
## **Exercise-1**

> Marked Questions are for Revision Questions.

### **ONLY ONE OPTION CORRECT TYPE**

#### **SECTION - A # ASEXUAL REPRODUCTION**

**1.** Below diagram shows which method of reproduction?



- (1) Binary fission
- (2) Fragmentation
- (3) Budding
- (4) Gemmule formation

- **2.** Which of the following is immortal?
  - (1) Germ cells
- (2) Pituitary cells
- (3) Brain cells
- (4) All of these

- 3.> Natural parthenogenesis occurs in
  - (1) Honey bee
- (2) All insects
- (3) Amoeba proteus
- (4) Pheretima posthuma

- 4. Unequal binary fission takes place in
  - (1) Amoeba proteus
  - (3) Saccharomyces cerevisiae
- (2) Paramoecium caudatum
- (4) Euglena viridis
- **5.** The transverse binary fission occurs in
  - (1) Hydra
- (2) Euglena
- (3) Paramoecium
- (4) Amoeba

- 6. Gemmulation is usually found in the
  - (1) Marine sponges
  - (3) Marine cnidarians

- (2) Freshwater sponges
- (4) Freshwater cnidarians

- 7. Isogamy is found in
  - (1) Hydra
- (2) Monocystis
- (3) Planaria
- (4) Plasmodium

- 8. Asexual reproduction results in
  - (1) Rapid increase in number
  - (3) Production of clones

- (2) No genetic variability
- (4) All of the above

- 9. Multiple fission occurs in
  - (1) Hydra
- (2) Planaria
- (3) Plasmodium
- (4) All of these

- 10.> Hydra reproduces by budding. This is an example of
  - (1) Parthenocarpy

(2) Regeneration

(3) Asexual reproduction

- (4) Sexual reproduction
- 11. The development of an egg, without fertilization, is called
  - (1) Oogenesis
- (2) Metagenesis
- (3) Gametogenesis
- (4) Parthenogenesis

| 12.29                            | <ul><li>(1) Budding</li><li>(3) Sexual reproduction</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                                                                                                                                                                                                                    |                     | Regeneration Asexual reproduction                                                                                  | on     |                |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------|--------|----------------|
| 13.                              | In honey bees, the drones at (1) Fasting larvae (3) Unfertilized eggs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | re produced from                                                                                                                                                                                                                     | ` '                 | Fertilized eggs<br>Larvae fed upon roy                                                                             | yal je | elly           |
| 14.5                             | The asexual reproduction is (1) Prevents animals from r (2) Allows an animal to prod (3) Saves the time and ene (4) Produces genetically un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | moving around to finduce many offspring<br>rgy required for gam                                                                                                                                                                      | d ma<br>quid        | ates in order to produ<br>ckly                                                                                     | ice (  | offspring      |
| 15.                              | Which of the following are constant (1) Buds (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oncerned with asexu<br>Gonads                                                                                                                                                                                                        |                     | eproduction?<br>Zygotes                                                                                            | (4)    | Gametes        |
| 16.                              | Plasmotomy involves (1) Karyokinesis only (3) Karyokinesis followed b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y Cytokinesis                                                                                                                                                                                                                        | ` '                 | Cytokinesis only Cytokinesis follower                                                                              | d by   | Karyokinesis   |
| 17.≿⊾                            | Budding is found in <b>A.</b> Yeast <b>B.</b> Amoeba  (1) A, B and E  (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>C.</b> <i>Hydra</i><br>A, B, C and D                                                                                                                                                                                              |                     | Sponge <b>E.</b> Rose<br>A, C, D and E                                                                             | •      |                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                      |                     |                                                                                                                    |        |                |
|                                  | SECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TION - B # SESU                                                                                                                                                                                                                      | AL                  | REPRODUCTIO                                                                                                        | N      |                |
| 1.                               | Apporoximate ages of sexual (1) 10–14 years & 11 - 14 years & 14 - 16 years & | al maturity in boys & rears                                                                                                                                                                                                          | girls               |                                                                                                                    | 4 ye   | ears           |
|                                  | Apporoximate ages of sexual (1) 10–14 years & 11 - 14 y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | al maturity in boys &<br>rears<br>rears                                                                                                                                                                                              | girls<br>(2)<br>(4) | s respectively are<br>8–11 years & 11 - 1<br>14–16 & 11-14 year                                                    | 4 ye   | ears           |
| 2.34                             | Apporoximate ages of sexual (1) 10–14 years & 11 - 14 years & 14 - 16 years & | al maturity in boys & rears rears n not correctly match Life span 62 years 35 years 140 years 15 years                                                                                                                               | girls (2) (4) (4)   | s respectively are<br>8–11 years & 11 - 1<br>14–16 & 11-14 year                                                    | 4 ye   | ears<br>Rhesus |
| 2. a.<br>3.                      | Apporoximate ages of sexual (1) 10–14 years & 11 - 14 years & 14 - 16 years & | al maturity in boys & rears rears n not correctly match Life span 62 years 35 years 140 years 15 years racteristice of Pangolin                                                                                                      | girls (2) (4) ned?  | s respectively are<br>8–11 years & 11 - 1<br>14–16 & 11-14 year                                                    | 4 ye   |                |
| 1.<br>2. a.<br>3.<br>4. a.<br>5. | Apporoximate ages of sexual (1) 10–14 years & 11 - 14 years & 14 - 16 years & | al maturity in boys & rears rears n not correctly match Life span 62 years 35 years 140 years 15 years racteristice of Pangolin s not monoecious? Star fish ves le gamete and a small not gamete and a small not gamete and a larger | (3) (3) (3) (3) (3) | orespectively are 8–11 years & 11 - 1 14–16 & 11-14 year  Orang-utan  Leech  notile male gamete notile male gamete | 4 ye   | Rhesus         |

