TOPIC : CHEMICAL KINETICS EXERCISE # 1

Section (A)					
1.	$x A + yB \longrightarrow z C$				
	$\frac{-d}{dt} [A] = \frac{-d}{dt} [B] = 1$	$.5 \frac{-d}{dt} \longrightarrow [C]$			
	$\Rightarrow \frac{-1}{3} \frac{-d}{dt} [A] = \frac{-1}{3}$ x = 3 y = 3	$\frac{-1}{3}\frac{-d}{dt} [B] = \frac{1}{2}\frac{-d}{dt} [C]$ $z = 2$]		
	,				
2.为	$\frac{1}{2} \frac{d[c]}{dt} = -\frac{1}{3} \frac{d[D]}{dt} = \frac{1}{A}$ B & Dwill be same side B:D: A : C = 1 : 3 : 4 : 2	e and A & C will be same	state ratio of stoichiome	tric coefficient	
5.	$3A \rightarrow 2B, \ \frac{-1}{2}\frac{d[A]}{dt} = \frac{1}{2}$	2 <u>d[B]</u> dt			
6.	$A + 2B \longrightarrow 3C + D$				
	$\frac{-d[A]}{dt} = \frac{-1}{2} \frac{d[B]}{dt} = \frac{-1}$	$\frac{+1}{3} \frac{d[c]}{dt} = \frac{+d[D]}{dt}$			
7.	x A → Y B	•			
	$\frac{-1}{x}\frac{d}{dt} [A] = \frac{1}{y}\frac{d}{dt} [A]$	3]			
	$\Rightarrow \qquad \frac{-d}{dt} [A] = \frac{x}{y} \frac{d}{dt}$	d dt [B]			
	$\log\left(\frac{- d[A]}{dt}\right) = \log\left(\frac{1}{2}\right)$	$\frac{x}{y}\left(\frac{+ d[B]}{dt}\right)$			
	$\Rightarrow \qquad \log [A] \ \frac{-d}{dt} = I$	og $\frac{d}{dt}$ [B] + log $\left(\frac{x}{y}\right)$			
	$\log \left(\frac{x}{y}\right) = \log 2$				
	$\Rightarrow \frac{x}{y} = \frac{2}{1}$				
	,				
	\Rightarrow x:y 2:1				
10.	$\frac{d[P]}{dt} = \frac{15-5}{20-0} = 0.5 \text{ N}$	1S-1			
11.	$\frac{d}{dt}$ [SO ₃] = 100 gram	$/\min = \frac{100}{80}$ mole / min =	1.25 mole/min.		
	$\frac{-1}{2}\frac{d}{dt} [SO_2] = \frac{-d}{dt} [$	$O_2] = \frac{1}{2} \frac{d}{dt} [SO_3]$			
	$\frac{-d}{dt} [O_2] = \frac{1.25}{2} \text{ mole}$	$e/min = \frac{1.25}{2} \times 32 \text{ gran}$	n/min = 20 gram/min		
12.	Rate law for :	lst order Rate = K[A]¹	Ind order $R_2 = K[A]^2$	IIIrd order $R_3 = K[A]^3$	

than we can say [A] = 1 $r_1 = r_2 = r_3$ [A] < 1 then $r_1 > r_2 > r_3$ [A] > 1 then $r_3 > r_2 > r_1$

Section (B) 1. R k [

 $\begin{array}{l} \hat{\mathsf{R}} \quad \hat{\mathsf{k}} \ [\mathsf{A}]^{\mathsf{a}} \ [\mathsf{B}]^{\mathsf{b}} \\ \text{acc. to data, a = 2,} \qquad \mathsf{b} = \frac{1}{2} \\ 2\mathsf{A} + \frac{1}{2} \ \mathsf{B} \rightarrow \mathsf{Product} \qquad -\frac{1}{4} \ \frac{\mathsf{d}[\mathsf{A}]}{\mathsf{dt}} = \frac{-\mathsf{d}[\mathsf{B}]}{\mathsf{dt}} \end{array}$

- 2. Order of reaction is experimentally determined.
- **3.** Overall order = sum of individual orders.

4. Overall order = $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{13}{12}$.

- 5. Rate of reaction is independent of concentration of reactant for zero order reaction.
- 6. R K [A] [B] Order wrt. A = 1 & above wr.t B = 1 K depends an temperature

7. (a)
$$2NO + 2H_2 \longrightarrow N_2 + 2H_2O$$

 $\frac{-1}{2} \frac{d[\times 10]}{dt} = -\frac{1}{2} \frac{d[H_2]}{dt} = \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[H_2O]}{dt} = Rate$
 $k_1 = \frac{k}{2} = \frac{k_1'}{2} = \frac{k_1''}{2}.$

9.
$$A + B$$
 Products
 $R = k [A]^2 [B]^3$
 $R' = R.2^2 [A]^2 2^3 [B]^3 = 2^5 R = 32R$
10. $R = k [A]^m [B]^n$

$$2R = k \ 2^{m} \ [A]^{m} \ [B]^{n} \qquad 2R = k \ 2 \ [A]^{m} \ 2^{n} \ [B]^{n} \qquad n = 0.$$

Section (C)

1. Unit of k is L mol⁻¹ sec⁻¹ so order is 2.

2.
$$t = \frac{2.303}{K} \log \frac{C_o}{C_t}$$

$$\Rightarrow \quad t = \frac{2.303}{K} [\log C_o - \log C_t]$$

$$\frac{K}{2.303} = \log C_o - \log C_t$$

$$\Rightarrow \quad C_t = \left(\frac{-K}{2.303}\right) t + \log C_o$$
So,
$$slope = \left(\frac{-K}{2.303}\right)$$

- **3.** Amount decayed = a (a / 8) = 7a / 8
- **4.** According to graph given it would be zero order reaction so rate independent of time.

- 5. N₂O₅ \rightarrow 2NO₂ + $\frac{1}{2}$ O₂ R = K [N₂O₅] R = 6.2 × 10⁻⁴ S⁻¹ × 1.25 mole L⁻¹ = 7.75 × 10⁻⁴ mole 2⁻¹ Se⁻¹
- 6. As per unit, zero orde reaction Co - Ct = KT $Co - 0.5 = 2 \times 10^{-2} \times 25$ Co = 1.0 m
- 7. $\log(a-x)$ vs time t is straight line $\log(a-x) = kt$ (k & k' are some constants) $\ln(a-x) = K't$ $\frac{1}{a-x} \times -\frac{-dx}{dt} = K.$ (on defferenciating) $\frac{-dx}{dt} = K (a-x)'$ shows a first order reaction.
- Equal amount of Rxn completed in equal time property as zero order Rxn, and unit as Rate constant mole Litre⁻¹ sec⁻¹

