

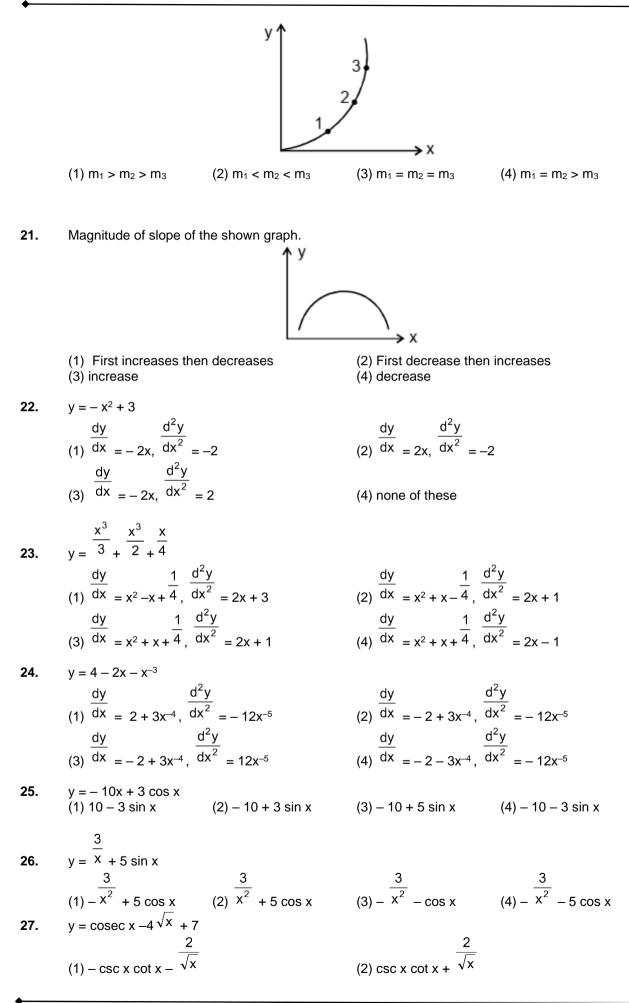
6. If $\tan \theta = \frac{1}{\sqrt{5}}$ and θ lies in the first quadrant, the value of $\cos \theta$ is : (1) $\sqrt{\frac{5}{6}}$ (2) $-\sqrt{\frac{5}{6}}$ (3) $\frac{1}{\sqrt{6}}$ (4) $-\frac{1}{\sqrt{6}}$

SECTION - (C) : COORDINATE GEOMETRY AND ALGEBRA

1. Calculate slope of shown line

- **2.** Roots of the equation $2x^2 + 5x 12 = 0$, are
- **3.** The speed (v) of a particle moving along a straight line is given by $v = t^2 + 3t 4$ where v is in m/s and t in second. Find time t at which the particle will momentarily come to rest. (1) 3 (2) 4 (3) 2 (4) 1

SECTION - (D) : DIFFERENTIATION


Find the derivative of given functions w.r.t. corresponding independent variable.

1. $y = x_2 + x + 8$ dy dy dy dy (3) dx = 2x - 1(1) dx = 2x + 1(2) dx = 2 + 1(4) dx = x + 12. y = tan x + cot x(1) $\tan_2 x + \csc_2 x$ (2) $\cot_2 x - \sin_2 x$ (3) $\sec_2 x - \csc_2 x$ (4) $\sec x + \csc x$ d²v $y = \ell nx + e_x$, then $d\overline{x^2}$ 3. is equal to 1 $(4) - \overline{X^2} + e_{x}$ (1) x^2 (2) X^2 (3) $X + e_x$ – e, 4. $y = e_x \ell nx$ e× e× е х (3) ex lnx - X (1) ex lnx + (2) ex lnx -(4) None of these 5. y = sin 5 x(3) 5 cos 5x (1) 5 cos 5 x (2) 3 cos 3 x (4) 2 cos 2x 6. $(x + y)_2 = 4$ dy dy d (3) dx = -1(4) d = -1(2) dx = -1(1) dx = +1

♦				
·	$\frac{dy}{dx} = 48 (8x - 1)_{0}$	$\frac{dy}{dx} = 58(5x - 1)$	(3) $\frac{dy}{dx} = 48 (8x - 1)_2$	$\frac{dy}{dx} = 28(8x - 1)$
	$(1) = +0 (0x - 1)^2$	(2) $\sin = 38 (3x - 1)^2$ ds	$(0) = +0 (0x - 1)^2$	(-7) = 20 (0x - 1)
8.	Given s = t ² + 5t + 3 , (1) 7		(3) 12	(4) 15
9.	If s = ut + $\frac{1}{2}$ at ² , where (1) u - at	e u and a are constants. ((2) u + at	Dbtain the value of $\frac{ds}{dt}$. (3) 2u + at	(4) None of these
10.	The minimum value of	$y = 5x^2 - 2x + 1$ is	4	3
	(1) $\frac{\frac{1}{5}}{2x+5}$	$(2) \frac{2}{5}$	(3) $\frac{4}{5}$	$(4) \frac{3}{5}$
11.	$y = \frac{\frac{2x+5}{3x-2}}{\frac{-19}{(2x-2)^2}}$	<u>19</u>	(3) $y' = \frac{-19}{(3x+2)}$	$\frac{-19}{(2-2)^2}$
	(1) $y' = (3x - 2)^2$	(2) $y' = (3x - 2)$	(3) $y' = {(3x+2)}$	(4) $y' = (3x + 2)^2$
12.	rate of 0.05 mm/secon 10 mm. (take p = 3.14)	d. Find its rate of change	of volume with respect t	nsion, its radius increases at the to time when its radius becomes
			(3) 3.14 mm ³ /second	(4) 6.28 mm ³ /second
13.	If y = 3t ₂ – 4t ; then mir (1) 3/2	(2) 3/4	(3) 2/3	(4) 4/3
	If y = sin(t ₂), then $\frac{d^2y}{dt^2}$			
14.	If $y = sin(t_2)$, then dt^2 (1) 2t cos(t_2) (3) 4t_2 sin (t_2)	will be -	(2) 2 cos (t ₂) – 4t ₂ sin (t (4) 2 cos (t ₂)	2)
15.	The displacement of a will be 7 ms-1 after time		tarting is given by s = 15	$t - 0.4t_2$. The velocity of the body
	(1) 20 s	(2) 15 s	(3) 10 s	(4) 5 s
16.	For the previous quest (1) –0.8 m/s ₂	ion, the acceleration of th (2) 0.8 m/s ₂	ne particle at any time t is (3) –0.6 m/s ₂	s : (4) 0.5 m/s₂
17.	If velocity of particle is (1) 8t ₃	given by v = 2t4 then its a (2) 8t	acceleration (dv/dt) at an (3) –8t₃	y time t will be given by : (4) t ₂
18.	The maximum value of (1) 8	xy subject to x + y = 8, (2) 16	is : (3) 20	(4) 24
19.	If $y = 3t_2 - 4t$; then mir (1) 3/2	nima of y will be at : (2) 3/4	(3) 2/3	(4) 4/3
20.	The slope of graph as	shown in figure at points	1, 2 and is m_1 , m_2 and m_1	n ₃ respectively then

-

20. The slope of graph as shown in figure at points 1, 2 and is m_1 , m_2 and m_3 respectively then

	$(3) - \csc x \cot x + \frac{2}{\sqrt{x}}$ Find $\frac{ds}{dt}$,		(4) csc x cot x + $\frac{2}{\sqrt{x}}$	
28.	s = tan t - t (1) $sec^2 t + t$	(2) sec ² t	(3) sec t – 1	(4) sec ² t – 1
29.	$s = t^2 - \sec t + t$ (1) 2t + sec t tan t + 1	(2) 2t – sec t tan t + 1	(3) 2t – sec t tan t –1	(4) 2t + sec ² tan t - 1
30.	$p = 5 + \frac{1}{\cot q}, \text{ find } \frac{dp}{dq}$ (1) sec ² q	(2) sec³ q	(3) sec q	(4) tan² q
31.	p = (1 + cosec q) cos q (1) sin q – cosec ² q	, find ^{dp} (2) – sin q – cosec² q	(3) – sin q – cos² q	(4) sec q – cosec² q
32.	y = sin ³ x, find the $\frac{dy}{dx}$ (1) 3 sin ² x (cosx)	(2) 3 sin ³ x (cosx)	(3) 3 sin x (cos x) ²	(4) sin x (cos x)
33.	$y = 5 \cos^{-4} x, \text{ find } \frac{dy}{dx}$ (1) 20 sin x cos ⁻⁵ x	(2) 10 sin x cos⁻⁵ x	(3) 20 sin x cos⁻³ x	(4) 20 sin x sin⁻⁵ x
34.	Find the derivatives of $s = \frac{4}{3\pi} \sin 3t + \frac{4}{5\pi} \cos \frac{4}{\pi}$ (1) $\frac{4}{\pi} (\cos 3t - \sin 5t)$	s 5t 	(3) $\frac{4}{\pi}$ (cos t – sin t)	(4) $\frac{4}{\pi}$ (cot 3t – sec 5t)
35.	$s = \sin \left(\frac{3\pi t}{2}\right) + \cos \left(\frac{3\pi t}{2}\right)$ $(1) \frac{3\pi}{2} \left[\cos\left(\frac{3\pi t}{2}\right) - \sin\left(\frac{3\pi t}{2}\right) - \sin\left(\frac{3\pi t}{2}\right)\right]$ $(3) \frac{3\pi}{2} \left[\cot\left(\frac{3\pi t}{2}\right) + \sin\left(\frac{3\pi t}{2}\right)\right]$	$\left[\frac{3\pi t}{2}\right]$	$(2) \frac{3\pi}{2} \left[\cos\left(\frac{3\pi t}{2}\right) + \sin\left(\frac{3\pi t}{2$	$\left[\frac{3\pi t}{2}\right]$
	(3)	 L 	(4) None of these	