## MISCELLANEOUS QUESTIONS

| 1.    | It can regenerte entire (1) Amphibian                                             | e alimentary canal.<br>(2) Fish                      | (3) Sea cucumber                                                                                            | (4) Birds                                       |  |  |  |  |
|-------|-----------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|--|
| 2.    | <ul><li>(2) a group of genetic</li><li>(3) a group of genetic</li></ul>           | cally similar organisms<br>cally dissimilar organism | produced through asexu<br>produced through sexuans<br>produced as a result<br>ns produced as a result       | al reproduction of asexual reproduction         |  |  |  |  |
| 3.    | In which one pair both (1) Bryophyllum and (3) Agave and Kalan                    | Kalanchoe                                            | getatively propagated by leaf pieces? (2) Chrysanthemum and Agave (4) Asparagus and Bryophyllum             |                                                 |  |  |  |  |
| 4.    | From which cell perip<br>(1) Vegetative cell<br>(3) Apical octant                 | heral region of radicle is                           | e is produced?  (2) Hypophysis  (4) Micropylar octant                                                       |                                                 |  |  |  |  |
| 5.bs  | Division in a bacterial (1) Multiple fission                                      | cell is carried out throu<br>(2) binary fission      | igh<br>(3) budding                                                                                          | (4) plasmotomy                                  |  |  |  |  |
| 6.    | Monocarpic plant (1) flowers twice in extension (3) flowers once in extension (4) |                                                      | <ul><li>(2) bears only one type of flower</li><li>(4) dies after flowering once in its life cycle</li></ul> |                                                 |  |  |  |  |
| 7.    | Exponential growth of (1) yeast (3) bacteria                                      | ccurs in                                             | <ul><li>(2) asexual reproduction</li><li>(4) all of these</li></ul>                                         |                                                 |  |  |  |  |
| 8.≿   | Synergids are (1) haploid                                                         | (2) diploid                                          | (3) triploid                                                                                                | (4) tetraploid                                  |  |  |  |  |
| 9.    | Comparable to angios (1) Spirogyra                                                | sperms, which of the fol                             | llowing algae exhibits di<br>(3) <i>Polysiphonia</i>                                                        | plontic life cycle?<br>(4) Fucus                |  |  |  |  |
| 10.๖  | Which one of the follo                                                            | wing processes results (2) Conjugation               | in the formation of clon (3) Transformation                                                                 |                                                 |  |  |  |  |
| 11.   | The type of pollination as  (1) geitonogamy                                       | n involving transfer of post                         | ollen from anther to the (3) autogamy                                                                       | stigma of the same flower is known  (4) apogamy |  |  |  |  |
| 12.   |                                                                                   | ube enters the ovule the (2) integument              | . ,                                                                                                         | (4) ovary wall                                  |  |  |  |  |
| 13.১೩ | Ovule integument get (1) seed                                                     | s transformed into (2) fruit wall                    | (3) seed coat                                                                                               | (4) cotyledons                                  |  |  |  |  |
|       |                                                                                   |                                                      |                                                                                                             |                                                 |  |  |  |  |

## Exercise-2

| 1.    | <ul><li>i. Gametic fusion takes</li><li>ii. Transfer of genetic m</li><li>iii. Reduction division ta</li></ul>                              | place<br>naterial takes place                                                                                                                                                                      | reproduction are given b                                               | elow:                                                |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|
|       |                                                                                                                                             |                                                                                                                                                                                                    |                                                                        | from the options given below:                        |
| 2.5   | <ul><li>(1) Offspring do not pos</li><li>(2) DNA of only one pa</li><li>(3) Offspring are formed</li></ul>                                  | ssess exact copies of parent is copied and passe                                                                                                                                                   | ed on to the offspring                                                 | uction because:                                      |
| 3.    | Amoeba and Yeast report (1) Microscopic organism (3) Unicellular organism                                                                   | sms                                                                                                                                                                                                | on and budding respecti (2) Heterotrophic orgal (4) Uninucleate organi | nisms                                                |
| 4.    | <ul><li>i. Sexual reproduction</li><li>ii. Sexual reproduction</li><li>iii. Meiosis never occu</li><li>iv. External fertilisation</li></ul> | egard to sexual reproduct<br>of does not always required<br>of generally involves game<br>of sexual reproductions a rule during sexual reproductions<br>of ements from the options<br>(2) i and ii | e two individuals<br>letic fusion<br>letion<br>reproduction            | (4) i and iv                                         |
| 5.    | <ul><li>i. The male and fema</li><li>ii. Only a few gametes</li><li>iii. Water is the mediur</li></ul>                                      | le gametes are formed as are released into the manifering in a majority of organisms a result of external                                                                                          | and released simultaneou<br>edium<br>sms exhibiting external fe        | •                                                    |
| 6.28. | appeared much later in  i. Lower groups of org  ii. Asexual reproduction  iii. Asexual reproduction  iv. The high incidence                 | the organic evolution. ganisms have simpler bo on is common in lower go on is common in higher g                                                                                                   | ody design<br>roups<br>groups of organisms<br>n angiosperms and verte  | e sexual reproductive process brates  (4) ii and iii |

