22.	(1)		23.	(4)		24.	(3)	25.	(2)
26.	(2)	27.	(1)		28.	(4)		29.	(4)	30.	(2)
31.	(2)	32.	(2)		33.	(2)		34.	(2)	35.	(3)
36.	(4)	37.	(3)		38.	(2)		39.	(2)	40.	(3)
41.	(3)	42.	(3)		43.	(4)		44.	(3)	45.	(1)
46.	(3)	47.	(2)		48.	(2)		49.	(1)	50.	(3)
51.	(4)	52.	(1) - (p	,r) ; (2)	- (q,r) ; ((3) - (q,s));(4)-(0	q,r)			