SECTION - (E) : INTIGRATION

Find integrals of given functions

1.
$$\int (x^2 - 2x + 1) dx + c$$

(1) $\frac{x^3}{3} + x_2 - x - c$
(2) $\frac{x^3}{3} + x + x + c$
(3) $\frac{x}{3} + x_2 + x - c$
(4) $\frac{x^3}{3} - x_2 + x + c$

•				
2.	$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$ (1) $\frac{2\sqrt{x}}{3} + 2\sqrt{x} = 0$	(2) $\frac{2\sqrt{x^2}}{3} - 2\sqrt{x} + c$	$(2) \frac{2\sqrt{x^3}}{3} + 2\sqrt{x} + 2\sqrt{x}$	$(4) \frac{2\sqrt{x}}{2} + 2\sqrt{x} = 0$
3.	$\int \frac{1}{3x} dx$	(2) $\frac{1}{3} \ell nx$		
4.	$\int x \sin(2x^{2}) dx,$ (1) - $\frac{1}{4} \cos(2x_{2}) + C$	(use , u = 2x ₂) $\frac{1}{4} \cos(2x_2) + C$	$\frac{1}{(3)-2}\cos(2x) + C$	$(4) - \frac{1}{3}\cos(3x^2) + C$
5.	$\int \frac{3}{(2-x)^2} dx$ (1) $\frac{3}{2-x} + C$	(2) $\frac{2}{2-x} + C$	(3) $\frac{3}{2-x} + C$	(4) $\frac{3}{2+x} + C$
6.	$\int_{-4}^{-1} \frac{\pi}{2} d\theta$ $\frac{3\pi}{3}$	(2) $\frac{3\pi}{2}$	(3) $\frac{2\pi}{3}$	(4) $\frac{\pi}{2}$
7.	$\int_{0}^{1} e^{x} dx$ (1) e - 1	m(2) e + 1	(3) e – 2	(4) None of these
8.	y = 2x, the area under $(1) b^2/2$ units	the curve from x = 0 to x (2) b ² units	= b will be (3) 2b ² units	(4) b/2 units
9.	$\int_{0}^{\pi} \sin x dx$ y= ⁰ (1) 2 units	(2) 3 units	(3) 4 units	(4) 5 units
10.	Evaluate the following (i) $\int x^{15} dx$ (i) $\int (x + \frac{1}{x}) dx$ (v) $\int (x + \frac{1}{x}) dx$	(ii) $\int x^{-3/2} dx$ (ii) $\int \left(\frac{a}{x^2} + \frac{b}{x}\right) dx$ (vi)	(iii) $\int (3x^{-7} + x^{-1})dx$ (a and b are constant)	$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 dx$
11. 12.	(1) $\frac{125}{3}$	equal to $ \begin{array}{c} \frac{124}{3} \\ \text{(2)} \overline{3} \\ \text{integrals (Here G,M,m,k,)} \\ \int_{r_1}^{r_2} -k \frac{q_1 q_2}{x^2} dx \\ \text{(ii)} r_1 x^2 \end{array} $	∫Mvdv	(4) 45 $\int_{0}^{\infty} x^{-1/2} dx$
	0 \sim \sim	(11)	(iii) u	(iv) ⁰

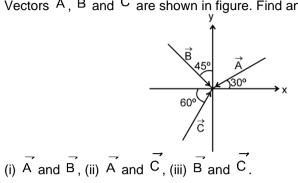
•				
	√2 ∫sinxdx (v) 0 3	$\int_{0}^{\pi/2} \cos x dx$	(vii) $\frac{\pi/2}{\int \cos x dx}$	
13.	$\int x^{-\frac{3}{2}} dx$ is equal to : -2	2		
		(2) $\frac{2}{\sqrt{x}}$ +C	(3) ^{2√x} +C	(4) $-2\sqrt{x} + C$
14.	$\int x^{-\frac{5}{3}} dx$ is equal to : 3 $\frac{2}{3}$	$3^{\frac{2}{3}}$	$3 - \frac{2}{3}$	$3 - \frac{2}{3}$
	(1) $\frac{3}{2}x^{\frac{2}{3}} + C$ $\int x^{2019} dx$	(2) $\frac{-2^{x^{3}}}{2}$ + C	(3) $\frac{3}{2}x^{-\frac{2}{3}} + C$	(4) $-\frac{-x}{2}$ + C
15.	X ²⁰²⁰	(2) $\frac{X^{2018}}{2018} + C$	(3) 2019 X ²⁰¹⁸ +C	(4) – ²⁰¹² X ²⁰¹¹ + C
16.	$\int 2\sin(x)dx$ is equal to	:		
	(1) –2cos x + C	(2) $2 \cos x + C$	(3) –2 cos x	(4) 2 cosx
17.	$\int (\sin x + \cos x) dx$ is eq (1) $-\cos x + \sin x$ (3) $\cos x - \sin x + C$	ual to :	(2) – cosx + sinx + C (4) – cosx – sinx + C	
18.	$\int (x+x^2+x^3+x^4) dx$	s equal to :		
10.	(1) 1+2x+3x ₂ +4x ₃ +C $\frac{x^{2}}{x^{2}}+\frac{x^{3}}{x^{3}}+\frac{x^{4}}{x^{4}}+\frac{x^{5}}{x^{5}}$		(2) $1+2x+3x_2+4x_3$ (4) $\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\frac{x^5}{5}$	
	(0)		(4) 2 3 4 5	
19.	If $y = sin(ax+b)$, then $\int \frac{cos(ax+b)}{cos(ax+b)}$	y ax will be :	cos(ax+b)	
	(1) a + C (3) a cos(ax+b)+C		(2) – a + C (4) – a cos(ax+b)+C	
20.	If $y = x_2 sin(x_3)$, then $\int y$			cos x ³
	(1) -cos(x ₃) + C	$(2)\left(-\frac{\cos x^3}{3}\right)+C$	(3) cos(x ₃) + C	$\frac{\cos x^3}{3} + C$
21.	If $y = x_2$, then area of c (1) 1/3	urve y v/s x from x = 0 to (2) 8/3	o 2 will be : (3) 4/3	(4) 2/3
22.	If $y = t \sin(t_2)$ then $\int y dt$	t will be :		
	(1) $\frac{\cos(t^2)}{2} + c$	(2) $\frac{\cos(t^2)}{2} + c$	(3) $\frac{-\cos(t^2)}{2} + c$	(4) cos (t ₂)
23.	If $x = (6y + 4) (3y_2 + 4y)$	+ 3) then $\int x dy$ will be :		
	(1) $\frac{1}{3y^2 + 4y + 3}$	+ 3) then $\int x dy$ will be : (2) $\frac{(3y^2 + 4y + 3)^2}{2}$ + C	C (3) (3y ₂ + 4y + 3)	$(4) \frac{(6y+4)}{(3y^2+4y+3)}$
51 Pa				

51 | Page

 $\int_{0}^{\pi/2} \cos 3t \, dt$ 24. Value of 0 is 2 $(3) -\frac{2}{3}$ 1 (1) $\frac{2}{3}$ (2) $-\frac{1}{3}$ (4) 3 $\int_{0}^{1} (t^{2} + 9t + c) dt = \frac{9}{2}.$ Then the value of 'c'. 25. $(3) -\frac{2}{3}$ 2 1 1 (1) 3 (4) 3 3 (2) 26. Find the value of following integration. $\int^{2\pi} \sin^2 \theta d\theta$ 0 Here c,a are constants. (1) π (2) 2π (3) 3 π (4) 4 π If $y = \frac{1}{ax+b}$, then $\int y \, dx$ will be : 27. (1) $\overline{(ax+b)^2} + C$ (2) ax + b + Cln(ax+b)а (3) aℓn(ax+b)+C + C (4) $\int^{2\pi} \theta d\theta$ 28. (3) $\frac{\pi^3}{2}$ (2) $\frac{3\pi^3}{2}$ $3\pi^2$ (1) 2 ر, 2 ∛7 ∫ x²dx (4) π 29. (2) ⁷/₄ (3) $\frac{5}{4}$ 7 (1) [.] (4) 0 $\int\limits_0^1 \frac{dx}{3x+2}$ 30. 1/3 $\ln\left(\frac{5}{2}\right)$ $\ln\left(\frac{5}{2}\right)$ $\ln\left(\frac{5}{2}\right)$ (1) (2) (3) (4) None of these 31. Integrate the following : (ii) x⁷ (ii) $x^7 - 6x + 8$ (i) 6x 32. Integrate the following : $\frac{x^{-4}}{2} + x^2$ (i) 2x⁻⁴ (ii) (iii) $- x^{-4} + x - 1$ 33. Integrate the following : (iii) $x^4 - \frac{1}{x^4}$ 2 $(i) - \overline{x^4}$ (ii) $\overline{2x^4}$