- **7.** Offspring formed by sexual reproduction exhibit more variation than those formed by Asexual reproduction because:
  - (1) Sexual reproduction is a lengthy process
  - (2) Gametes of parents have qualitatively different genetic composition
  - (3) Genetic material comes from parents of two different species
  - (4) Greater amount of DNA is involved in sexual reproduction.
- 8. Choose the correct statement from amongst the following
  - (1) Dioecious (hermaphrodite) organisms are seen only in animals
  - (2) Dioecious organisms are seen only in plants
  - (3) Dioecious organisms are seen in both plants and animals
  - (4) Dioecious organisms are seen only in vertebrates
- 9.a There is no natural death in single celled organisms like *Amoeba* and bacteria because:
  - (1) They cannot reproduce sexually
  - (2) They reproduce by binary fission
  - (3) Parental body is distributed among the offspring
  - (4) They are microscopic
- **10.** There are various types of reproduction. The type of reproduction adopted by an organism depends on:
  - (1) The habitat and morphology of the organism
  - (2) Morphology of the organism
  - (3) Morphology and physiology of the organism
  - (4) The organism's habitat, physiology and genetic makeup
- 11. A multicellular, filamentous alga exhibits a type of sexual life cycle in which the meiotic division occurs after the formation of zygote. The adult filament of this alga has
  - (1) haploid vegetative cells and diploid gametangia
  - (2) diploid vegetative cells and diploid gametangia
  - (3) diploid vegetative cells and haploid gametangia
  - (4) haploid vegetative cells and haploid gametangia
- 12. The male gametes of rice plant have 12 chromosomes in their nucleus. The chromosome number in the female gamete, zygote and the cells of the seedling will be, respectively,
  - (1) 12, 24, 12
- (2) 24, 12, 12
- (3) 12, 24, 24
- (4) 24, 12, 24
- 13. The statements given below describe certain features that are observed in the pistil of flowers.
  - i. Pistil may have many carpels
  - ii. Each carpel may have more than one ovule
  - iii. Each carpel has only one ovule
  - iv. Pistil have only one carpel

Choose the statements that are true from the options below:

- (1) i and ii
- (2) i and iii
- (3) ii and iv
- (4) iii and iv
- **14.** Which of the following situations correctly describe the similarity between an angiosperm egg and a human egg?
  - i. Eggs of both are formed only once in a lifetime
  - ii. Both the angiosperm egg and human egg are stationary
  - iii. Both the angiosperm egg and human egg are motile transported
  - iv. Syngamy in both results in the formation of zygote

Choose the correct answer from the options given below:

- (1) ii and iv
- (2) iv only
- (3) iii and iv
- (4) i and iv

| 15.  | Appearance of vegetative propagules from the nodes of plants such as sugarcane and ginger is mainly because:                                                  |                                            |                        |                           |                    |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|---------------------------|--------------------|--|--|--|--|--|--|
|      | (1) Nodes are shor                                                                                                                                            | ter than internodes                        | (2) Nodes have         | e meristematic cells      |                    |  |  |  |  |  |  |
|      | (3) Nodes are loca                                                                                                                                            | ted near the soil                          | (4) Nodes have         | e non-photosynthetic ce   | lls                |  |  |  |  |  |  |
| 16   | Identify the incorrec                                                                                                                                         | at atatamant                               |                        |                           |                    |  |  |  |  |  |  |
| 16.  | Identify the incorrec                                                                                                                                         | ct statement.<br>oduction, the offspring p | roduced are morphol    | logically and genetically | , identical to the |  |  |  |  |  |  |
|      | parent                                                                                                                                                        | oduction, the onspring pr                  | roduced are morphor    | logically and genetically | defitical to the   |  |  |  |  |  |  |
|      | ·                                                                                                                                                             | sexual reproductive struc                  | ctures                 |                           |                    |  |  |  |  |  |  |
|      |                                                                                                                                                               | oduction, a single parent                  |                        | vith or without the forma | ation of gametes   |  |  |  |  |  |  |
|      | (4) Conidia are ase                                                                                                                                           | exual structures in <i>Penici</i>          | llium                  |                           |                    |  |  |  |  |  |  |
| 17.  | Which of the followi                                                                                                                                          | ng is a post-fertilisation e               | event in flowering pla | nts?                      |                    |  |  |  |  |  |  |
|      | (1) Transfer of poll-                                                                                                                                         | •                                          | (2) Embryo dev         |                           |                    |  |  |  |  |  |  |
|      | (3) Formation of flo                                                                                                                                          | •                                          | (4) Formation of       | ·                         |                    |  |  |  |  |  |  |
|      | , ,                                                                                                                                                           |                                            | . ,                    |                           |                    |  |  |  |  |  |  |
| 18.১ | The number of chromosomes in the shoot tip cells of a maize plant is 20. The number of chromosomes in the microspore mother cells of the same plant shall be: |                                            |                        |                           |                    |  |  |  |  |  |  |
|      | (1) 20                                                                                                                                                        | (2) 10                                     | (3) 40                 | (4) 15                    |                    |  |  |  |  |  |  |
|      | (1) 20                                                                                                                                                        | (2) 10                                     | (3) 40                 | (4) 13                    |                    |  |  |  |  |  |  |
|      |                                                                                                                                                               |                                            |                        |                           |                    |  |  |  |  |  |  |
|      | <b>Exercis</b>                                                                                                                                                | <b>E-3</b>                                 |                        |                           |                    |  |  |  |  |  |  |
|      | PART - I                                                                                                                                                      | NEET / AIPMT Q                             | UESTION (PR            | EVIOUS YEARS              | 5)                 |  |  |  |  |  |  |
| 1.৯  | First successful ani                                                                                                                                          | mal clone was                              |                        |                           | (AIPMT-2000)       |  |  |  |  |  |  |
|      | (1) Dolly goat                                                                                                                                                | (2) Dolly sheep                            | (3) Molly goat         | (4) Molly shee            | ∍p                 |  |  |  |  |  |  |
| 2.   | Embryoids formed i                                                                                                                                            | n ticquo culturo from poll                 | on grain are due to    |                           | (AIPMT-2002)       |  |  |  |  |  |  |
| ۷.   | (1) Test tube cultur                                                                                                                                          | n tissue culture from poll                 | (2) Cellular toti      | notency                   | (AIFWI1-2002)      |  |  |  |  |  |  |
|      | (3) Organogenesis                                                                                                                                             |                                            | (4) Double ferti       | •                         |                    |  |  |  |  |  |  |
|      | , , ,                                                                                                                                                         |                                            | (1) Doddio form        | 11241011                  |                    |  |  |  |  |  |  |
| 3.   | Binary fission is a ty                                                                                                                                        | •                                          |                        |                           | (AIPMT-2003)       |  |  |  |  |  |  |
|      | (1) Vegetative prop                                                                                                                                           | _                                          | (2) Asexual rep        |                           |                    |  |  |  |  |  |  |
|      | (3) Sexual reprodu                                                                                                                                            | ction                                      | (4) Nuclear fraç       | gmentation                |                    |  |  |  |  |  |  |
| 4.   | In which one pair be                                                                                                                                          | oth the plants can be veg                  | etatively propagated   | by leaf segments?         | (AIPMT-2005)       |  |  |  |  |  |  |
|      | (1) Agave and Kala                                                                                                                                            | anchoe                                     | (2) Bryophyllun        | n and <i>Kalanchoe</i>    |                    |  |  |  |  |  |  |
|      | (3) Asparagus and                                                                                                                                             | Bryophyllum                                | (4) Chrysanthe         |                           |                    |  |  |  |  |  |  |
| 5.≽⊾ | Vegetative propaga                                                                                                                                            | tion in Mint occurs by                     |                        |                           | (AIPMT-2009)       |  |  |  |  |  |  |
|      | (1) Sucker                                                                                                                                                    | (2) Runner                                 | (3) Offset             | (4) Rhizome               | ( <b></b> )        |  |  |  |  |  |  |
|      | , ,                                                                                                                                                           | , ,                                        | . ,                    | , ,                       |                    |  |  |  |  |  |  |
| 6.zs |                                                                                                                                                               | tion in <i>Pistia</i> /Water Hyac          | •                      | •                         | )10, AMU-2013)     |  |  |  |  |  |  |
|      | (1) Sucker                                                                                                                                                    | (2) Runner                                 | (3) Offset             | (4) Stolon                |                    |  |  |  |  |  |  |