9.
$$t_1 = 2 \times t_{1/2}$$
; $t_2 = t_{1/2}$

- **10.** Unit of rate constant is (time)⁻¹. Hence first order reaction. Time required to change concentration 1 M to 0.25 M = 2 × $t_{1/2}$ = 2 × $\frac{\ln 2}{k}$ = 20 min.
- 11. $C_{t} = Co \ kt \Rightarrow \underline{kt = co.ct}$ $\underline{kt \quad 75\% = 0.75co} \quad .f \quad \underline{kt \quad 50\% = 0.5co}$ $\Rightarrow \quad \frac{t75\%}{t50\%} = \frac{75}{50} = 1.5.$
- **12.** A + B \longrightarrow product $r = K [A]^{1} [B]^{2}$ $r_{1} = K [1]^{1} [1]^{2} = 1 \times 10^{-2}$ (K = 1 × 10⁻²) $r_{1} = K \left[\frac{1}{2}\right] \left[\frac{1}{2}\right]^{2} = 1 \times 10^{-2} \times \frac{1}{8} = 1.25 \times 10^{-3}$
- **13.** Reaction is zero order (unit of k) $[B] = 2 \times \text{moles of A reacted}$ $[B] = 2 \times \text{kt} = 0.2 \text{ mol lit}^{-1}.$

14.
$$C_t = C_0 e^{-Kt}$$

According to question

$$C_{A}, t = C_{B}, t$$

$$C_{A} e^{-K_{A}t} = C_{B} e^{-K_{B}t}$$

$$\frac{C_{A}}{C_{B}} = \frac{e^{-K_{B}t}}{e^{-K_{A}t}}$$

$$\Rightarrow \qquad \frac{C_{A}}{C_{B}} = e^{(K_{A}-K_{B})t}$$

$$\Rightarrow \qquad 4 = e^{\left[\frac{\ln 2}{5} - \frac{\ln 2}{15}\right] \times t}$$

$$\ln 4 = \left[\frac{\ln 2}{5} - \frac{\ln 2}{15}\right] t$$

$$\Rightarrow \quad \ln(2)^{2} = \left[\frac{\ln 2}{5} - \frac{\ln 2}{15}\right] t$$

$$2\ln 2 = \left[\frac{\ln 2}{5} - \frac{\ln 2}{15}\right] t$$

$$2\ln 2 = \left[\frac{1}{5} - \frac{1}{15}\right] t$$

$$2 = \frac{2}{15} \times t$$

$$\Rightarrow \quad t = 15 \text{ minte.}$$
15. The second of the lift if $t = \frac{60}{10} = 6$ half life $C_{t} = \frac{C_{0}}{(2)^{2}} = \frac{C_{0}}{(2)^{5}} = \left(\frac{C_{0}}{64}\right)$
16. $\frac{1}{C_{t}} = \frac{1}{C_{0}} + Kt.$

$$\frac{1}{0.04} = \frac{1}{0.2} + 0.002 \times t \quad \Rightarrow \quad 25 = 5 + 0.002 \times t \quad \Rightarrow \quad t = \frac{20}{2 \times 10^{-3}} = 10,000 \text{ sec.}$$
17. The properties of lst order Rxn and other all are properties of lind order.
Section (D) 1. A + B + C
$$R = k \left[A\right]^{m} B^{m} R = 3 \quad \text{compere exp. (2) & (4) \Rightarrow \quad \frac{0.8}{0.8} = \left(\frac{1}{2}\right)^{n} n = 0 \quad \text{ so. } R = K \left[A\right]^{3}$$
3. $\frac{dx}{dt} = K \left[A\right]^{2}$

$$\log \frac{dx}{dt} = C_{0} + C R = \frac{1}{2} \left[\frac{1}{2}\right]^{n} \Rightarrow m = 3 \quad \text{compere exp. (2) & (4) \Rightarrow \quad \frac{0.8}{0.8} = \left(\frac{1}{2}\right)^{n} n = 0 \quad \text{ so. } R = K \left[A\right]^{3}$$
3. $\frac{dx}{dt} = K \left[A\right]^{2}$

$$\log \frac{dx}{dt} = C_{0} + C R = \frac{1}{2} \left[\frac{1}{2}\right]^{n} = 0 \quad \text{ so. } R = K \left[A\right]^{3}$$

$$R = \frac{1}{2} \left[\frac{1}{2}\right]^{n} \Rightarrow m = 3 \quad \text{compere exp. (2) & (4) \Rightarrow \quad \frac{0.8}{0.8} = \left(\frac{1}{2}\right)^{n} n = 0 \quad \text{ so. } R = K \left[A\right]^{3}$$

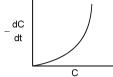
$$R = \frac{1}{2} \left[\log \left(A\right]_{1 \rightarrow 1} \right]$$

$$\log \frac{dx}{dt} = K \left[A\right]^{2} \quad \frac{1}{20} = \frac{2}{20} = 0.4$$
7. The formula the equal interval of time equal cond. decreased then reaction zero order Rate $\frac{4}{A} = \frac{20 - 12}{20} = \frac{8}{20} = 0.4$
7. The $A \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{20} = 0.4$

$$R \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{20} = 0.2$$

$$R \left(\frac{1}{2} - \frac{1}{20} + \frac{1}{225 + 150}\right\right)$$

$$\Rightarrow \quad \frac{1}{20} \ln \left(\frac{225}{225 + 150}\right)$$


$$\Rightarrow \quad \frac{1}{20} \ln \left(\frac{225}{225} = 0.05 \ln 3$$

$$\frac{1}{20} \ln \left(\frac{225}{25} = 1$$

$$= \frac{1}{20} \ln \left(\frac{225}{225 + 150}\right)$$

$$\Rightarrow \qquad \left(\frac{225}{75}\right)^2 = \frac{225}{225 \times P_{40}}$$
$$\frac{225}{75 \times 75} = \frac{1}{225 - P_{40}}$$
$$\Rightarrow \qquad P_{40} = 200$$

8. dt is parb parabolic graph of $y = x^2$

So This the graph of second order

$$y^{2} = x \qquad y = (x) \frac{1}{2}$$

$$-\frac{dC}{dt} = K [C]^{\frac{1}{2}} \qquad \text{So reaction is } \left(\frac{1}{2}\right) \text{ order.}$$
Section (E)

1.