34. Integrate the following :

52 | Page


•				
·	(i) $\frac{2}{3} x^{-1/3}$	(ii) $\frac{1}{3} x^{-2/3}$	(iii) $-\frac{1}{3} x^{-4/3}$	
35.	Integrate the following			
	(i) π cos πx	(ii) $\frac{\pi}{2} \cos \frac{\pi x}{2}$	(iii) $\cos \frac{\pi x}{2} + \pi \cos x$	
36.	Integrate the following	:	π Υ π Υ	
	(i) csc x cot x	(ii) – cxc 5x cot 5x	(iii) $-\pi \csc \frac{\pi \pi}{2} \cot \frac{\pi \pi}{2}$	
37.	$\int (x+1)dx$			
	(1) $\frac{x^2}{2} + 2x - C$	(2) $\frac{x^2}{2} + x + C$	(3) $\frac{x^2}{2} - x + C$	(4) $\frac{x^2}{2} - x - C$
38.	∫(5-6x)dx			
	(1) $5x - x^2 + C$	(2) $x - 3x^2 - C$	(3) $5x + 3x^2 + C$	(4) $5x - 3x^2 + C$
	$\int \left(3t^2 + \frac{t}{2}\right) dt$			
39.		t ²	t ²	t ³
	(1) $t^2 + \frac{t^2}{4} - C$	(2) $t^2 + \frac{t^2}{4} + C$	(3) $t^3 - \frac{t^2}{4} - C$	(4) $\frac{t^3}{6}$ + t ⁴ + C
	$\int \left(\frac{t^2}{2} + 4t^3\right) dt$			
40.		+3	t ³	t ³
	(1) $\frac{t^3}{6} + t^2 + C$	(2) $\frac{t^3}{6} + t + C$	(3) $\frac{t^3}{6} - t + C$	(4) $\frac{t^3}{6} + t^4 + C$
41.	$\int x^{-1/3} dx$			
		$(2) \frac{3}{2} = 2^{7}$	(3) $\frac{3}{2} x^{1/3} + C$	$\frac{3}{2}$ 37 0
		(2) $2 x^{2/5} + C$	(3) $2 \times 1^{1/3} + C$	(4) $2 x^{2/7} + C$
12	$\int \left(\frac{\sqrt{x}}{2} + \frac{2}{\sqrt{x}}\right) dx$			
72.	x ^{3/2}	x ^{3/2}	(3) $\frac{x^{3/2}}{3} + 4x^{2/5} + C$	$\frac{x^{3/2}}{2}$
		(2) $3 + x^{1/2} + C$	(3) $3 + 4x^{2/5} + C$	(4) $3 + 4x^2 + C$
40	$\int \left(8y - \frac{2}{y^{1/4}}\right) dy$			
43.		8	(3) $y^2 - \frac{8}{3}y^{3/4} + C$	8
		(2) $4y^2 + \frac{3}{y^{3/4}} + C$	(3) $y^2 - \frac{3}{y^{3/4}} + C$	(4) $4y^2 - 3y^{1/3} + C$
44.	$\int 2x(1-x^{-3})dx$	0	ŋ	ŋ
	(1) x + $\frac{2}{x}$ - C	(2) $x^2 + \frac{z}{x} + C$	(3) $2x^2 + \frac{2}{x} + C$	(4) $5x^2 + \frac{2}{x} + C$
45.	∫(–2cost)dt			
•				

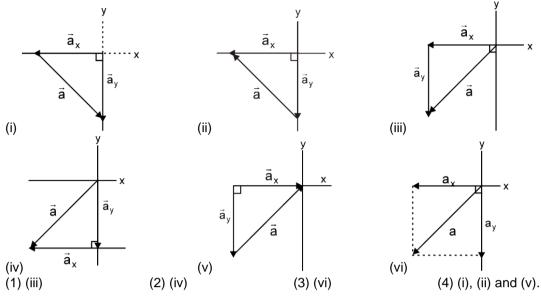
Mat	Mathematical Tools				
•	(1) – 2 sin t + C	(2) – 3 sin t + C	(3) – 5 sin t + C	(4) – 7 sin t + C	
46.	∫(–5 sin t)dt (1) 5 cos t + C	(2) 2 cos t – C	(3) 5 cosec t + C	(4) 5 tan t + C	
47.	$\int 7 \sin \frac{\theta}{3} d\theta$	(2) - 14 cos $\frac{\theta}{3}$ + C	$\frac{\theta}{3}$	$\frac{\theta}{3}$	
48.	$\int 3\cos 5\theta + C$	(2) - 14 cos ³ + C (2) $\frac{3}{5}$ sin 30 + C			
49.	(1) $\int \sin 5\theta + C$ $\int (-3\csc^2 x)dx dx$ (1) $3\cot x + C$	(2) o sin 30 + C (2) cot x + C	(3) 3 cos 50 + C (3) 3 tan x + C	(4) 5 cot x + C	
50.	$\int \left(-\frac{\sec^2 x}{3}\right) dx$ (1) $\frac{-\tan x}{3} + x$	(2) $\frac{-\tan x}{3}$ + C	(3) $\frac{\tan x}{5}$ +C	(4) None	
51.	$\int \frac{\csc\theta\cot\theta}{2} d\theta$ $(1) - \frac{1}{2} \csc\theta + C$	$(2) - \frac{1}{2} \tan\theta + C$	$(3) - \frac{1}{2}\cot\theta + C$	$(4) - \frac{1}{2}\sec\theta + C$	

 $\int \frac{2}{5} \sec \theta \tan \theta d\theta$ 52. (3) $\frac{2}{5}$ tan θ + C 2 2 2 (4) $\frac{-}{5}$ cosec θ + C (2) $\overline{5} \cos \theta + C$ (1) $\overline{5}$ sec θ + C $\int (4 \sec x \tan - 2 \sec^2 x) dx$ 53. (1) $4 \sec x - 2 \tan x + C$ (3) $4 \sec x - 3 \tan x + C$ (2) 2 sec x - 2 tan x + C (4) 4 sec x-5 tan x + C $\int \frac{1}{2} (\csc^2 x - \csc x \cot x) dx$ 54. (2) $\frac{1}{2} \tan x + \frac{1}{2} \csc x + C$ $(1) - \frac{1}{2} \cot x + \frac{1}{2} \csc x + C$ $(4) - \frac{1}{2}\sin x + \frac{1}{2}\csc x + C$ $(3) - \frac{1}{2} \sec x + \frac{1}{2} \csc x + C$ $\int (\sin 2x - \csc^2 x) dx$ 55. $(1) - \frac{1}{2} \cos 2x - \cot x + C$ $(2) - \frac{1}{2} \cos 2x + \cot x + C$ $(3) - \frac{1}{2} \cos 3x - \cot x + C$ $(4) - 2 \cos 2x + \tan x + C$ $\int (2\cos 2x - 3\sin 3x) dx$ 56. (1) $\sin 2x + \cos 3x + C$ (2) $\sin 2x + \cos 5x + C$ (3) $\sin 2x + \cot 3x + C$ (4) $\sin 3x + \cos 3x + C$ $\int \frac{1+\cos 4t}{2} dt$ 57. (1) $\frac{t}{2} + \frac{\sin 4t}{8} + C$ (2) $\frac{t}{2} - \frac{\sin 4t}{8} - C$ (3) $\frac{t}{3} + \frac{\sin 4t}{8} + C$ (4) All of these $\int \frac{1-\cos 6t}{2}$ dt 58. (1) $\frac{t}{2} + \frac{\sin 6t}{12} + C$ (2) $\frac{t}{2} - \frac{\sin 6t}{12} + C$ (3) $2x^{\frac{t}{2}} - \frac{\sin 6t}{12} + C$ (4) $\frac{t}{2} - \frac{\sin 6t}{12} + C$ $\int (1 + \tan^2 \theta) d\theta$ 59. (1) $\tan \theta + C$ (2) $\cot \theta + C$ (3) $\sec \theta + C$ (4) cosec θ + C $\int^{3/2} (-2x+4) dx$ 60. (3) 6 square units (4) 8 square units (1) 2 square units (2) 4 square units Evalutae definite integrals of following functions $\int_{0}^{\pi/2} \theta^2 d\theta$ 61. π^2 π^2 π^3 π^2 (1) 24 (2) 24 (3) 36 (4) 48 ^{3b} ∫x²dx 62. (1) 9b³ (2) 3b³ (3) 27b³ (4) 81 b³

SECTION - (F) : VECTOR BASIC AND ADDITION

1. Vectors \vec{A} , \vec{B} and \vec{C} are shown in figure. Find angle between

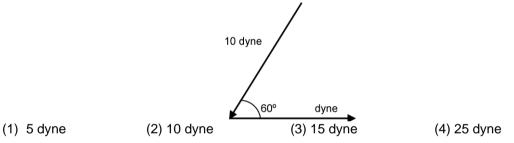
2. The forces, each numerically equal to 5 N, are acting as shown in the Figure. Find the angle between forces?