### **REPRODUCTION IN ORGANISMS**

| 7.≿  | Common between vegetative reproduction and apomixis is (AIPMT Mains-2011) |                                                          |                                                    |                           |           |               |             |  |  |  |
|------|---------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|---------------------------|-----------|---------------|-------------|--|--|--|
|      | (1) Both applicable to                                                    | dicots                                                   | (2)                                                | Both bypass flowe         | ring phas | se            |             |  |  |  |
|      | (3) Both occur around                                                     | I the year                                               | (4)                                                | Both produce prog         | jeny iden | itical to par | ent         |  |  |  |
| 8.   | Which is wrongly mate                                                     | ched                                                     |                                                    |                           |           | (AIPMT        | Mains-2011) |  |  |  |
|      | (1) Agave – bulbils                                                       |                                                          | (2)                                                | <i>Penicilium</i> – conid | ia        |               |             |  |  |  |
|      | (3) Water Hyacinth –                                                      | runner                                                   | (4)                                                | Bryophyllum – leat        | buds      |               |             |  |  |  |
| 9.   | Which one is common                                                       | to multicellular fungi, fila                             | amen                                               | tous algae and proto      | onema of  | f mosses(A    | IPMT-2012)  |  |  |  |
|      | (1) Diplontic life cycle                                                  |                                                          | (2)                                                | Members of kingdo         | om plant  | ae            |             |  |  |  |
|      | (3) Multiplication by fr                                                  | agmentation                                              | (4)                                                | (4) Mode of nutrition     |           |               |             |  |  |  |
| 10.১ | Which one represents                                                      | male gamete                                              |                                                    |                           |           | (A            | IPMT-2012)  |  |  |  |
|      | (1) Antipodals                                                            | (2) Synergids                                            | (3)                                                | Endosperm                 | (4) Pc    | ollen grain   |             |  |  |  |
| 11.  | Monoecious plant of C                                                     | Chara shows occurrence                                   | of                                                 |                           |           | (1            | NEET-2013)  |  |  |  |
|      | (1) Upper oogonium a                                                      | and lower antheridium on                                 | the :                                              | same plant                |           |               |             |  |  |  |
|      | (2) Antheridiophore a                                                     | 2) Antheridiophore and archegoniophore on the same plant |                                                    |                           |           |               |             |  |  |  |
|      | (3) Stamen and carpe                                                      | el on the same plant                                     |                                                    |                           |           |               |             |  |  |  |
|      | (4) Upper antheridium                                                     | n and lower oogonium on                                  | the :                                              | same plant                |           |               |             |  |  |  |
| 12.৯ | Meiosis occurs in                                                         |                                                          |                                                    |                           |           | (1            | NEET-2013)  |  |  |  |
|      | (1) Megaspore                                                             | (2) Meiocyte                                             | (3)                                                | Conidia                   | (4) Ge    | emmule        |             |  |  |  |
| 13.  | Product of sexual repr                                                    | oduction generally gener                                 | rates                                              |                           |           | (1            | NEET-2013)  |  |  |  |
|      | (1) Large biomass                                                         |                                                          | (2)                                                | Longer viability of       | seeds     |               |             |  |  |  |
|      | (3) Prolonged dormar                                                      | ncy                                                      | (4) New genetic combinations leading to variations |                           |           |               |             |  |  |  |
| 14.🔈 | Process of sexual repr                                                    | oduction which involves                                  | meio                                               | sis and syngamy is        |           | (1            | NEET-2013)  |  |  |  |
|      | (1) Apomixis                                                              | (2) Amphimixis                                           | (3)                                                | Agamospermy               | (4) Dip   | lospory       |             |  |  |  |
| 15.  | A polyestrus animal is                                                    |                                                          |                                                    |                           |           | (1            | NEET-2013)  |  |  |  |
|      | (1) Man                                                                   | (2) Cat                                                  | (3)                                                | Rabbit                    | (4) Ho    | rse           |             |  |  |  |
| 16.  | Planaria possesses hi                                                     | gh capacity of                                           |                                                    |                           |           | (AIPMT-2      | 2014)       |  |  |  |
|      | (1) Regeneration                                                          |                                                          | (2)                                                | Alternation of gene       | rations   |               |             |  |  |  |
|      | (3) Bioluminescence                                                       |                                                          | (4)                                                | Metamorphosis             |           |               |             |  |  |  |
| 17.১ | Which one of the follow                                                   | wing is wrong about <i>Cha</i>                           | ra?                                                |                           |           | (AIPMT-2      | 2014)       |  |  |  |
|      | (1) Globule and nucule                                                    | e present on the same pl                                 | ant                                                |                           |           |               |             |  |  |  |
|      | (2) Upper antheridium                                                     | (2) Upper antheridium and lower oogonium                 |                                                    |                           |           |               |             |  |  |  |
|      | (3) Globule is male rep                                                   |                                                          |                                                    |                           |           |               |             |  |  |  |
|      | (4) Upper oogonium a                                                      | nd lower round antheridi                                 | um.                                                |                           |           |               |             |  |  |  |
| 18.🔈 | Which one of the follow                                                   | wing shows isogamy with                                  | non                                                | flagellated gametes       | ?         | (AIPMT-2      | 2014)       |  |  |  |
|      | (1) Ectocarpus                                                            | (2) Ulothrix                                             | (3)                                                | Spirogyra                 | (4) Sa    | rgassum       |             |  |  |  |