$$t = 0$$

$$t = 3 \text{ hour}$$

$$2 \text{ A (g)} \longrightarrow 3 \text{ B (g)} + C (g)$$

$$P^{0} \qquad 0 \qquad 0$$

$$(P^{0} - x) \qquad \frac{3 x}{2} \qquad \left(\frac{x}{2}\right)$$

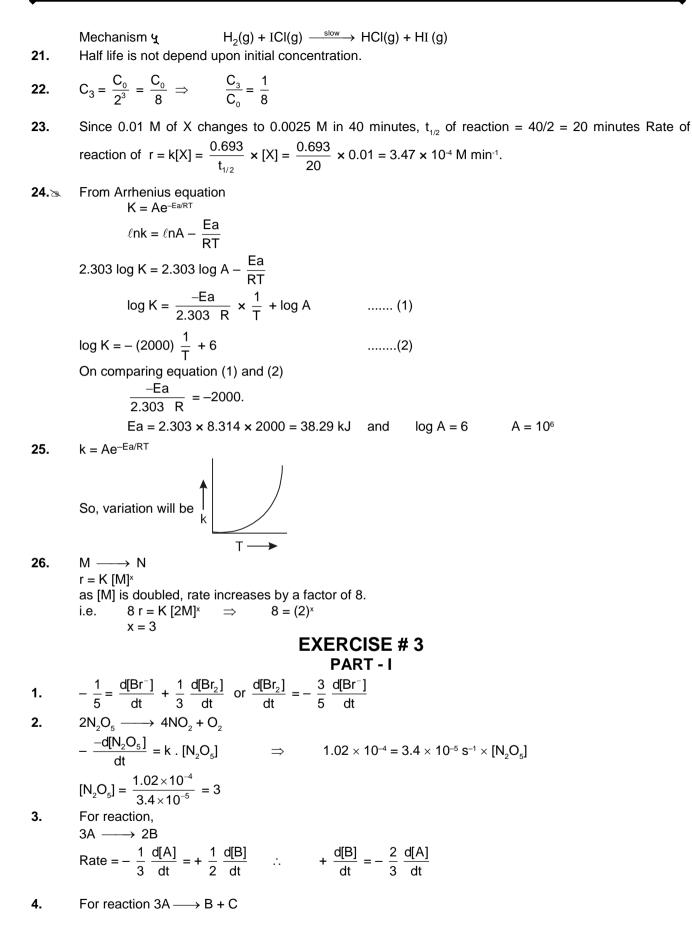
$$(P^{0} + x) = 2 \text{ P}^{0}$$

$$x = P^{0}$$

Reaction is completed in limited time so reaction is zero order reaction.

2.

 $A \longrightarrow 2B + C$ P_0 $P_0 + 2x = 176$ $3 P_0 = 270$ $P_{0} = 0 = 0$ $P_{0} = 0 = 0$ $P_{0} = 0 = 0$ $P_{0} = 0$ t = 0 t = t $P_{0} = 90$ x = 43 Pressure of A after 10 minute = 90 - 43 = 47


3. $A \rightarrow B + C +$ t = 0 Po

$$t = t_1 P_0 - x$$

65 4.> Initial pressure 105 185 Half life 290 670 820 х Initial pressure of gas a Initial moles of gas in above question. Half life a Initial pressure So, it must be zero order reaction $t_{1/2} = \frac{C_0}{2k} = \frac{P_0}{2k} 290 = \frac{65}{2k} \implies x = \frac{105 \times 2 \times 290}{2 \times 65} = 468 \text{ sec}$ $NH_{a}NO_{2}$ (aq) $\longrightarrow N_{2}$ (g) $+ 2H_{2}O(\ell)$ 5. $\mathsf{K} = \frac{2.303}{t} \log \left(\frac{\mathsf{V}_{\infty} - \mathsf{V}_{0}}{\mathsf{V}_{\infty} - \mathsf{V}_{t}} \right) \qquad \Rightarrow \qquad \mathsf{V}_{0} = 0 \quad \Rightarrow \qquad \mathsf{K} = \ \frac{2.303}{20} \log \left(\frac{70 - 0}{70 - 40} \right)$ $=\frac{2.303}{20}\log\left(\frac{70}{30}\right)$ $\Rightarrow \qquad \mathsf{K} = \frac{2.303}{1200} \log \frac{7}{3} \; .$ Section (F) 1. Rate of reaction increases as temp increases. 2. Rate increases as temperature increases. $K = A \times e^{-Ea/RT} = A \times e^{-Ea/R} \times \infty = A = 6.0 \times 10^{14} s^{-1}$ 4. 7. $\Delta H = Ea_t - Ea_b - 20 = 60 - Ea_b$ so $Ea_b = so$. $k = \frac{1}{t} \ln \left(\frac{a}{a - x} \right) \qquad \Rightarrow V_{\infty} \propto a \qquad \Rightarrow V_{t} \propto x \qquad \Rightarrow \left(\frac{a}{a - x} \right) = \left(\frac{V_{\infty}}{V_{t} - V_{t}} \right)$ 9. $\log k = 15.0 - \frac{10^6}{T}$ 10. $\log k = \log A - \frac{E}{2.303RT}$ compair this relation with we find $A = 10^{15}$. $E = 1.9 \times 10^4 \text{ KJ}$ 11. $\Delta H = E_f - E_h$ $-40 = 80 - E_{h}$ $E_{h} = 120 \text{ kJ/mole},$ catalyst lower the E, To 20 kJ/ mole for forward Rxn then E, = 20 kJ/mol we know catalyst decreases the Activation energy equal amount in both direction $E_{\rm b} = (120 - 60) = 60 \text{ kj/mol}$ $\frac{E_{b}}{E'_{b}} = \frac{120}{60} = 2.0$ Now $\ln k = \ln A - \frac{E_a}{R} \times \frac{1}{T} \implies Slope = -\frac{E_a}{R} = \frac{-8.3 \times 10^3}{8.3} = 1000$ 12.2 Section (G) 1. Maleculerity defined for one step reactions only. 2.> Slowesr step is rate determining step. $A + B \xrightarrow{\text{Slow}} C + D$ 3. A + B _____ R = k [A] [B] (slow step rate is determining step) 4. Slow step is $A + B \rightarrow C + D$ (slow). Hence r = k[A][B]