			•	
		5N/		
		60°		
		4	5N	
	(1) 90°	(2) 180°	(3)120°	(4)160°
3.			(2, -3, 4) and pointing fr	
	$(1) - \hat{i} + 4 \hat{j} - 5 \hat{k}$	(2) $\hat{i} + 4\hat{j} + 5\hat{k}$	(3) $\hat{i} - 4\hat{j} + 5\hat{k}$	$(4) - \hat{i} - 4\hat{j} - 5\hat{k}$
4.			ards is added with anoth lirection of resultant with (2) 53, 75 with East (4) 50, 53º with East	ner vector of magnitude 40 and the east.
5.	The vector sum of the f	forces of 10 N and 6 N c	an be	
	(1) 2 N	(2) 8 N	(3) 18 N	(4) 20 N.
6.	The vector sum of two	force P and Q is minimu	m when the angle θ betw	veen their positive directions, is
	$\frac{\pi}{2}$	$\frac{\pi}{2}$	(3) $\frac{\pi}{2}$	
	(1) $\frac{1}{4}$	(2) $\frac{\pi}{3}$	(3) 2	(4) π.
7.	The vector sum of two	vectors \vec{A} and \vec{B} is may	kimum, then the angle θ l	petween two vectors is -
	(1) 0°	(2) 30°	(3) 45°	(4) 60°
		÷ î c		
8.	Find the magnitude of 3	$3^{1} + 2^{1} + K^{2}$	40	
	(1) ^{√10}	(2) √11	(3) $\sqrt{13}$	(4) $\sqrt{14}$
9.	If $\vec{A} = 3^{\hat{i}} + 4^{\hat{j}}$ then find	аÂ		
э.			$2\hat{i} + 4\hat{i}$	3î – 2î
	$(1)\frac{3\hat{i}+4\hat{j}}{5}$	(2) 5	$(3) \frac{2\hat{i}+4\hat{j}}{5}$	$\frac{3\tilde{i}-2\tilde{j}}{5}$
10.	One of the rectangula	r components of a volc	with of 60 km h \cdot is 20	km h-1. Find other rectangular
10.	component?	i components of a verc		
	(1) $30\sqrt{3}$ km h ₋₁ .	(2) ^{20√3} km h₋ı.	(3) $30\sqrt{2}$ km h ₋₁ .	(4) $30\sqrt{2}$ km h ₋₁ .

Mathematical Tools

•				
• 11.	The x and y compone	nts of a force are 2 N a	nd – 3 N. The force is	
	(1) $2^{\hat{j}} - 3^{\hat{j}}$	(2) $2\hat{i} + 3\hat{j}$	$(3) - 2\hat{i} - 3\hat{j}$	(4) $3\hat{i} + 2\hat{j}$
12.	horizontal component	& the value of θ .		rtical component is 18 N, find the
				(4) 37 N ; 24 ₀ approx
13.		directions of forces \vec{A} angle α with \vec{A} then f		A = 8 dyne and B = 6 dyne. If the
	(1) 47°.	(2) 37°.	(3) 75°.	(4) 120°.
14.	If $\vec{A} = 3\hat{i} + 4\hat{j}$ and \vec{B} $4\hat{i} + 5\hat{i} - 2\hat{k}$	$\vec{i}_{=}$ \hat{i}_{+} \hat{j}_{+} $2\hat{k}$ then find $2\hat{i}_{-}$ $ 2\hat{k}$	out unit vector along $4\hat{i} = 2\hat{i} + 2\hat{k}$	$A\hat{i} + 5\hat{i} + 2\hat{k}$
	(1) $\frac{11+6j}{\sqrt{45}}$	(2) $\frac{21 - 67 - 210}{\sqrt{45}}$	(3) $\frac{4\hat{i}-2\hat{j}+2\hat{k}}{\sqrt{45}}^{\circ}$	(4) $\frac{41+69+21}{\sqrt{45}}$
15.	The x and y compone	ints of vector \vec{A} are 4r	n and 6m respectively	The x,y components of vector are
10.	A + B 10m and 9m re	spectively. Find the len	gth of B and angle that	B makes with the x axis.
	(1) $3^{\sqrt{3}}$, $\tan^{-1} \frac{1}{2}$	(2) $3^{\sqrt{5}}$, $\tan^{-1} \frac{1}{2}$	(3) $3^{\sqrt{5}}$, $\tan \frac{1}{3}$	(4) $2\sqrt{3}$, $\tan^{-1}\frac{1}{2}$
16.	A vector is not change (1) it is displaced para (3) it is cross-multiplie			gh an arbitrary angle an arbitrary scalar.
17.	If the angle between to (1) decreases (3) remains unchange		e magnitude of their resu (2) increases (4) first decreases a	
18.	Which of the following (1) 5, 10, 30 and 50 kr (3) 40, 40, 90 and 200	n	might be capable of brin (2) 5, 9, 9 and 16 km (4) 10, 20, 40 and 90	
19.	ب When two vector ^a ar (1) greater than (a + b (3) less than (a + b)	nd ^b are added, the ma)	agnitude of the resultant (2) less than or equa (4) equal to (a + b)	vector is always al to (a + b)
20.	If $ \vec{A} + \vec{B} = \vec{A} = \vec{B} $ (1) 0°	, then the angle betwee (2) 60°	en A and B is (3) 90°	(4) 120°.
21.	-		the x-axis in the first qu nt. The sum A + B is a (3) 1 along – x axis	adrant. Vector B is of length 2 cm vector of magnitude - (4) 2 along – x axis
22.	Which of the following (1) A vector cannot be	is a true statement?	ctor	

- - (1) A vector cannot be divided by another vector(2) Angular displacement can either be a scalar or a vector.
 - (3) Since addition of vectors is commutative therefore vector subtraction is also commutative.
 - (4) The resultant of two equal forces of magnitude F acting at a point is F if the angle between the two forces is 120°.


23. In the Figure which of the ways indicated for combining the x and y components of vector a are proper to determine that vector?

24. Two vectors having equal magnitude of 5 units, have an angle of 60° between them. Find the magnitude of their resultant vector and its angle from one of the vectors.

(1) 5, 20° (2)
$$5\sqrt{3}$$
, 30° (3) 3, 40° (4) 3, 50°

25. Two forces each numerically equal to 10 dynes are acting as shown in the figure, then find resultant of these two vectors.

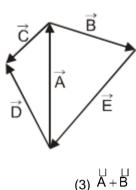
26. The magnitude of pairs of displacement vectors are given. Which pairs of displacement vectors cannot be added to give a resultant vector of magnitude 13 cm ?
(1) 4 cm, 16 cm
(2) 20 cm, 7 cm
(3) 1 cm, 15 cm
(4) 6 cm, 8 cm

27. If $\stackrel{\square}{A} = 3\hat{i} + 2\hat{i}$ and $\stackrel{\square}{B} = 2\hat{i} + 3\hat{i} - \hat{k}$, then find a unit vector along $\stackrel{(\square}{A} - \stackrel{\square}{B})$ $\begin{array}{c} \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}} & \frac{\hat{i} - \hat{j} - \hat{k}}{\sqrt{3}} & \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} & \frac{\hat{i} + \hat{j} + 1}{\sqrt{3}} \\ \end{array}$ (4)

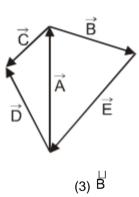
28. If \hat{n} is a unit vecot in the direction of the vector \vec{A} , then – (1) $\hat{n} = \frac{\vec{A}}{|A|}$ (2) $\hat{n} = \vec{A} |\vec{A}|$ (3) $\hat{n} = \vec{A}$ (4) $\hat{n} = \hat{n} \times \vec{A}$

- **29.** The resultant of $\stackrel{\square}{A}$ and $\stackrel{\square}{B}$ makes an angle α with $\stackrel{\square}{A}$ and $\stackrel{\square}{B}$, then : (1) $\alpha < \beta$ (2) $\alpha < \beta$ (3) $\alpha < \beta$ if A > B (4) $\alpha < \beta$ if A = B
- **30.** If $\stackrel{\square}{P} + \stackrel{\square}{Q} = \stackrel{\square}{P} \stackrel{\square}{Q}$ and $\stackrel{\theta}{=}$ is the angle between $\stackrel{\square}{P}$ and $\stackrel{\square}{Q}$, then (1) $\theta = 0^{\circ}$ (2) $\theta = 90^{\circ}$ (3) P = 0 (4) Q = 0

31. The magnitudes of sum and difference of two vectors are same, then the angle between them is (1) 90° (2) 40° (3) 45° (4) 60°


32. The projection of a vector $3\hat{i} + 4\hat{k}$ on y-axis is :

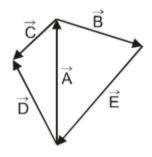
58 | Page


Mathematical Tools

(1) 5 (2) 4 (3) 3 (4) 3	(1) 5	(2) 4	(3) 3	(4) 3
-------------------------	-------	-------	-------	-------

- **33.** Two forces of 12N and 8N act upon body. The resultant force on the body has a maximum value of-(1) 4N (2) 0N (3) 20 N (4) 8 N
- **34.** In figure, $\stackrel{\square}{\vdash}$ equals

35. In figure, $\overset{\square}{D}-\overset{\square}{C}$ equals


(4) – [∐]

(4) - (A + B)

36. In figure, $\stackrel{\Box}{E+D-C} \stackrel{\Box}{equals}$

(2) – Å

(1) Å

(1) Å	(2) – Å	(3) [∐]	(4) – [∐]
(1)	(2) = 73	(3) =	(4) = =

- Forces proportional to AB, BC and 2CA act along the sides of triangle ABC in order. Their resultant represented in magnitude and direction as (1) CA (2) AC (3) BC (4) CB
- **38.** A given force is resolved into components P and Q equally inclined to it. Then : (1) P = 2Q (2) 2P = Q (3) P = Q (4) none of these
- **39.** A particle starting from the origin (0,0) moves in a straight line in the (x, y) plane. Its coordinates at a later time are ($\sqrt{3}$, 3). The path of the particle makes with the x-axis an angle of : (1) 30° (2) 45° (3) 60° (4) 0°