#### **REPRODUCTION IN ORGANISMS**

| 19. | Which one of the following in & generates new genetic combinations leading to variation?         |                             |                |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------|-----------------------------|----------------|--|--|--|--|--|--|
|     |                                                                                                  |                             | (NEET-II-2016) |  |  |  |  |  |  |
|     | (1) Nucellar polyembryony                                                                        | (2) Vegetative reproduction |                |  |  |  |  |  |  |
|     | (3) Parthenogenesis                                                                              | (4) Sexual reproduction     |                |  |  |  |  |  |  |
| 20  | Offsets are produced by                                                                          |                             | (NEET-2018)    |  |  |  |  |  |  |
|     | (1) Meiotic divisions                                                                            | (2) Parthenogenesis         |                |  |  |  |  |  |  |
|     | (3) Parthenocarpy                                                                                | (4) Mitotic division        |                |  |  |  |  |  |  |
| 21  | Offsets are produced by                                                                          |                             | (NEET-2018)    |  |  |  |  |  |  |
|     | (1) Meiotic divisions                                                                            | (2) Parthenogenesis         |                |  |  |  |  |  |  |
|     | (3) Parthenocarpy                                                                                | (4) Mitotic division        |                |  |  |  |  |  |  |
|     | PART - II AIIMS Q                                                                                | UESTION (PREVIOUS YEA       | RS)            |  |  |  |  |  |  |
| 1.  | Grafting is not successful in monocots but is successful in dicots because they have (AIIMS-2006 |                             |                |  |  |  |  |  |  |
|     | (1) Vascular bundles arranged in a rin                                                           | g                           |                |  |  |  |  |  |  |
|     | (2) Cambium for secondary growth                                                                 |                             |                |  |  |  |  |  |  |

In which set of organisms does external fertilization occur

(3) Vessels with elements arranged end to end

(2) Hemichordata and ferns

- (1) Echinodermata and mosses(3) Amphibians and algae
- (4) Reptiles and gymnosperms
- **4.** Gemmule formation is a common mode of asexual reproduction in

(AIIMS-2017)

(AIIMS-2013)

(1) Paramecium

3.

(4) Cork cambium

(2) Hydra

(3) sponges

(4) yeast

|      | An      | swe | <u>rs</u> |     |       |       |        |        |     |     |     |     |     |
|------|---------|-----|-----------|-----|-------|-------|--------|--------|-----|-----|-----|-----|-----|
|      |         |     |           |     |       | EXER  | CISE - | 1      |     |     |     |     |     |
| SECT | ION - A |     |           |     |       |       |        |        |     |     |     |     |     |
| 1.   | (1)     | 2.  | (1)       | 3.  | (1)   | 4.    | (3)    | 5.     | (3) | 6.  | (2) | 7.  | (2) |
| 8.   | (4)     | 9.  | (3)       | 10. | (3)   | 11.   | (4)    | 12.    | (4) | 13. | (3) | 14. | (1) |
| 15.  | (1)     | 16. | (2)       | 17. | (4)   |       |        |        |     |     |     |     |     |
| SECT | ION - B | 3   |           |     |       |       |        |        |     |     |     |     |     |
| 1.   | (4)     | 2.  | (4)       | 3.  | (2)   | 4.    | (2)    | 5.     | (1) | 6.  | (3) |     |     |
|      |         |     |           |     | MISCE | LLANE | ous qu | ESTION | IS  |     |     |     |     |
| 1.   | (3)     | 2.  | (1)       | 3.  | (1)   | 4.    | (2)    | 5.     | (2) | 6.  | (4) | 7.  | (2) |
| 8.   | (1)     | 9.  | (4)       | 10. | (1)   | 11.   | (3)    | 12.    | (3) | 13. | (3) |     |     |
|      |         |     |           |     |       | EXER  | CISE - | 2      |     |     |     |     |     |
| 1.   | (3)     | 2.  | (1)       | 3.  | (3)   | 4.    | (2)    | 5.     | (2) | 6.  | (3) | 7.  | (2) |
| 8.   | (3)     | 9.  | (3)       | 10. | (4)   | 11.   | (4)    | 12.    | (3) | 13. | (1) | 14. | (2) |
| 15.  | (2)     | 16. | (2)       | 17. | (2)   | 18.   | (1)    |        |     |     |     |     |     |
|      |         |     |           |     |       | EXER  | CISE - | 3      |     |     |     |     |     |
|      |         |     |           |     |       | PA    | ART- I |        |     |     |     |     |     |
| 1.   | (2)     | 2.  | (2)       | 3.  | (2)   | 4.    | (2)    | 5.     | (1) | 6.  | (3) | 7.  | (4) |
| 8.   | (3)     | 9.  | (3)       | 10. | (4)   | 11.   | (1)    | 12.    | (2) | 13. | (4) | 14. | (2) |
| 15.  | (3)     | 16. | (1)       | 17. | (2)   | 18.   | (3)    | 19.    | (4) | 20. | (4) | 21. | (4) |
|      |         |     |           |     |       | PA    | RT- II |        |     |     |     |     |     |
| 1.   | (2)     | 2.  | (1)       | 3.  | (3)   | 4.    | (3)    |        |     |     |     |     |     |