5.2 Since (A) is the intermediate reactive species whose concentration is determined from equilibrium step. Slow step is : $A + B_2 \longrightarrow AB + B$ (slow) $r = k[A][B_2]$ From equilibrium step $A_2 \implies A + A \text{ (fast)}$ $k_{eq} = \frac{[A]^2}{[A_2]}$ \therefore $[A] = (k_{eq}[A_2])^{1/2}$ Substitute the value of [A] in equation (i), $r = k.k_{eq}^{1/2}[A_2]^{1/2}[B_2]$ Thus, order of reaction = $\frac{1}{2} + 1 = 1\frac{1}{2}$ 7. For Rxn rate determining step is slowest step Then in 1st mechanism Rate = $k [NO_2] [O_2]$(i) But in 2nd mechanism $O_3 \xrightarrow{k_a \text{ fast}} O_2 + [O]$(1) $NO_{2} + O \xrightarrow{slow} NO_{2}$(2) $NO_3 + NO_2 \xrightarrow{fast} N_2O_5$(3) Then for Rxn (1) $\frac{k_{a}}{k} = \frac{[O_{2}] [O]}{[O_{2}]} = k_{eq}$(4) by Rxn (2) Rate = $k [NO_2] [O]$(ii) put value of [O] from (4) to (ii) Rate = k $\frac{k_{eq}[O_3]}{[O_2]}$ × [NO₂] \Rightarrow Rate = $\frac{k_1 [NO_2] [O_3]}{[O_2]}$ Section (H) % of B = $\frac{k_1 \times 100}{k_1 + k_2} = \frac{1.26 \times 10^{-4} \times 100}{12.6 \times 10^{-5} + 3 \times 10^{-5}} = 76.83\%.$ 1.> % of C = $\frac{k_2 \times 100}{k_1 + k_2} = \frac{3 \times 10^{-5} \times 100}{12.6 \times 10^{-5} + 3 \times 10^{-5}} = 23.18\%.$ Exercise # 2 Total time for drop to dissapear $(a_{0} - a_{1}) = kt$ 1.2 a, = 0 3.0×10^{-6} $\frac{3.0 \times 10}{(0.05 \times 10^{-3}) \times 1.0 \times 10^7} = t_{100\%} \implies t_{100\%} = 6 \times 10^{-9} \text{ sec}$ $\mathsf{K} = \frac{2.303}{10} \log \left(\frac{50}{50 - 10}\right) = \frac{2.303}{10} \log 1.25 \, \text{min}^{-1}$ 2. Rate constant depends on temperature. 3. Unit of K is mole L⁻¹ Sc⁻¹ 4. So order is 0. 5. $A + B \longrightarrow product$ r = K [A]¹ [B]² $r_1 = K [1]^1 [1]^2 = 1 \times 10^{-2}$ (K = 1 × 10⁻²) $r_1 = K \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 \times 10^{-2} \times \frac{1}{8} = 1.25 \times 10^{-3}$

6.	Suppose A_t We know $(A_0 - A_t) = kt$ for zeroth order $(0.50 - A_t) = 0.025 \times t$ $0.50 - A_t = 0.025 \times 15$ $A_t = 0.125 M$
7.æ 8.	As given, it is an elementary reaction. As $t_{50\%}$ is constant. Hence order of reaction is 1. $t_{50\%} = \frac{0.693}{K} \implies n = 1, t_{1/2} = \frac{0.693}{K}$
9.	$K = \frac{1}{t} \left[\ln \frac{a}{a - x} \right] = \frac{2.303}{t} \log \frac{a}{a - x}$ $K = \frac{2.303}{20} \log \frac{1}{0.25} = \frac{2.303}{20} \log \frac{4}{1} = 0.0693 \text{ min}^{-1}$
10.>	by graph we can say log $t_{1/2} = \log a$ $t_{1/2} = a$ (1)
	$t_{1/2} \propto a \text{ for zero order Rxn}$ $k \times t_{1/2} = \frac{a}{2}$ (2)
	then $k = \frac{1}{2}$
11.	$k = \frac{1}{t}$ en $\frac{a}{a-x} = \frac{1}{1.308 \times 5600}$ en $\frac{9}{0.25a} = 2.77 \times 10^{-4} \text{ sec}^{-1}$.
12.	$\begin{array}{cccc} A (g) & \longrightarrow B (g) & + & C(g) & + & D(g) \\ \text{Initially} & P_i & 0 & 0 & 0 \\ \text{At time t} & (P_i - P_x) & P_x & P_x & P_x \\ \text{total pressure at time t} & = (P_i + 2P_x) = P_t \\ \text{So} & P_x = & \\ & K = \log = \log. \end{array}$
13.	$K = Ae^{-E/RT}$
14.	$K_1 = A_1 e^{-E_1/RT}$ and $K_2 = A_2 e^{-E_2/RT}$
	$\frac{K_1}{K_2} = \frac{A_1}{A_2} = e^{(E_2 - E_1)/RT} ; A_1 \text{ and } A_2 \text{ are not given.}$
15.	For reaction, $A \longrightarrow B$. $E_a = 10 \text{ kJ/mole}$, $\Delta H = 5 \text{ kJ/mole}$ Rxn endothermic because ΔH (+) $\Delta H = E_a - E_b$ $5 = 10 - E_b$ $E_{ab} = 10 - 5 = 5 \text{ kJ/mole}$. Then [B].
16.	Clearly, $t_{1/2} \propto a^{1-n}$
18.>	Rate = $K[X][Y_2]$
	$K_{eq} = \frac{[X]^2}{[X_2]} \qquad \Rightarrow \qquad [X] = \sqrt{K_{eq}} \times [X_2]^{1/2}$
	Rate = $K \times \sqrt{K_{eq}} [X_2]^{1/2} [Y_2]$ So the order of overall reaction is 1.5
19.	$H_2(g) + 2ICI(g) \longrightarrow 2HCI(g) + I_2(g)$ Proposed mechanism

If it is zero order reaction, then the rate remains same at any concentration of 'A' or $\frac{dx}{dt} = k$ [A^o]. It means that rate is independent on concentration of reactants.

5. Rate constant of first order reaction

$$k = \frac{2.303}{t} \log_{10} \frac{(A)_0}{(A)_t}$$

or k = $\frac{2.303}{1} \times \log_{10} \frac{0.8}{0.2}$... (1)

(because 0.6 mole of B is formed) Suppose t_1 hour are required for changing the concentration of A from 0.9 mole to 0.675 mole of B. Remaining mole of A = 0.9 - 0.675 = 0.225

$$\therefore k = \frac{2.203}{t_1} \log_{10} \frac{0.9}{0.225} \qquad \dots (2)$$

From Eqs (i) and (ii)
$$\frac{2.303}{1} \log_{10} \frac{0.8}{0.2} = \frac{2.303}{t_1} \log_{10} \frac{0.9}{0.225} \implies 2.303 \log_{10} 4 = \frac{2.303}{t} \log_{10} 4$$

$$t_1 = 1 h$$

6. Arrhenius equation
$$k = Ae^{-E^*/RT}$$

$$\log K$$

$$\frac{\theta}{1/T}$$

$$\ln k = \ln A - \frac{E^*}{RT}$$
or
$$\log k = \log A - \frac{E^*}{2.303RT}$$

Hence, E is calculated with the help of following slope.