SECTION - (G) : VECTOR MULTIPICATION

1. If
$$\vec{k} = \hat{i} + \hat{j} + \hat{k}$$
 and $\vec{B} = 2\hat{i} + \hat{j}$ find (a) $\vec{k}\vec{B}$ (b) $\vec{k} \times \vec{B}$
(1) $3 \text{ and } -\hat{i} + 2\hat{j} - \hat{k}$ (2) $5 \text{ and } -\hat{i} + 2\hat{j} - \hat{k}$ (3) $1 \text{ and } -\hat{i} + 2\hat{j} + \hat{k}$ (4) $3 \text{ and } -\hat{i} - 2\hat{j} + \hat{k}$
2. If $|\vec{k}| = 4$, $|\vec{B}| = 3 \text{ and } 0 = 60^{\circ}$ in figure, Find (a) $\vec{k} \cdot \vec{B}$ (b) $\vec{k} \times \vec{B}$
(1) $3 \text{ and } 6\sqrt{3}$ (2) $6 \text{ and } 3\sqrt{3}$ (3) $6 \text{ and } 3\sqrt{6}$ (4) $6 \text{ and } 6\sqrt{3}$
3. Three non zero vector $\vec{k} \cdot \vec{B} \cdot \vec{k} \cdot \vec{C}$ satisfy the relation $\vec{k} \cdot \vec{B} = 0$ and $\vec{k} \cdot \vec{C} = 0$. Then \vec{k} can be parallel to :
(1) \vec{B} (2) \vec{C} (3) $\vec{B} \cdot \vec{C}$ (4) $\vec{B} \times \vec{C}$
4. If $\vec{k} = 4\hat{i} + n\hat{J} - 2\hat{k}$ and $\vec{B} = 2\hat{i} + 3\hat{J} + \hat{k}$, then find the value of n so that $\vec{k} \pm \vec{B}$.
(1) $n = 2$ (2) $n = -1$ (3) $n + 1$ (4) $n = -2$
5. If $\vec{F} = (4\hat{i} - 10\hat{j})$ and $\vec{F} = (6\hat{i} - 3\hat{j})$, then calculate torque $(\vec{V} = \vec{V} \cdot \vec{F})$.
(1) $-38\hat{k}$ (2) $-35\hat{k}$ (3) $-55\hat{k}$ (4) $-28\hat{k}$
6. Find a unit vector perpendicular to both the vectors $(2\hat{i} + 3\hat{j} + \hat{k})$ and $(\hat{i} - \hat{j} + 2\hat{k})$
($\hat{n} = \pm \frac{1}{\sqrt{83}}(7\hat{i} + 3\hat{j} + 5\hat{k})$
($\hat{n} = \pm \frac{1}{\sqrt{83}}(7\hat{i} - 3\hat{j} - 5\hat{k})$
($\hat{n} = \pm \frac{1}{\sqrt{83}}(7\hat{i} - 3\hat{j} - 5\hat{k})$
7. Which of the following vector identities is false ?
(1) $\vec{F} + \vec{Q} = \vec{Q} + \vec{F}$ (2) $\vec{F} - \vec{Q} = \vec{Q} \times \vec{F}$ (3) $\vec{F} \vec{Q} = \vec{Q} \vec{F}$ (4) $\vec{F} \times \vec{Q} \times \vec{Q} \times \vec{F}$
8. A rea of a parallogram, whose diagonals are $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$ will be

Area of a parallogram, whose diagonals are 3i + j - 2k and i - 3j + 4k will be (1) 14 unit (2) $5\sqrt{3}$ (3) $10\sqrt{3}$ (4) $20\sqrt{3}$

9. If $\vec{A} = \hat{i} + \hat{j}$ and $\vec{B} = \hat{i} - \hat{j}$ The value of $(\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B})$ is :

•				
	(1) $\sqrt{2}$	(2) 0	(3) $\frac{1}{2}$	(4) 2
10.	Vectors $\vec{A} = \hat{i} + \hat{j} - 2\hat{k}$ (1) Parallel (3) Perpendicular	and $\vec{B} = 3\hat{i} + 3\hat{j} - 6\hat{k}$ are	: (2) Antiparallel (4) at acute angle with	h each other
11.	If two vectors are give $\vec{A} = \hat{i} + 2\hat{j} - \hat{k}$ and $\vec{B} = -\hat{i} - \hat{j} + \hat{k}$	en as :		
	then the vector which	is not perpendicular to (A×B) is:	
	()	$(2) \hat{i} + \hat{j} + \hat{k}$		
12.	If a vector $2^{\hat{i}}+3^{\hat{j}}+8$	$\hat{\mathbf{k}}$ is perpendicular to the	vector $4\hat{i} - 4\hat{j} + \alpha \hat{k}$, the	en the value of α is : [AIPMT Screening 2005]
	(1) –1	(2) $\frac{1}{2}$	$(3) - \frac{1}{2}$	(4) 1
13.	If the angle betwen th	e vectors \vec{A} and \vec{B} is θ ,	the value of the product	$(\vec{B} \times \vec{A})$. \vec{A} is equal to : [AIPMT Screening 2005]
	(1) BA ₂ cos θ	(2) BA₂ sin θ	(3) $BA_2 \sin \theta \cos \theta$	(4) zero
14.				$= \sqrt{3} (\overrightarrow{A \bullet B}) $ the value of θ is : [AIPMT screeing 2007]
	(1) 60°	(2) 45°	(3) 30°	(4) 90°
15.	Two forces P and Q a through 90º . Then	cting at a point are such	that if P is reversed, the	direction of the resultant is turned
	(1) P = Q		(2) P =2Q	
	(3) $P = \frac{Q}{2}$		(4) No relation betwee	en P and Q
16.	The vector sum of two	o forces is perpendicular	to their vector difference	es. In that case, the forces : [AIPMT Screening 2003]
	(1) are not equal to ea(3) are equal to each	ach other in magnitude other	(2) cannot be predicte (4) are equal to eah c	
17.		\vec{B} then the value of $ \vec{A} $		[AIPMT Screening 2004]
	(1) (A ₂ + B ₂ + AB) _{1/2}	(2) $\left(A^2 + B^2 + \frac{AB}{\sqrt{3}}\right)^{1/2}$	(3) A + B (4) ($A_2 + B_2 + \sqrt{3} AB)_{1/2}$

1.

Exercise-2

Velocity as a function of time is

 $V(t) = \sin^2 t - \cos(2t)$ Then the value of v $\left(\frac{\pi}{3}\right)$ will be : 2 (1) 3 (2) 4 (3) 4 (4) 4 x³y⁵ If $f = 2\pi \frac{\sqrt{z}}{\sqrt{z}}$ then log f is equal to : 2. (1) $\log 2\pi + 3 \log x + 5 \log y + \frac{1}{2} \log z$ (2) $\log 2\pi + 3 \log x + 5 \log y - \frac{1}{2} \log z$ (3) $\log 2\pi - 3 \log x + 5 \log y + \frac{1}{2} \log z$ (4) $\log 2\pi + 3 \log x + 5 \log y + \log z$ 3. Which of following are true (1) $\sin 37^{\circ} + \cos 37^{\circ} = \sin 53^{\circ} + \cos 53^{\circ}$ (2) $\sin 37^{\circ} - \cos 37^{\circ} = \cos 53^{\circ} - \sin 53^{\circ}$ (3) $\tan 37^\circ + 1 = \tan 53^\circ - 1$ (4) $\tan 37^{\circ} \times \tan 53^{\circ} = 1$ If $y_1 = A \sin \theta_1$ and $y_2 = A \sin \theta_2$ then 4. (1) $y_1 + y_2 = 2A \sin \left(\frac{\theta_1 + \theta_2}{2}\right) \cos \left(\frac{\theta_1 - \theta_2}{2}\right)$ (2) $y_1 + y_2 = 2A \sin \theta_1 \sin \theta_1$ (3) $y_1 - y_2 = 2A \sin \left(\frac{\theta_1 - \theta_2}{2}\right) \cos \left(\frac{\theta_1 + \theta_2}{2}\right)$ (4) $y_1 , y_2 = -2A^2 \cos \left(\frac{\pi}{2} + \theta_1\right) \cos \left(\frac{\pi}{2} - \theta_2\right)$ If $R_2 = A_2 + B_2 + 2AB \cos\theta$, if |A| = |B| then value of magnitude of R is equivalent to : 5. (2) Acos 2 (3) 2Acos 2 (4) 2Bcos 2 (1) 2Acosθ A particle starting from the origin (0, 0) moves in a straight line in the (x, y) plane. Its coordinates at a 6. later time are ($\sqrt{3}$, 3). The path of the particle makes with the x-axis an angle of : [AIPMT screeing 2007] $(1) 30^{\circ}$ $(3) 60^{\circ}$ (4) 0° $(2) 45^{\circ}$ 7. Find the value of a if distance between the point (-9cm, a cm) and (3cm, 3 cm) is 13 cm. (1) 6 cm (2) 8 cm (3) 10 cm (4) 12 cm 8. $y = \ell n x_2 + \sin x$ (1) $\frac{dy}{dx} = \frac{2}{x} + \cos x$, $\frac{d^2y}{dx^2} = \frac{-2}{x^2} - \sin x$ (2) $\frac{dy}{dx} = \frac{2}{x} - \cos x$, $\frac{d^2y}{dx^2} = \frac{-2}{x^2} + \sin x$ (3) $\frac{dy}{dx} = -\frac{2}{x} + \cos x$, $\frac{d^2y}{dx^2} = \frac{-2}{x^2} - \sin x$ (4) $\frac{dy}{dx} = -\frac{2}{x} - \cos x$. $\frac{d^2y}{dx^2} = \frac{2}{x^2} - \sin x$ $y = \sqrt[7]{x} + \tan x$