# Self Practice Paper (SPP)

| 1.  | <ul><li>Development of an organism from (1) Adventitive embryony</li><li>(3) Parthenocarpy</li></ul> | (2)                     | gamete/egg without involving fertilization is  (2) Polyembryony  (4) Partheonogenesis |                  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------|------------------|--|--|--|
|     | (3) Faithenocarpy                                                                                    | (4)                     | Faitheonogenesis                                                                      |                  |  |  |  |
| 2.  | A population of genetically iden                                                                     |                         | ained from asexual re                                                                 | eproduction is   |  |  |  |
|     | (1) Callus (2) Clo                                                                                   | one (3)                 | Deme                                                                                  | (4) Aggregate    |  |  |  |
| 3.  | Syngamy means                                                                                        |                         |                                                                                       |                  |  |  |  |
|     | (1) Fusion of gametes                                                                                | (2)                     | Fusion of cytoplasr                                                                   | ns               |  |  |  |
|     | (3) Fusion of two similar spores                                                                     | s (4)                   | Fusion of two dissing                                                                 | milar spores     |  |  |  |
| 4.  | Estrus cycle is indication of                                                                        |                         |                                                                                       |                  |  |  |  |
|     | (1) Breeding period                                                                                  | (2)                     | Estrogen secretion                                                                    |                  |  |  |  |
|     | (3) Pregnancy                                                                                        |                         | Menopause                                                                             |                  |  |  |  |
| E   | Monoestrus animals have                                                                              | , ,                     | ·                                                                                     |                  |  |  |  |
| 5.  | (1) One ovulation each month                                                                         | (2)                     | One egg                                                                               |                  |  |  |  |
|     | (3) One breeding season in a y                                                                       |                         | One menses each                                                                       | month            |  |  |  |
|     | .,                                                                                                   | , ,                     | One mended each                                                                       | monar            |  |  |  |
| 6.  | For ovulation in reflex ovulators                                                                    |                         |                                                                                       |                  |  |  |  |
|     | (1) Coitus is necessary                                                                              |                         | Coitus is not neces                                                                   |                  |  |  |  |
|     | (3) Plenty of food is not necess                                                                     | sary (4)                | Plenty of food is ne                                                                  | ecessary         |  |  |  |
| 7.  | Estrous cycle is characteristic of                                                                   | f                       |                                                                                       |                  |  |  |  |
|     | (1) Human females                                                                                    | (2)                     | Mammalian female                                                                      | S                |  |  |  |
|     | (3) Mammalian females other t                                                                        | han primates (4)        | Mammals                                                                               |                  |  |  |  |
| 8.  | Individuals of a clone have                                                                          |                         |                                                                                       |                  |  |  |  |
|     | (1) Same age                                                                                         | (2)                     | Same height                                                                           |                  |  |  |  |
|     | (3) Same genome                                                                                      | ` '                     | Same number of le                                                                     | aves             |  |  |  |
| 9.  | Asexually produced organism in                                                                       | phoriting all the charg | notors of the parent i                                                                | •                |  |  |  |
| Э.  | (1) Offspring (2) Clo                                                                                | •                       | Variety                                                                               | s<br>(4) Hybrid  |  |  |  |
|     | .,                                                                                                   | , ,                     | variety                                                                               | (4) Tryblid      |  |  |  |
| 10. | Apomixis is development of a n                                                                       | •                       |                                                                                       |                  |  |  |  |
|     | (1) Without fusion of gametes                                                                        | ` '                     | From fusion produc                                                                    | cts of gametes   |  |  |  |
|     | (3) From stem cutting                                                                                | (4)                     | From root cuttings                                                                    |                  |  |  |  |
| 11. | An example of parthenogenesis                                                                        | in the development      | of fruit is the one                                                                   |                  |  |  |  |
|     | (1) With viable seeds after ferti                                                                    | lization                |                                                                                       |                  |  |  |  |
|     | (2) With viable seeds after poll                                                                     | ination                 |                                                                                       |                  |  |  |  |
|     | (3) With viable seeds without fe                                                                     | ertilization            |                                                                                       |                  |  |  |  |
|     | (4) Without seeds after pollinat                                                                     | ion                     |                                                                                       |                  |  |  |  |
| 40  | Onless to the terms were the well-the                                                                | 4.0                     |                                                                                       |                  |  |  |  |
| 12. | Scion is the term used in relation                                                                   |                         | Agamaanarmy                                                                           | (4) Emacoulation |  |  |  |
|     | (1) Embryology (2) Gra                                                                               | aruny (3)               | Agamospermy                                                                           | (4) Emasculation |  |  |  |