7. rate of reaction is equal to the rate constant for zero order reaction. Let us consider the following hypothetic change. $A \rightarrow B + C$

suppose this reaction is zero order, then rate [A]^o

$$\therefore \text{ rate} = \left(\frac{dx}{dt}\right) k \ [A]^{\circ} = k$$

8. For the first order reaction rate = k [A] [A] – concentration of reactant k = rate constant Given that $\frac{dx}{dt} = 1.5 \times 10^{-2} \text{ mol } \text{L}^{-1} \text{ min}^{-1}$ k = 2 and [A] = 0.5 M

$$\therefore 1.5 \ 10^{-2} = k \times 0.5 \quad \therefore \ k = \frac{1.5 \times 10^{-2}}{0.5} = 3 \times 10^{-2} \text{ min}^{-1}$$

For first order reaction half-life period, $t_{1/2} = \frac{0.693}{k} = \frac{0.693}{3 \times 10^{-2}} = 23.1 \text{ min}$

9.
$$t_{\frac{1}{2}} = \frac{\ln 2}{k} = \frac{0.693}{\left(\frac{2 \times 10^{-5}}{0.01}\right)} = \frac{693}{2} = 347 \text{ s}$$

4

10. A + B \longrightarrow product Rate, r \propto [A]^x[Y]^y (i) The rate decrease by a factor 4 if the concentration of reactant 'B' is doubled

From eqs. (i) and (ii)

$$4 = \left(\frac{1}{2}\right)^{y} y = -2$$

Hence, order of reaction wrt B is -2

- 11. For the reaction 2A + B → 3C + D The reaction rate is written as follows The reaction rate wrt A = $-\frac{1}{2} \frac{d[A]}{dt}$ The reaction rate wrt B = $-\frac{d[B]}{dt}$ The reaction rate wrt C = $+\frac{1}{3} \frac{d[C]}{dt}$ The reaction rate wrt D = $\frac{d[D]}{dt}$ Hence, the answer (1) is not correct expression to represent the rate of the reaction.
- **12.** For the reaction,

 $N_{2}(g) + 3H_{2}(g) \longrightarrow 2NH_{3}(g)$ The rate of reaction wrt $N_{2} = -\frac{d[N_{2}]}{dt}$ The rate of reaction wrt $H_{2} = -\frac{1}{3}\frac{d[H_{2}]}{dt}$ The rate of reaction wrt $NH_{3} = +\frac{1}{2}\frac{d[NH_{3}]}{dt}$ Hence, at a fixed time $-\frac{d[N_{2}]}{dt} = -\frac{1}{3}\frac{d[H_{2}]}{dt} = +\frac{1}{2}\frac{d[NH_{3}]}{dt}$ or $+\frac{d[NH_{3}]}{dt} = -\frac{2}{3}\frac{d[H_{2}]}{dt}$

13.
$$k = \frac{1}{60} \ln \left(\frac{100}{40} \right), t_{50\%} = \frac{1}{k} \ln 2 = \frac{\ln 2}{\ln 2.5} \ 60 = \frac{60 \times 0.3010}{2 \times 0.7 - 1}$$

 $t_{50\%} = \frac{60 \times 0.3}{0.4} = 45 \ \text{min} \ [\log 2 = 0.3 \ \log 2.5 = \log 25 - \log 10 = 0.4]$

14.
$$t_{\frac{1}{2}} = \frac{1}{k} \ln \left(\frac{100}{100 - 50} \right) = \frac{\ln 2}{k}$$

15. $10^{16} e^{-2000/T} = 10^{15} e^{-1000/T} \implies 10 = e^{1000/T} \implies T = \frac{1000}{2.303}$

16. Specific rate constant,
$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{1386} = 0.5 \times 10^{-3} \text{ s}^{-1}$$

17. For the reaction,
A + B → Products
on doubling the initial concentration of A only the rate of the reaction is also doubled, therefore
Rate ∝ [A]¹ ...(i)
Let initial rate law is
Rate k[A][B]^y ...(ii)
If concentration of A and B both are doubled, the rate gets changed by a factor of 8

8 × rate = k [2A] [2B]^y ...(iii) [\therefore Rate [A]¹] Dividing Eq. (iii) by eq. (ii) 8 = 2 × 2^y 4 = 2^y y = 2 Hence, rate law is, rate = k [A][B]²

18. For the reaction,

 $N_{2} + 3H_{2} \longrightarrow 2NH_{3}$ Rate = $-\frac{d[N_{2}]}{dt} = -\frac{1}{3}\frac{d[H_{2}]}{dt} = +\frac{1}{2}\frac{d[NH_{3}]}{dt}$ or $-\frac{1}{3}\frac{d[H_{2}]}{dt} = +\frac{1}{2}\frac{d[NH_{3}]}{dt}$ $-\frac{d[H_{2}]}{dt} = \frac{3}{2} \times 2 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ s}^{-1} = 3 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$

19. Order of the Reaction may be zero, whole No. or fraction number.

20. In
$$\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

21. [A] [B] Rate

$$x$$
 y R_1
 x $2y$ $2R_1$
 $2x$ $2y$ $8R_1$

That means order of reaction with respect to B is 1 and w.r.t A is 2. Hence, Rate = $k[A]^2 [B]^1$

$$ln K = ln A - \frac{Ea}{RT} ln_e e \qquad \Rightarrow \qquad ln K = ln A - \frac{Ea}{R} \times \frac{1}{T}$$

25. $t_{\frac{1}{2}} = \frac{0.6932}{k}$

Half life of first order reaction is independent on initial conc. of reactant.

26.
$$\frac{r_2}{r_1} = \frac{C_2}{C_1} \quad (\text{ for first order reaction})$$

$$k = \frac{1}{t_2 - t_1} \ell n \frac{C_2}{C_1} = \frac{1}{t_2 - t_1} \ell n \frac{r_2}{r_1}$$

$$k = \frac{1}{20 - 10} \quad \ell n \frac{0.04}{0.03} = \frac{1}{10} \ell n \frac{4}{3}$$

$$t_{1/2} = \frac{\ell n 2}{k} = \frac{\ell n 2}{\ell n 4/3} \times 10 = \frac{2.3 \times 0.3}{2.3(0.6 - 0.477)} \times 10 = 24.4 \text{ sec.}$$

$$\mathbf{27.} \qquad \mathsf{PH}_3 \xrightarrow{\mathsf{W}} \mathsf{P} + \frac{3}{2}\mathsf{H}_2$$

Rate = $k[PH_3]$.

It is independent of the surface coverage because zero order reaction depend on surface area covered by reactant.

28. $K = 10^{-2} = \frac{0.693}{\frac{t}{2}}$ So, $\frac{t}{2} = \frac{0.693}{10^{-2}} = 69.3$ sec.

> Two half lives are required for the reduction of 20g of reactant into 5g. So, time required = $2 \times 69.3 = 138.6$ sec

29.

1st order2nd orderRaterate = K[A]1rate = K[A]2Half life
$$T_{\frac{1}{2}} = \frac{\ell n 2}{K}$$
 $T_{\frac{1}{2}} = \frac{1}{KC_0}$

As $T_{\frac{1}{2}}$ of 1st order reaction does not depends on C₀ while. $T_{\frac{1}{2}}$ of 2nd order reaction depends on C₀.