(1)
$$\frac{dy}{dx} = -\frac{x^{\frac{7}{7}}}{7} + \sec_2 x, \quad \frac{d^2 y}{dx^2} = \frac{-6}{49} x^{\frac{-13}{7}} - 2\tan x \sec_2 x$$

(2) $\frac{dy}{dx} = \frac{x^{\frac{6}{7}}}{7} + \sec_2 x, \quad \frac{d^2 y}{dx^2} = \frac{-6}{49} x^{\frac{-13}{7}} + 2\tan x \sec_2 x$
(3) $\frac{dy}{dx} = \frac{x^{\frac{6}{7}}}{7} - \sec_2 x, \quad \frac{d^2 y}{dx^2} = \frac{-6}{49} x^{\frac{-13}{7}} - 2\tan x \sec_2 x$
(4) $\frac{dy}{dx} = \frac{x^{\frac{6}{7}}}{7} + \sec_2 x, \quad \frac{d^2 y}{dx^2} = \frac{6}{49} x^{\frac{-13}{7}} + 2\tan x \sec_2 x$

Find derivative of given functions w.r.t. the corresponding independent variable.

 $y = \left(x + \frac{1}{x} \right) \left(x - \frac{1}{x} + 1 \right)$ 10. (2) $\frac{dy}{dx} = 1 + 2x - \frac{2}{x^3} - \frac{1}{x^2}$ (1) $\frac{dy}{dx} = 1 + 2x + \frac{2}{x^3} - \frac{1}{x^2}$ (4) $\frac{dy}{dx} = 1 + 2x + \frac{2}{x^3} + \frac{1}{x^2}$ (3) $\frac{dy}{dx} = 1 + 2x + \frac{2}{x^3} - \frac{1}{x^2}$ 11. $r = (1 + \sec \theta) \sin \theta$, r' is & (1) $\frac{dr}{d\theta} = \cos \theta + \sec_2 \theta$ (2) $\frac{dr}{d\theta} = \cos \theta - \sec_2 \theta$ (3) $\frac{dr}{d\theta} = \cos \theta + \tan_2 \theta$ (4) $\frac{dr}{d\theta} = \cos \theta + \sec_2 \theta$ $q = \sqrt{2r - r^2}$, find $\frac{dq}{dr}$ 12. (1) $\frac{1-r}{\sqrt{2r-r^2}}$ (2) $\frac{1+r}{\sqrt{2r+r^2}}$ (3) $\frac{1-r}{\sqrt{3r+r}}$ (4) $\frac{1-r}{\sqrt{2r-r^2}}$ dy Find dx $y = \frac{\cot x}{1 + \cot x}$, y' is & 13. (1) $\frac{-\csc^2 x}{(1+\cot x)^2}$ (2) $\frac{-\csc^2 x}{(1-\cot x)^2}$ (3) $\frac{-\csc^2 x}{(1+\cot x)^2}$ (4) $\frac{-\csc^2 x}{(1+\tan x)^2}$ $y = \frac{\ln x + e^x}{\tan x}$, then $\frac{dy}{dx}$ is 14. (1) $\frac{\tan x \left(e^{x} + \frac{1}{x}\right) + \sec^{2} x (e^{x} + \ln x)}{\tan^{2} x}$ (2) $\frac{\tan x \left(e^{x} + \frac{1}{x}\right) - \sec^{2} x (e^{x} + \ln x)}{\tan^{2} x}$ $\frac{\tan x\left(e^{x}+\frac{1}{x}\right)-\sec^{2} x(e^{x}-\ln x)}{\tan^{2} x}$ $\frac{\tan x \left(e^x - \frac{1}{x}\right) - \sec^2 x (e^x + \ln x)}{\tan^2 x}$ (3) (4)

Find $\frac{dy}{dx}$ as a function of x

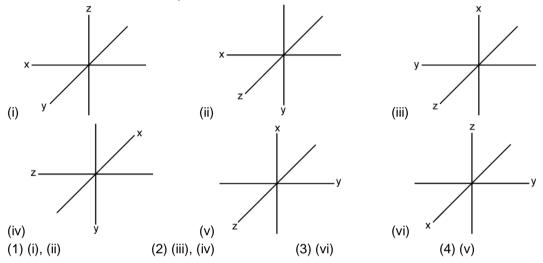
Mathematical Tools

15.	x ₃ + y ₃ = 18 xy			
	(1) $\frac{dy}{dx} = \frac{18y + 3x^2}{3y^2 + 18x}$	(2) $\frac{dy}{dx} = \frac{15y + 3x^2}{3y^2 - 18x}$	(3) $\frac{dy}{dx} = \frac{18y - 3x^2}{3y^2 - 18x}$	(4) $\frac{dy}{dx} = \frac{18y - 3x^2}{3y^2 + 12x}$
16.	Find two positive numb (1) 15, 45	ers x & y such that x + y (2) 30, 30	= 60 and xy is maximum (3) 20, 40	- (4) 10, 50
17.	Find integrals of given $\int x^{-3}(x+1) dx$ (1) - $\frac{1}{x} - \frac{1}{2x^2} + C$	functions. (2) $\frac{1}{x} + \frac{1}{2x^2} + C$	(3) $3 - \frac{1}{2x^2} + C$	$(4) - \frac{1}{x} + \frac{1}{2x^2} + C$
18.	$\int (1 - \cot^2 x) dx$ (1) 2x + cot x + C	(2) x + cot x + C	(3) 2x – cot x + C	(4) 2x + tan x + C
19.	$\int \cos \theta (\tan \theta + \sec \theta) d\theta$ (1) - cos θ + θ + C	θ (2) – cos θ – θ + C	(3) – cosec θ + θ + C	$(4) - 2\cos\theta + \theta + C$
20.	$\int \sqrt{3-2s} ds$ (1) $-\frac{1}{3} (3-2s)_{2/3} + C$		$(2) - \frac{1}{3}(3 - 2s)_{3/2} + C$	
	$(3) - \frac{1}{3} (3 + 2s)_{3/2} + C$		(4) None of these	
21.	$\int \frac{\mathrm{dx}}{\sqrt{5x+8}}$ (1) $\left[\frac{2}{5}\sqrt{5x+8}\right] + \mathrm{C}$	$(2)\left[\frac{2}{5}\sqrt{3x-8}\right]_{+\mathrm{C}}$	$(3)\left[\frac{2}{5}\sqrt{5x-4}\right]_{-C}$	$(4)\left[\frac{2}{5}\sqrt{5x-4}\right]$
22.	$\int_{0}^{\sqrt{\pi}} x \sin x^2 dx$ (1) 1 Use a definite integral to [0,b],	(2) 2 o find the area of the regio	(3) 3 on between the given cur	(4) 1 ve and the x–axis on the interval
23.	$y = 3x_2$ (1) b ³	(2) b ²	(3) b	(4) b ⁵
24.	Two vectors a and b	inclined at an angle θ w.ι	t. each other have a res	ultant ^c which makes an angle
	(1) magnitude(3) magnitude as well a		(2) direction (4) neither magnitude n	or direction.
25.	Two vectors \vec{A} and \vec{B} of these three vectors	lie in a plane. Another v	ector C lies outside this	plane. The resultant $\vec{A} + \vec{B} + \vec{C}$