| 13. | <ul><li>(1) Self pollination</li><li>(3) Vegetatie propagation</li></ul>                                                                                                                                                                                                                                                              | ٠,           | Cross pollination Hybridisation                                  |       |                           |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------|-------|---------------------------|--|--|--|--|--|
| 14. | Which is not a method of vegetative propagation (1) Micropropagation (2) Budding                                                                                                                                                                                                                                                      |              | Sowing                                                           | (4)   | Layering                  |  |  |  |  |  |
| 15. | Parthenogenesis is  (1) Development of fruit without fertilization  (2) Development of fruit with fertilization  (3) Development of fruit without hormones  (4) Development of embryo from egg without fe                                                                                                                             | rtiliz       | ation                                                            |       |                           |  |  |  |  |  |
| 16. | Cellular totipotency was demonstrated by (1) Theodore Schwann (3) F. C. Steward                                                                                                                                                                                                                                                       | ٠,           | A.V. Leeuwenhoek<br>Robert Hooke                                 |       |                           |  |  |  |  |  |
| 17. | A totipotent cell means  (1) An undifferentiated cell capable of developing into a system or entire plant  (2) An undifferentiated cell capable of developing into an organ  (3) An undifferentiated cell capable of developmeing into complete embryo  (4) Cell which lacks the capability to differentiate into an organ or system. |              |                                                                  |       |                           |  |  |  |  |  |
| 18. | A major use of embryo culture is in  (1) Induction of somaclonal variations (2) Overcoming hybridisation barriers (3) Production of alkaloids (4) Clonal propagation                                                                                                                                                                  |              |                                                                  |       |                           |  |  |  |  |  |
| 19. | On culturing the young anther of a plant a bot Which of the following might have given the diple (1) Exine of pollen grain (3) Cells of anther wall                                                                                                                                                                                   | oid p<br>(2) | •                                                                | ollen |                           |  |  |  |  |  |
| 20. | Which ones produce androgenic haploids in antl (1) Anther wall (3) Connective tissue                                                                                                                                                                                                                                                  | (2)          | cultures?<br>Tapetal layer of antl<br>Young pollen grains        |       | wall                      |  |  |  |  |  |
| 21. | In Tobacco callus, which one shall induce shoot (1) Higher concentration of cyokinin and lower c (2) Lower concentration of cytokinin and higher (3) only cytokinin and no auxin (4) Only auxin and no cytokinin                                                                                                                      | onc          | entration of auxin                                               | atior | n of auxin and cytokinin? |  |  |  |  |  |
| 22. | Which of the following plant cells will show totipo<br>(1) Sieve tubes (2) Xylem vessels                                                                                                                                                                                                                                              |              | cy<br>Meristem                                                   | (4)   | Cork cells                |  |  |  |  |  |
| 23. | Variations observed during tissue culture of som (1) Clonal variations (3) Somatic variations                                                                                                                                                                                                                                         | (2)          | ants are known as<br>Somaclonal variatio<br>Tissue culture varia |       | 3                         |  |  |  |  |  |

| 24. | Virus free plants can be obtained by                    |                             |        |                    |         |                              |  |  |  |  |  |
|-----|---------------------------------------------------------|-----------------------------|--------|--------------------|---------|------------------------------|--|--|--|--|--|
|     | (1) Antibiotic treatmen                                 | nt                          | (2)    | Bordeaux mixture   | )       |                              |  |  |  |  |  |
|     | (3) Root tip culture                                    |                             | (4)    | Shoot tip culture  |         |                              |  |  |  |  |  |
| 25. | Tissue culture techniq                                  | ue can produce indefinite   | e nun  | nber of new plants | from a  | a small parental tissue. The |  |  |  |  |  |
|     | economic importance                                     | of the technique is in rais | sing.  |                    |         |                              |  |  |  |  |  |
|     | (1) Variants through p                                  | oicking up somaclonal va    | riatio | ns                 |         |                              |  |  |  |  |  |
|     | (2) Genetically uniform                                 | m population of an elite s  | pecie  | es                 |         |                              |  |  |  |  |  |
|     | (3) Homozygous diplo                                    | oid plants                  |        |                    |         |                              |  |  |  |  |  |
|     | (4) Development of n                                    | ew species                  |        |                    |         |                              |  |  |  |  |  |
| 26. | External water is not required for fertilization of     |                             |        |                    |         |                              |  |  |  |  |  |
|     | (1) Pteriodophytes                                      | (2) Bryophytes              | (3)    | Thallophytes       | (4)     | Spermatophytes               |  |  |  |  |  |
| 27. | A quicker regeneration of grass leaves shall occur by   |                             |        |                    |         |                              |  |  |  |  |  |
|     | (1) Cutting                                             | (2) Grazing                 | (3)    | Irrigation         | (4)     | Clipping                     |  |  |  |  |  |
| 28. | Grafting is not possible                                | e in monocots as they       |        |                    |         |                              |  |  |  |  |  |
|     | (1) Lack cambium                                        |                             | (2)    | Are herbacious     |         |                              |  |  |  |  |  |
|     | (3) Have scattered va                                   | scular bundles              | (4)    | Have parallel ven  | tation  |                              |  |  |  |  |  |
| 29. | A piece of Potato tuber will form a new plant if it has |                             |        |                    |         |                              |  |  |  |  |  |
|     | (1) Branches                                            | (2) Stored food             | (3)    | Roots              | (4)     | Scales/eyes                  |  |  |  |  |  |
| 30. | Layering is used for vegetative propagation of          |                             |        |                    |         |                              |  |  |  |  |  |
|     | (1) Rose                                                | (2) Jasmine                 | (3)    | Mango              | (4)     | All of these                 |  |  |  |  |  |
| 31. | Roots are used in veg                                   | etative propagation of      |        |                    |         |                              |  |  |  |  |  |
|     | (1) Ginger                                              | (2) Chrysanthemum           | (3)    | Sweet Potato       | (4)     | Potato                       |  |  |  |  |  |
| 32. | Stem cuttings are com                                   | nmonly used in propagati    | on of  |                    |         |                              |  |  |  |  |  |
|     | (1) Mango                                               | (2) Cotton                  | (3)    | Rose               | (4)     | Banana                       |  |  |  |  |  |
| 33. | Haploid plant cultures                                  | are got from                |        |                    |         |                              |  |  |  |  |  |
|     | (1) Leaves                                              | (2) Root tip                | (3)    | Pollen grain       | (4)     | Buds                         |  |  |  |  |  |
| 34. | Somaclonal variations                                   | are the ones                |        |                    |         |                              |  |  |  |  |  |
|     | (1) Caused by mutag                                     | ens                         | (2)    | Produced during    | tissue  | culture                      |  |  |  |  |  |
|     | (3) Induced during se                                   | xual embryogeny             | (4)    | Caused by gamm     | na rays | 5                            |  |  |  |  |  |
| 35. | Parasexual hybridisati                                  | on means fusion of          |        |                    |         |                              |  |  |  |  |  |
|     | (1) Male gamete with                                    | female gamete               | (2)    | Male gamete with   | n syne  | rgid                         |  |  |  |  |  |
|     | (3) Somatic protoplas                                   | te                          | (1)    | Male gamete with   | som     | atic cell                    |  |  |  |  |  |