30. For zero order reaction

$$\Gamma_{\frac{1}{2}} = \frac{C_0}{2K} \qquad \text{so} \qquad \Gamma_{\frac{1}{2}} \alpha C_0$$

On doubling initial concentration $T_{\frac{1}{2}}$ is double

- 31. The 1st order reaction $t = \frac{2.303}{k} \log \frac{a}{a-x} = \frac{2.303}{k} \log \frac{100}{100-99} = \frac{2.303}{k} \log 10^2 = \frac{2.303}{k} \times 2 \times \log 10$ $\frac{2.303 \times 2}{k} = \frac{4.606}{k}$
- 32. $K = 2.303 \times 10^{-3}$ Time required for Ist order reaction : $t = \frac{2.303}{K} \log \frac{a}{a-x}$ value of k = 2.305 × 10⁻³ sec. = 10³ × 0.602 t = 602 sec.

33. Activation energy $E_a = 0$ $T_1 = 200 \text{ K}$ $K_1 = 1.6 \times 10^{-6}$ $T_2 = 400 \text{ K}$ $K_2 = ?$ $\log \frac{k_2}{k_1} = \frac{eq}{2.303 \text{R}} \left[\frac{1}{T_1} - \frac{1}{T_2} \right] \implies \log \frac{k_2}{k_1} = 0 \implies \frac{k_2}{1.6 \times 10^{-6}} = 1$ $k_2 = 1.6 \times 10^{-6} \text{ S}^{-1}$

PART - II

1. Reactions which involve absorption of heat energy are called endothermic reactions. For such reactions $\Sigma H_P > \Sigma H_R$

In graph (3) and (4) the heat of products is more than heat of reactants ... They represents endothermic reaction. But in (4) only small amount of energy is absorbed (less difference between energy of reactants and products). Thus, (3) represent maximum activation energy.

2. $aA \rightarrow xP$

rate $\propto [A]^a = \frac{[A]_1^a}{[A_2]^a} \text{ k } [A]^a$ Initially $[A]_1 = 2.2 \text{ mM } r_1 = 2.4 \text{ mM/s}$ If $[A]_2 = 1.1 \text{ mM } r_2 = 0.6 \text{ mM/s}$ We have $\frac{r_1}{r_2} = \frac{[A]_1^a}{[A]_2^a} \text{ (a is the order)} \qquad \Rightarrow \qquad \frac{r_1}{r_2} = \frac{(2.2)^a}{(1.1)^a} \text{ or } = \frac{2.4}{0.6} \text{ (2)}^a$ $4 = 2^a \qquad \Rightarrow \qquad 2^2 = 2^a \text{ or } a = 2.$ The reaction is of second order.

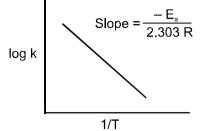
3. $t_{1/2} \propto a^{1-n}$

for $n = 3 t_{1/2} \propto \frac{1}{a^2}$

Graph (4) represent graph between $t_{1/2}$ and initial concentration for 3rd order reaction : (1) Zero order reaction (2) 1st order reaction (3) 2nd order reaction

4. $2N_2O_5 \longrightarrow 4NO_2 + O_2$ rate of reaction is : $\frac{1}{2}\frac{d [N_2O_5]}{dt} = \frac{1}{4}\frac{d [NO_2]}{dt}$

So, rate of disappearance of N₂O₅ is represented either by $-\frac{1}{2}\frac{d}{dt}\frac{[N_2O_5]}{dt}$ or by .


5. Mole of N₂O₅ =
$$\frac{10.8}{108}$$
 = 0.1 and, n = $\frac{9.6}{2.4}$ = 4 here n = numbers of half-life.
N₂O₅ \longrightarrow 2NO₂ + $\frac{1}{2}$ O₂ \therefore N_t = 0.1 × $\left(\frac{1}{2}\right)^n$
Moles of N₂O₅ left = $\frac{0.1}{16}$
Moles of N₂O₅ changed to product = $\left(0.1 - \frac{0.1}{16}\right) = \frac{1.5}{16}$ mol
Moles of O₂ formed = $\frac{1.5}{16} \times \frac{1}{2} = \frac{1.5}{32}$
Volume of oxygen = $\frac{1.5}{32} \times 22.4 = 1.05$ L

$$\mathbf{6.} \qquad \mathbf{k} = \mathbf{A} \mathbf{e}^{-\mathbf{E}_{a}/\mathbf{R}\mathbf{T}}$$

log k = log A - $\frac{E_a}{2.303}$ RT Comparing this equation with straight line y = mx + c

 $y = \log k$ and $x = \frac{1}{T}$

 \therefore E_a is calculated with the help of slope by plotting the curve between log k and $\frac{1}{\tau}$.

7. It is an experimentally determined value and depends upon the concentration change of reactant. It changes with pressure, temperature and concentration and it can have the fractional value.

8.
$$3BrO^{-} \longrightarrow BrO_{3}^{-} + 2Br^{-}$$

Rate =-
$$\frac{d [BrO^{-}]}{3dt}$$
 = + $\frac{d [BrO_{3}^{-}]}{dt}$ = + $\frac{[Br^{-}]}{2 dt}$
or $\frac{k_{1} [BrO^{-}]^{2}}{3}$ = $k_{2} [BrO^{-}]^{2}$ = $\frac{k_{3} [BrO^{-}]^{2}}{2}$
or $k_{1} = 3k_{2} = 1.5 k_{3}$
 $3BrO^{-} \longrightarrow BrO_{3}^{-} + 2Br^{-}$

10. For a first-order reaction, the rate expression is $\log\{[A]_t M\} - \log\{[A]_0M\} = -\{kt/2.303\}$. Thus, the plot of log $\{[A]_t / M\}$ versus t is linear with a negative slope $\left(-\frac{k}{2.303}\right)$ and non zero intercept.

11. $\frac{d(\ln k)}{dT} = \frac{E_a}{RT^2}$

As E_a increases, rate of increase in k also increases so k_1 will increase faster than k_2 but always will remain less than k_2 .

$$\begin{split} \mathsf{P}_{\mathsf{t}} - \mathsf{P}_{\mathsf{0}} &= 2\mathsf{P} \Rightarrow \mathsf{P} = \frac{\mathsf{P}_{\mathsf{t}} - \mathsf{P}_{\mathsf{0}}}{2} \qquad \Rightarrow \qquad \mathsf{k} = \frac{2.303}{\mathsf{t}} \log \left[\frac{\mathsf{P}_{\mathsf{0}}}{\mathsf{P}_{\mathsf{0}} - \mathsf{P}} \right] &= \frac{2.303}{\mathsf{t}} \log \left[\frac{\mathsf{P}_{\mathsf{0}}}{\mathsf{P}_{\mathsf{0}} - \mathsf{P}_{\mathsf{t}} + \mathsf{P}_{\mathsf{0}}} \right] \\ &= \frac{2.303}{\mathsf{t}} \log \left[\frac{2\mathsf{P}_{\mathsf{0}}}{2\mathsf{P}_{\mathsf{0}} - \mathsf{P}_{\mathsf{t}} + \mathsf{P}_{\mathsf{0}}} \right] &= \frac{2.303}{\mathsf{t}} \log \left[\frac{2\mathsf{P}_{\mathsf{0}}}{3\mathsf{P}_{\mathsf{0}} - \mathsf{P}_{\mathsf{t}}} \right] \end{split}$$