٠

	(1) can be zero		(2) cannot be zero								
	(3) lies in the plane of	Ă&B	(4) lies in the plane	of \vec{A} & \vec{A} + \vec{B}							
26.	The rectangular components of a vector are (2, 2). The corresponding rectangular components of another $\int_{-\infty}^{-\infty}$										
	vector are (1, $\sqrt{3}$). Fi	nd the angle between t	he two vectors	wo vectors							
	(1) 10º	(2) 15°	(3) 20°	(4) 25°							
27.	Given : $\vec{a} + \vec{b} + \vec{c} = 0$. Out of the three vectors \vec{a}, \vec{b} and \vec{c} two are equal in magnitude. The magnitude of										
	the third vector is $\sqrt{2}$ times that of either of the two having equal magnitude. The angles between the vectors are:										
		(2) 30°, 60°, 90°	(3) 45°, 45°, 90°	(4) 45°, 60°, 90°							
28.	Let a and b be two no	on-null vectors such tha	,t ^{a + b} = ^{a − 2 b} . Th	$ \vec{a_1} $ en the value of $ b $ may be :							
	1	<u>1</u>									
	(1) $\frac{1}{4}$	(2) $\frac{1}{8}$	(3) 1	(4) 2							
29.	A truck travelling due velocity ?	north at 20 ms ₋₁ turns		ame speed. What is the change in PMT Entrance Exam 2005]							
	(1) 20 $\sqrt{2}$ ms ₋₁ south-	west	(2) 40 ms₋₁ south-we	(2) 40 ms ₋₁ south-west							
	(3) 20 $\sqrt{2}$ ms ₋₁ north-	west	(4) 40 ms₋₁ north-we	(4) 40 ms ₋₁ north-west							
20	Determine that vector which when added to the resultant of $\vec{P} = 2\hat{i} + 7\hat{j} - 10\hat{k}$ and $\vec{Q} = \hat{i} + 2\hat{j} + 3\hat{k}$ gives a unit vector along X-axis										
30.				C C							
30.	unit vector along X-ax	is.	(3) $-2\hat{i}+7\hat{j}+9\hat{k}$								
30. 31.	unit vector along X-ax (1) $-2\hat{i} - 9\hat{j} + 7\hat{k}$ Two vectors acting in each other, then the r	is. (2) $+2\hat{i}+9\hat{j}-7\hat{k}$ the opposite directions esultant is 50 units . Ca	(3) $-2\hat{i}+7\hat{j}+9\hat{k}$ is have a resultant of 10 alculate the magnitude of	(4) $+2\hat{i}-5\hat{j}+3\hat{k}$ units. If they act at right angles to							
31.	unit vector along X-ax (1) $-2\hat{i} - 9\hat{j} + 7\hat{k}$ Two vectors acting in each other, then the r (1) P = 40 ; Q = 30	tis. (2) $+2\hat{i}+9\hat{j}-7\hat{k}$ the opposite directions esultant is 50 units . Ca (2) P = 30 ; Q = 40	(3) $-2\hat{i} + 7\hat{j} + 9\hat{k}$ is have a resultant of 10 alculate the magnitude of (3) P = 80 ; Q = 50	(4) $+2\hat{i}-5\hat{j}+3\hat{k}$ units. If they act at right angles to f two vectors . (4) P = 30 ; Q = 40							
	unit vector along X-ax (1) $-2\hat{i} - 9\hat{j} + 7\hat{k}$ Two vectors acting in each other, then the r (1) P = 40 ; Q = 30 Find the resultant of the	tis. (2) $+2\hat{i}+9\hat{j}-7\hat{k}$ the opposite directions esultant is 50 units . Ca (2) P = 30 ; Q = 40 he three vectors \overrightarrow{OA} , \overrightarrow{OA}	(3) $-2\hat{i} + 7\hat{j} + 9\hat{k}$ is have a resultant of 10 alculate the magnitude of (3) P = 80 ; Q = 50	(4) $+2\hat{i}-5\hat{j}+3\hat{k}$ units. If they act at right angles to f two vectors .							
31.	unit vector along X-ax (1) $-2\hat{i} - 9\hat{j} + 7\hat{k}$ Two vectors acting in each other, then the r (1) P = 40 ; Q = 30 Find the resultant of the	tis. (2) $+2\hat{i}+9\hat{j}-7\hat{k}$ the opposite directions esultant is 50 units . Ca (2) P = 30 ; Q = 40 he three vectors \overrightarrow{OA} , \overrightarrow{OA}	(3) $-2\hat{i} + 7\hat{j} + 9\hat{k}$ is have a resultant of 10 alculate the magnitude of (3) P = 80 ; Q = 50	(4) $+2\hat{i}-5\hat{j}+3\hat{k}$ units. If they act at right angles to f two vectors . (4) P = 30 ; Q = 40							
31.	unit vector along X-ax (1) $-2\hat{i} - 9\hat{j} + 7\hat{k}$ Two vectors acting in each other, then the r (1) P = 40 ; Q = 30 Find the resultant of th (1) r(1 + $\sqrt{2}$) A car is moving on a s	tis. (2) $+2\hat{i}+9\hat{j}-7\hat{k}$ the opposite directions esultant is 50 units . Ca (2) P = 30 ; Q = 40 the three vectors \overrightarrow{OA} , \overrightarrow{OA} r 45° r C (2) $r(1-\sqrt{2})$ estraight road due north	(3) $-2\hat{i} + 7\hat{j} + 9\hat{k}$ s have a resultant of 10 loculate the magnitude of (3) P = 80 ; Q = 50 \overrightarrow{DB} and \overrightarrow{OC} each of ma (3) $(1+\sqrt{2})$ with a uniform speed of	(4) $+2\hat{i}-5\hat{j}+3\hat{k}$ units. If they act at right angles to f two vectors . (4) P = 30 ; Q = 40 agnitude r as shown in figure?							
31.	unit vector along X-ax (1) $-2\hat{i} - 9\hat{j} + 7\hat{k}$ Two vectors acting in each other, then the r (1) P = 40 ; Q = 30 Find the resultant of the (1) r(1 + $\sqrt{2}$) A car is moving on a s 90°. If the speed rem	tis. (2) $+2\hat{i}+9\hat{j}-7\hat{k}$ the opposite directions esultant is 50 units . Ca (2) P = 30 ; Q = 40 the three vectors \overrightarrow{OA} , \overrightarrow{OA} r 45° r C (2) $r(1-\sqrt{2})$ estraight road due north	(3) $-2\hat{i} + 7\hat{j} + 9\hat{k}$ s have a resultant of 10 loculate the magnitude of (3) P = 80 ; Q = 50 \overrightarrow{DB} and \overrightarrow{OC} each of ma (3) $(1+\sqrt{2})$ with a uniform speed of	(4) $+2\hat{i}-5\hat{j}+3\hat{k}$ units. If they act at right angles to f two vectors . (4) P = 30 ; Q = 40 agnitude r as shown in figure? (4) $r(1+\sqrt{2})^2$ 50 km h ₋₁ when it turns left through he velocity of the car in the turning							

34. Six forces, 9.81 N each, acting at a point are coplanar. If the angles between neighboring forces are equal, then the resultant is
(1) 0 N
(2) 9.81 N
(3) 2 × 9.81 N
(4) 3 × 9.81 N.


Mathematical Tools

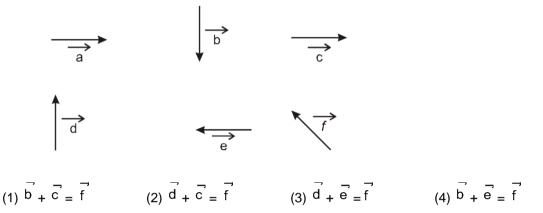
35. At what angle must the two forces (x + y) and (x - y) act so that the resultant may be $\sqrt{(x^2 + y^2)}$?

$$(1)\cos^{-1}\left\lfloor\frac{-(x^2+y^2)}{2(x^2-y^2)}\right\rfloor \quad (2)\cos^{-1}\left\lfloor\frac{-2(x^2-y^2)}{x^2+y^2}\right\rfloor \quad (3)\cos^{-1}\left\lfloor\frac{-(x^2+y^2)}{x^2-y^2}\right\rfloor \quad (4)\cos^{-1}\left\lfloor\frac{(x^2-y^2)}{x^2+y^2}\right\rfloor$$

36. The magnitude of scalar product of two vectors is 8 and that of vector product is $8\sqrt{3}$. The angle between them is : (1) 30° (2) 60° (3) 120° (4) 150°

- **37.** A vector A points vertically downward & B points towards east, then the vector product A×B is (1) along west (2) along east (3) zero (4) along south
- **38.** Which of the arrangement of axes in Fig. can be labelled "right-handed coordinate system"? As usual, each axis label indicates the positive side of the axis.

39. The unit vector perpendicular to each of the vectors $3\hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} - 2\hat{j} + \hat{k}$ is given by $\frac{1}{\sqrt{3}}(\hat{i} - \hat{j} - \hat{k}) \qquad (2) \quad \frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k}) \qquad (3) \quad \frac{5\hat{i} + \hat{j} + 4\hat{k}}{\sqrt{46}} \qquad (4) \quad \pm \frac{5\hat{i} + \hat{j} - 4\hat{k}}{\sqrt{42}}$


40. Three vectors $\stackrel{\square}{A,B}_{and} \stackrel{\square}{C}_{are such that} \stackrel{\square}{A} = \stackrel{\square}{B+C}_{and their magnitudes are in ratio 5:4:3 respectively.$ $Find angle between vector <math>\stackrel{\square}{A}_{and} \stackrel{\square}{C}_{and their magnitudes are in ratio 5:4:3 respectively.$ (1) 35° (2) 53° (3) 60° (4) 75°

- 41. A car travels 6 km towards north at an angle of 45° to the east and then travels distance of 4 km towards north at an angle 135° to east. How far is the point from the starting point ? What angle does the straight line joining its initial and final position makes with the east ?
 - (1) $\sqrt{50}$ km and tan₋₁(5) (2) 10 km and tan₋₁($\sqrt{5}$) (3) $\sqrt{52}$ km and tan₋₁(5) (4) $\sqrt{52}$ km and tan₋₁($\sqrt{5}$)

Exercise-3

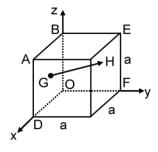
PART - I : NEET / AIPMT QUESTION (PREVIOUS YEARS)

- The vectors \vec{A} and \vec{B} are such that : 1. $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$ The angle between the two vectors is : [AIPMT Screening 2006] (1) 90° (2) 60° (3) 75° (4) 45°
- Six vectors. \vec{a} through \vec{f} have the mangitudes and directions indicated in the figure. Which of the following 2. statements is true ? [AIPMT Screening 2010]