### **REPRODUCTION IN ORGANISMS**

| 36. | Application of embryo cultures is in                                  |                       |                 |                            |                          |       |  |  |  |  |  |
|-----|-----------------------------------------------------------------------|-----------------------|-----------------|----------------------------|--------------------------|-------|--|--|--|--|--|
|     | (1) Clonal propagati                                                  | on                    | (2)             | Overcoming h               | ybridisation barrier     |       |  |  |  |  |  |
|     | (3) Production of alk                                                 | aloids                | (4)             | Formation of s             | somaclonal variations    |       |  |  |  |  |  |
| 37. | Plants developed in                                                   | vitro culture from p  | ollen grains a  | grains are                 |                          |       |  |  |  |  |  |
|     | (1) Androgenic hapl                                                   | oids                  | (2)             | Pollen plants              |                          |       |  |  |  |  |  |
|     | (3) Male plants                                                       |                       | (4)             | Sterile plants             |                          |       |  |  |  |  |  |
| 38. | In tissue/bacterial cu                                                | lture glassware an    | d nutrients ar  | nts are sterilised through |                          |       |  |  |  |  |  |
|     | (1) Water bath at 20                                                  | 0°C                   | (2)             | ) Dry air oven at 200°C    |                          |       |  |  |  |  |  |
|     | (3) Dehumidifier                                                      |                       | (4)             | Autocalve                  |                          |       |  |  |  |  |  |
| 39. | Development of shoot and root in tissue culture is determined by      |                       |                 |                            |                          |       |  |  |  |  |  |
|     | (1) Cytokinin and au                                                  | ixin ratio            | (2)             | ) Enzyme                   |                          |       |  |  |  |  |  |
|     | (3) Temperature                                                       |                       | (4)             | 4) Plant nutrients         |                          |       |  |  |  |  |  |
| 40. | Plant medium used widely in preparation of culture medium is got from |                       |                 |                            |                          |       |  |  |  |  |  |
|     | (1) Cycas revoluta                                                    |                       | (2)             | Cocos nucifer              | a                        |       |  |  |  |  |  |
|     | (3) Pinus roxburghii                                                  |                       | (4)             | Borassus flab              | ellifera                 |       |  |  |  |  |  |
| 41. | Mango and Guava a                                                     | re propagated thro    | ough            |                            |                          |       |  |  |  |  |  |
|     | (1) Tissue culture                                                    | (2) Grafting          | (3)             | Stolons                    | (4) Layering             |       |  |  |  |  |  |
| 42. | Chrysanthemum mu                                                      | Itiplies vegetatively | / by            |                            |                          |       |  |  |  |  |  |
|     | (1) Suckers                                                           | (2) Runners           | (3)             | Stolons                    | (4) Rhizomes             |       |  |  |  |  |  |
| 43. | In vegetative propag                                                  | ation by tubers, wh   | nich of followi | ng remains cor             | nstant through generatio | ns    |  |  |  |  |  |
|     | (1) Morphology                                                        |                       | (2)             | Vigour only                |                          |       |  |  |  |  |  |
|     | (3) Vigour and morp                                                   | hology only           | (4)             | Morphology, v              | rigour and disease resis | tance |  |  |  |  |  |
| 44. | Induction of rooting of                                               | on stems before se    | parating then   | n from parent p            | lant is                  |       |  |  |  |  |  |
|     | (1) Grafting                                                          |                       | (2)             | Layering                   |                          |       |  |  |  |  |  |
|     | (3) Cutting                                                           |                       | (4)             | Root-stem joir             | nt                       |       |  |  |  |  |  |
| 45. | Clonal cell lines are                                                 | got from              |                 |                            |                          |       |  |  |  |  |  |
|     | (1) Tissue culture                                                    |                       | (2)             | Tissue fraction            | nation                   |       |  |  |  |  |  |
|     | (3) Tissue homoger                                                    | isation               | (4)             | Tissue system              | า                        |       |  |  |  |  |  |
|     |                                                                       |                       |                 |                            |                          |       |  |  |  |  |  |

|     | SF  | SPP An |     | vers | ; <u> </u> |     |     |     |     |     |     |     |     |
|-----|-----|--------|-----|------|------------|-----|-----|-----|-----|-----|-----|-----|-----|
| 1.  | (4) | 2.     | (2) | 3.   | (1)        | 4.  | (1) | 5.  | (3) | 6.  | (1) | 7.  | (3) |
| 8.  | (3) | 9.     | (2) | 10.  | (1)        | 11. | (3) | 12. | (2) | 13. | (3) | 14. | (3) |
| 15. | (4) | 16.    | (3) | 17.  | (1)        | 18. | (2) | 19. | (3) | 20. | (4) | 21. | (1) |
| 22. | (3) | 23.    | (2) | 24.  | (4)        | 25. | (2) | 26. | (4) | 27. | (4) | 28. | (1) |
| 29. | (4) | 30.    | (2) | 31.  | (3)        | 32. | (3) | 33. | (3) | 34. | (2) | 35. | (3) |
| 36. | (2) | 37.    | (1) | 38.  | (4)        | 39. | (1) | 40. | (2) | 41. | (2) | 42. | (1) |
| 43. | (4) | 44.    | (2) | 45.  | (1)        |     |     |     |     |     |     |     |     |