13. Two different reactions can have same rate of reaction. Rate of reaction depends upon many factors like nature and concentration of reactants, temperature, catalyst, energy factors, orientation factor, etc.
 14. Let the rate law be r = k [A]^x [B]^y

Divide (3) by (1)
$$\frac{0.10}{0.10} = \frac{[0.024]^{x}[0.035]^{y}}{[0.012]^{x}[0.035]^{y}}$$
 \therefore $1 = [2]^{x}, x = 0$

٦

Г

Divide (2) by (3)
$$\frac{0.80}{0.10} = \frac{[0.24]^{\circ}[0.036]^{\circ}}{[0.024]^{\circ}[0.036]^{\circ}}$$
 \therefore $8 = (2)^{\circ}$, $y = 3$
Hence, rate equation, $R = K[A]^{\circ}[B]^{\circ} = K[B]^{\circ}$
15. According to Arrhenius equation, $k = Ae^{-Cert}$
When $E_{n} = 0, k = A$.
 $t = \frac{2.303}{k} \log \frac{0.5}{0.05} = 0.384 \text{min.}$
23. For zero order
 $A = A_{0} - \text{Kt}$
 $t \frac{1}{2} - \frac{A_{0}}{2k} \implies t \frac{1}{4} = \frac{A_{0}}{4k} \implies \frac{1}{4} = \frac{2}{1}$
24. $\frac{f_{A}}{t_{B}} = \frac{A_{1}e^{-\frac{\pi}{2}\sqrt{tr}}}{f_{B}} \implies \frac{2}{1} = \frac{e^{-\frac{\pi}{2}\sqrt{tr}}}{e^{-\frac{\pi}{2}\sqrt{tr}}}$
 $\ln 2 = E_{B} - E_{A}/RT$
 $E_{B} - E_{B} = RT/n2$
25. $\frac{t}{t_{1}^{-1}} = \frac{cn}{(n2)} = \frac{60}{t_{1}^{-1}} = \frac{\log \frac{100}{20}}{\log 2}$
26. In presence of catalyst:
 $\log \frac{K_{A}}{K_{A}} = \log \frac{A_{A}}{t_{A}} + \frac{Ea_{2} - Ea_{A}}{2.3RT} \implies \log \frac{0.04}{0.4} = -k \log \frac{30}{10} \implies t_{\frac{1}{2}} = \frac{cn2}{k} = 6 \text{ min.}$
28. $\log \frac{K_{A}}{K_{B}} = \frac{E_{A} - E_{A}}{2.3RT} = \frac{5.75 \times 1000}{2.3 \times 8.31 \times 300} = 1 \frac{K_{A}}{K_{A}} = 10$
29. $\frac{0.4}{12.8} = (\frac{1}{2})^{\circ} = n = 5$
 $\therefore t = 5t_{\frac{1}{2}} = 5 \times 138 \text{ s} = 690 \text{ s.}$
29. $\frac{0.4}{12.8} = (\frac{1}{2})^{\circ} = n = 5$
 $\therefore t = 5t_{\frac{1}{2}} = 5 \times 138 \text{ s} = 690 \text{ s.}$
20. $\frac{0.4}{12.8} = (\frac{1}{2})^{\circ} = n = 5$
 $\therefore t = 5t_{\frac{1}{2}} = 5 \times 138 \text{ s} = 690 \text{ s.}$
21. Correation, Par(a) and par(a) and the number of molecules of reactants involved in the bataneod stocholometric equation. Thus, a reaction involving two different reactants can never be unimolecular. (a) $\frac{2}{12} = \frac{cn2}{12} = \frac{2}{12} = \frac{2}$

3. $NO(g) + Br_2(g) \longrightarrow NOBr_2(g)$ $NOBr_2(g) + NO(g) \longrightarrow 2NOBr(g)$ [rate determining step] Rate of the reaction $(r) = k [NOBr_2] [NO]$ where $[NOBr_2] = K_c [NO] [Br_2]$ $r = k. K_c. [NO] [Br_2] [NO]$ $r = k' [NO]^2 [Br_2].$

The order of the reaction with respect to NO(g) = 2.

 4. △H_R = E_f - E_b = 180 - 200 = -20 kJ mol⁻¹ The correct answer for this question should be -20kJ mol⁻¹. But no option given is correct. Hence we can ignore sign and select option
 5. Let A be the activity for safe working. Given A_o = 10 A Ao × No and A × N

$$t = \frac{2.303}{\lambda} \log \frac{N_o}{N} = \frac{2.303}{\lambda} \log \frac{A_o}{A}$$
$$= \frac{\frac{2.303}{0.693}}{\frac{0.693}{30}} \log \frac{10A}{A} = \frac{2.303 \times 30}{0.693} \log 10 = \frac{2.303 \times 30}{0.693} = 99.69 \text{ days} \approx 100 \text{ days}.$$

- 6. $\frac{1}{2}A \longrightarrow 2B \implies -\frac{1}{1/2}\frac{d(A)}{dt} = \frac{1}{2}\frac{d(B)}{dt}$ $\boxed{-\frac{d(A)}{dt} = \frac{1}{4}\frac{d(B)}{dt}}$
- 7. In first order reaction for X% complation

$$k = \frac{2.303}{t} \log\left(\frac{100}{100 - x\%}\right) \implies \frac{0.693}{t_{1/2}} = \frac{2.303}{t} \log\left(\frac{100}{100 - 99}\right) = \frac{0.693}{6.93} = \frac{2.303 \times 2}{t}$$

So, t = 46.06 min.

8. A \longrightarrow product

10.

11.