If dimensions of critical velocity u_c of a liquid flowing through a tube are expressed as $[\eta^x \rho^y r^x]$, where n. 3. ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by : [AIPMT 2015] (1) - 1, -1, 1(2) - 1, -1, -1(3) 1, 1, 1(4) 1, -1, -1

If vectors $\vec{A} = \cos \omega t$ $\hat{i} + \sin \omega t$ \hat{j} and $\vec{B} = \cos \frac{\omega t}{2}$ $\hat{i} + \sin \frac{\omega t}{2}$ \hat{j} are functions of time, then the value of t at 4. which they are orthogonal to each other is : [AIPMT 2015] $t = \frac{1}{2\omega}$ $t = \frac{1}{4\omega}$ (2) $t = \frac{\pi}{\omega}$ (4)

(3) t = 0


5. If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is : [AIPMT_2016] (4) 45° (3) 90° (1) 180° $(2) 0^{\circ}$

- A particle moves so that its position vector is given by $\vec{r} = \cos \omega t \hat{x} + \sin \omega t \hat{y}$. Where ω is a constant. 6. Which of the following is true? [AIPMT 2016]
 - (1) Velocity is perpendicular to r and acceleration is directed away from the origin.
 - (2) Velocity and acceleration both are perpendicular to \dot{r} .
 - (3) Velocity and acceleration both are parallel to r.
 - (4) Velocity is perpendicular to r and acceleration is directed towards the origin.

(1)

PART - II : JEE (MAIN) / AIEEE PROBLEM (PREVIOUS YEARS)

In the cube of side 'a' shown in the figure, the vector from the central point of the face ABOD to the central point of the face BEFO will be : [Main 2019]

(1) $\frac{1}{2}a(\hat{j}-\hat{k})$ (2) $\frac{1}{2}a(\hat{j}-\hat{i})$ (3) $\frac{1}{2}a(\hat{k}-\hat{i})$ (4) $\frac{1}{2}a(\hat{i}-\hat{k})$

Two forces P and Q, of magnitude 2F and 3F, respectively are at an angle θ with each other. If the force Q is doubled, then their resultant also gets doubled. Then, the angle θ is : [Main 2019]
 (1) 30°
 (2) 60°
 (3) 90°
 (4) 120°

3. Two vectors $\stackrel{\square}{A}$ and $\stackrel{\square}{B}$ have equal magnitudes. The magnitude of $\stackrel{(\square}{A} + \stackrel{\square}{B}$ is 'n' times the magnitude of $\stackrel{(\square}{A} - \stackrel{\square}{B}$. The angle between $\stackrel{\square}{A}$ and $\stackrel{\square}{B}$ is : [Main 2019]

(1)
$$\sin^{-1}\left[\frac{n-1}{n+1}\right]$$
 (2) $\cos^{-1}\left[\frac{n^2-1}{n^2+1}\right]$ (3) $\sin^{-1}\left[\frac{n^2-1}{n^2+1}\right]$ (4) $\cos^{-1}\left[\frac{n-1}{n+1}\right]$

♦	thematic		15										
	An	ISM	<i>ier</i> s										
)		EXER	CISE -	1					
						PA	RT - I						
	'ION - (A)												
1.	(4)	2.	(4)	3.	(1)	4.	(3)	5.	(2)	6.	(2)		
	ION - (B)	2	(2)	2	(2)	A *	(1 0 1)	5 *	(1 2 2)	c	(1)		
1. SECT	(1) T ON - (C)	2.	(3)	3.	(3)	4.*	(1,2,4)	Э.	(1,2,3)	0.	(1)		
JE01 I.	(2)	2.	(3)	3.	(4)								
	'ION - (D)		(0)	01	()								
1.	(1)	2.	(3)	3.	(4)	4.	(1)	5.	(1)	6.	(2)	7.	(1)
8.	(1)	9.	(2)	10.	(3)	11.	(4)	12.	(2)	13.	(3)	14.	(2)
15.	(3)	16.	(1)	17.	(1)	18.	(2)	19.	(3)	20.	(2)	21.	(2)
22.	(1)	23.	(3)	24.	(2)	25.	(4)	26.	(1)	27.	(1)	28.	(4)
29.	(2)	30.	(1)	31.	(2)	32.	(1)	33.	(1)	34.	(1)	35.	(1)
	'ION - (E)	•		~	(4)			-	(4)	c	(4)	-	(4)
1. •	(4)	2. 0	(3)	3.	(4)	4.	(1)	5.	(1)	6.	(1)	7.	(1)
8.	(2)	9.	(1)										
	$\frac{x^{16}}{10}$												
10.	(i) 16				2x ^{-1/2} + ((iii) x ^{_6} .	/2 + ln>	(+ C	(iv) x	² / 2 + ln:	x + 2x +	С
	(v) x ² /	2 + ln>	(+ C	(vi) –	a/x + blr	тх + С							
11.	(2)				_	_	-		• 7				
					$q_1 q_2 \left[\frac{1}{r_2}-\frac{1}{r_2}\right]$	1	(iii) M	<u>v² _ u</u>	2				
12.	(i) GMr	n/R		(ii) Ko	$r_2 r_2$	r ₁ _	(iii) M	2 2	2				
	(iv) ∞			(v) 1	-1 · -1		(vi) 1		(vii) 2				
13.	(1)	14.	(4)	15.	(1)	16.	(1)	17.	(2)	18.	(3)	19.	(2)
20.	(2)	21.	(2)	22.	(3)	23.	(2)	24.	(2)	25.	(2)	26.	(1)
27.		28.	(1)	29.	(1)	30.	(1)						
				х	8		x ⁸	;					
31.	(i) 3x ² -	+ C		(ii) E	⁸ 3 + C		(iii) 8	- - 3x ²	+ 8x + C				
•••						3							
••	(i) $\frac{-2}{3x^3}$				$\frac{-1}{6} + \frac{1}{2}$	3		$\frac{1}{3} + \frac{1}{2}$	$\frac{2}{2} - x + C$				
32.													
	(i) $\frac{2}{3x^3}$	-		_	x^{-3}		(iii) (iii) (10,000)	+	-				
33.				(ii)	6 + C)	(iii) ⁵	3x°	+ C				
34.	(i) x ^{2/3} -	+ C		(ii) x ¹	^{/3} + C		(iii) x ^{−1}						
					<u>πx</u>		2	<u>πx</u>	+ π sin x				
35.	(i) sinπ	x + C		(ii) sii	$\frac{\pi x}{2} + ($	2	(iii) ^π :	sin 2	+πsin x	+ C			
36.	(i) sin π	ιx + C		(ii) sii	$\frac{\pi}{2}x + ($	C	(iii) π	$\sin \frac{1}{2}$	x + πsin x	+ C			
37.	(2)	38.	(4)	(ii) eii 39.	(2)	40.	(4)	41.	(1)	42.	(1)	43.	(1)
44.	(2)	45.	(1)	46.	(1)	47.	(1)	48.	(1)	49.	(1)	50.	(2)
51.	(1)	52.	(1)	53.	(1)	54.	(1)	55.	(2)	56.	(1)	57.	(1)
58.	(2)	59.	(1)	60.	(1)	61.	(1)	62.	(1)				

	ON - (F)												
1.	(i) 105	^o , (ii) 1	50º , (iii)	105⁰.									
2.	(3)	3.	(3)	4.	(4)	5.	(2)	6.	(4)	7.	(1)	8.	(4)
9.	(1)	10.	(1)	11.	(1)	12.	(1)	13.	(2)	14.	(4)	15.	(2)
16.	(1)	17.	(1)	18.	(2)	19.	(2)	20.	(4)	21.	(2)	22.	(1)
23.	(1)	24.	(2)	25.	(2)	26.	(3)	27.	(3)	28.	(1)	29.	(3)
30.	(4)	31.	(1)	32.	(4)	33.	(3)	34.	(4)	35.	(1)	36.	(4)
37.	(1)	38.	(3)	39.	(3)								
SECTI	ON - (G))											
1.	(1)	2.	(4)	3.	(4)	4.	(4)	5.	(1)	6.	(3)	7.	(2)
8.	(3)	9.	(2)	10.	(1)	11.	(2)	12.	(3)	13.	(4)	14.	(1)
15.	(1)	16.	(4)	17.	(1)								
						EXER	CISE -	2					
1.	(4)	2.	(2)	3.	(1)	4.	(1, 3)	5.	(3, 4)	6.	(3)	7.	(2)
в.	(1)	9.	(2)	10.	(3)	11.	(1)	12.	(1)	13.	(1)	14.	(1)
15.	(3)	16.	(2)	17.	(1)	18.	(1)	19.	(1)	20.	(2)	21.	(1)
22.	(1)	23.	(1)	24.	(1)	25.	(2)	26.	(2)	27.	(1)	28.	(3,4)
29.	(1)	30.	(1)	31.	(1)	32.	(1)	33.	(2)	34.	(1)	35.	(1)
36.	(2, 3)	37.	(4)	38.	(1, 2,	3) 39.	(4)	40.	(2)	41.	(3)		
						EXER	CISE -	3					
						PA	RT - I						
1.	(1)	2.	(3)	3.	(4)	4.	(2)	5.	(3)	6.	(4)		
						I	PART - II						
1.	(2)	2.	(4)	3.	(2)								