For zero order reaction

$$t_{_{1/2}} \propto \frac{1}{a^{n-1}}$$
 a = initial concentration of reactant $t_{_{1/2}} \propto a$

$$\frac{(t_{1/2})_1}{(t_{1/2})_2} = \frac{a_1}{a_2} \quad ; \quad \frac{1}{(t_{1/2})_2} = \frac{2}{0.50} \qquad \Rightarrow \qquad t_{1/2} = \frac{0.5}{2} = 0.25 \text{ h.}$$
Machaniam (1) rate = K [C11][H S]

9. Mechanism (1) rate = K [Cl₂] [H₂S] Mechanism (2) rate = K₁ [Cl₂] [HS⁻]

 $K_1 = A_1 e^{-Ea_1/RT}$

 $K_2 = A_2 e^{-Ea_2/RT}$

$$K_{eq} = \frac{[H^{+}][HS^{-}]}{[H_{2}S]}$$
$$[HS^{-}] = \frac{K_{eq}[H_{2}S]}{[H^{+}]} = K_{1}K_{eq}\frac{[CI_{2}][H_{2}S]}{[H^{+}]} \qquad \therefore$$

 $\frac{\text{Rate at } 50^{\circ}\text{C}}{\text{Rate at } T_{1} \ ^{\circ}\text{C}} = (2)^{\frac{\Delta T}{T_{1}}} = (2)^{\frac{50}{10}} = 2^{5} = 32 \text{ times}$

Mechanism (1) is consistent with this rate equation.

$$\frac{K_{1}}{K_{2}} = \frac{A_{1}}{A_{2}} e^{(E_{a_{2}}-E_{a_{1}})/RT}}$$

$$K_{1} = K_{2}A \times e^{E_{a_{1}}/RT}$$
12.
$$K = \frac{1}{40} ln \frac{0.1}{0.025} = \frac{1}{40} ln 4$$

$$R = K[A]^{1} = \frac{1}{40} ln 4(.01) = \frac{2ln2}{40}(.01) = 3.47 \times 10^{-4}$$
13.
$$log \frac{K_{2}}{K_{1}} = \frac{-E_{a}}{2.030R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

- $\begin{aligned} \frac{K_2}{K_1} &= 2 \ ; \ T_2 &= 310 \ K \\ &\Rightarrow \log 2 \ \ = \frac{-E_a}{2.303 \times 8.134} \left(\frac{1}{310} \frac{1}{300} \right) \ \ \Rightarrow E_a \ \ = 53598.6 \ \ J/mol \ = 53.6 \ KJ/mol \end{aligned} \qquad \textbf{Ans is (1)} \\ \textbf{14.} \qquad 1.2 \times 10^{-3} &= K \ (0.1)^x \ (0.1)^y \\ 1.2 \times 10^{-3} &= K \ (0.1)^x \ (0.2)^y \\ 2.4 \times 10^{-3} &= K \ (0.2)^x \ (0.1)^y \\ R &= K \ [A]^1 \ [B]^0 \end{aligned}$
- **15.** Higher order (> 3) reactions are rare due to low probability of simultaneous collision of all the reacting species.
- **16.** In 50 minutes, concentration of H_2O_2 becomes $\frac{1}{4}$ of initial.

$$\Rightarrow 2 \times t_{1/2} = 50 \text{ minutes} \Rightarrow t_{1/2} = 25 \text{ minutes} \Rightarrow K = \frac{0.693}{25} \text{ per minute}$$

$${}^{F_{H_2O_2}} = \frac{0.693}{25} \times 0.05 = 1.386 \times 10^{-3}$$

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

$${}^{F_{O_2}} = \frac{1}{2} \times {}^{F_{H_2O_2}} \Rightarrow {}^{F_{O_2}} = 0.693 \times 10^{-3}$$

 $r_{O_2} = 6.93 \times 10^{-4}$ mol/minute x litre

17.
$$k_1 = Ae^{-Ea_1/RT}$$

$$k_2 = Ae^{-(Ea_1-10)/RT} \implies Ln\left(\frac{k_2}{k_1}\right) = \frac{10}{RT} = \frac{10}{8.314 \times 10^{-3} \times 300} = 4$$

18. Rate = K (pressure)ⁿ
$$B_1 = K(P_1)^n$$

$$\frac{R_{1} - R_{1}(1)}{R_{2} = K(P_{2})^{n}}$$

$$\frac{R_{1}}{R_{2}} = \left[\frac{P_{1}}{P_{2}}\right]^{n} \Rightarrow P_{1} = 363 - \frac{363 \times 5}{100} = 344.85, P_{2} = 363 - \frac{363 \times 33}{100} = 243.21 \Rightarrow \frac{1}{0.5} = \left(\frac{344.85}{243.21}\right)^{n}$$

$$2 = (\sqrt{2})^{n} \Rightarrow (n = 2)$$

- **19.** $R = k[A]^{x}[B]^{y}$ $6.93 \times 10^{-3} = k (0.1)^{x} (0.2)^{y}$ (i) $6.93 \times 10^{-3} = k (0.1)^{x} (0.25)^{y}$ (ii) $1.386 \times 10^{-2} = k (0.2)^{x} (0.3)^{y}$ (iii) $\Rightarrow y = 0 \text{ (from (i) & (ii))}$ x = 1 (from (i) & (iii)) $\Rightarrow \text{ First order wrt } A \Rightarrow 6.93 \times 10^{-3} = k (0.1)$ $\Rightarrow k = 6.93 \times 10^{-2} \text{ min}^{-1} \Rightarrow t_{1/2} = \frac{\ell n2}{k} = \frac{0.693}{6.93 \times 10^{-2}} = 10$
- 20. $2A + B \longrightarrow \text{products}$ $r = K[A]^{\times} [B]^{y}$ $0.3 = K[A]^{\times} [B]^{y}$ (1) $2.4 = K[2A]^{\times} [2B]^{y}$ (2) $\frac{(2)}{(1)}$ $8 = 2^{x} \times 2^{y}$ or $8 = 2^{x+y} \Longrightarrow x + y = 3$ $x = 1 \therefore y = 2$

21. $k = Ae^{-E_a/RT}$

k decreases exponentially with E_a

But temperature is given in °C So, $k \neq 0$ at 0°C.

[A]²

... For temperature between 0°C and 300°C, graph will come like (II)

22.
$$\frac{d[A]}{dt} = 2k_1[A_2] - 2k_{-1}$$

23. Slope of
$$\ell$$
nk v/s $\frac{1}{RT} = -y = -E_a$
 $\therefore E_a = y$

24.
$$t_{\frac{1}{2}} = \frac{C_0}{2k} \Longrightarrow 6 = \frac{0.2}{2k} \Longrightarrow k = \frac{1}{60}$$
Now, $C_t = C_0 - Rk$
 $0.2 = 0.5 - \frac{1}{60} \times t$
 $0.3 = \frac{t}{60} \Longrightarrow t = 18hrs$

25. According to unit of rate constant it is a zero order reaction then half life of reaction will be $t_{1/2} = \frac{C_0}{2k} = \frac{5\mu g}{2 \times 0.05\mu g/year} = 50 \text{ years}$

26.
$$\ell nk = \ell nA - \frac{Ea}{RT} = \ell nA - \frac{4606}{T} \left[\therefore \frac{E_A}{R} = 4606 \right]$$
$$\ell n \left(\frac{k}{10^{-5}} \right) = \left(\frac{E_a}{R} \right) \times \frac{500 - 400}{500 \times 400} \implies \ell n \left(\frac{k}{10^{-5}} \right) = 4606 \times \frac{1}{2000} = 2.303$$
$$\ell n \left(\frac{k}{10^{-5}} \right) = \ell n 10$$
$$k = 10^{-4} \, \text{s}^{-1}$$