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TOPIC : RIGID BODY DYNAMICS 

EXERCISE # 1 
 

 
SECTION (A)  

1.  = 1.5 + 4t 

 ω = 9.5 rad/s  

 
2. ωf = ωi + αt 

 60 = 0 + α(5) 

 α = 12 

 θ =  at2 =  × 12 × (5)2 = 150 rad 

 

3. Linear speed V = rω  

 V depends on radius   
 

4. θ = ωt +  αt2 = 10 rad  

 
5. ω0 = 3000 rad/min 

 ω0 =  rad/sec = (50 rad/sec) 

 t = 10 sec 

 ωf = 0 

 ωf = ω0 + αt 

 0 = 50 – α (10) 

 α = 5 rad/sec2 

 0 = ωo t +  α + 2 

 0 = (50) (10) +  (–10) (10)2 
 500 – 250 = 250 rad 
 
6. V = ωR 

 V = 10 × 0.2 = 2m /sec. 
 
7. Sphere is rotating about a diameter   
 So, a = αR but, R is zero for particles on the diameter.  
 
SECTION (B)  
1. I = mR2 = 4 kgm2 
 
2. M.I of both spheres about common tangent  

 Ι0 = 2  mR2  

 Ι0 = 7 Ι 
 

3. Ιx + Ιy = Ιz  
 z axes is perpendicular to plane of body. 

 

8. Ι =  +  =  
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11 Ι =  

12 Ι = ΙCM + Md2 

 Ι =  

 Ι =  

 

13. Ι =   
 

14. Ι = m  

 Ι =  

     
 

15. Ι =  

 

16.  

  =   
 

17. Ι = 4  

 

18. Ι =   

 Ι =  MR2 

19. Moment of inertia of a disc about its diameter is Ιd =  

 Now, according to perpendicular axis theorem moment of inertia of disc about a tangent passing through 
rim and in the plane of disc is  
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 Ι = Ιd + MR2 =  + MR2 =  

 

20. Ι =  MR2 

 Ι’ =  MR2 =  Ι 
 

21. Ι =  MR2 ⇒ MK2 = MR2  ⇒ K = R 
 

22. Ι = 4 × m  = 2 mL2 

 mK2 = 2 mL2 

 K = L 
 

23.  = 2 
 

24. Ι =  

 K =  = 3.54 cm 
 

25. Moment of inertia of solid sphere about an axis passing through its centre of gravity.  

 r =  mr2 Where m = mass of sphere R = radius of sphere 
 From theorem of parallel axis, moment of inertia about its tangential axis  

 I = I’ + mR2  =  MR2 + MR2  =  MR2  
 

26. The moment of inertia in rotational motion is equivalent to mass as in linear motion.  
 

27. For disc, I =  ma2 For ring, I = ma2 

 For square of side 2a =  [(2a)2+ (2a)2] = Ma2 
 For square of rod of length 2a 

 I = 4  =  Ma2  Hence, moment of inertia is maximum for square of four rods. 
 
28. The moment of inertial of the given system that contains 5 particles each of mass 2 kg on the rim of 

circular disc of radius 0.1 m and of negligible mass is given by = MI of disc + MI of particles 
 Since, the mass of the disc is negligible therefore, MI of the system = MI of particles  

= 5 × 2 × (0.1)2 = 0.1 kg m2 

 
29. Moment of inertia of disc about a tangent and parallel to its plane, 

  Ι =   ...(i) 

 Moment of inertia of disc about a tangent and perpendicular to its plane =  
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      ∴   Ιperpendicular =  

 

30.  

 Ι =  

 Ι = R2  = R2 M = MR2 

 

31. IB = IA + Md2  

Then IB > IA 
 

32.   

 Ι0 = Ι1 + Ι2 ⇒ Ι0 =  +  =  

33. Ιx + Ιy = Ιz 
 2Ιx = Ιz  ∴ ΙI = 2 × 200 = 400 gm cm2 .  

 
34. Perpendicular axis theorem  

 Ι2 = Ιx + Ιy =  

        

 from symmetry Ιx = Ιy  ⇒ Ιx =  Perallel axis theorem  

 Ιoo´ = Ιx + mr2 =  + mr2 =  mr2  

 

35. Ι = Ι1 + Ι2 + Ι3 ⇒ Ι1 = Ι2 =  mr2 ⇒  Ι3 =  
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 ∴ Ι = Ι1 + Ι2 + Ι3 =  mr2 

 Moment of inertia = 3mk2 where k is radius of gyration. 

 3mk2 =  mr2  ⇒ k =  
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37. Moment of inertia depends on distribution of mass about axis of rotation. Density of iron is more than that 
of aluminium, therefore for moment of inertia to be maximum, the iron should be far away from the axis. 
Thus, aluminium should beat interior and iron surrounds it. 

 

38. By perpendicular axis theorem moment of inertia about any axis passing through centre and in the plane 

of plate will be Ι (by symmetry) 
 

39. We know that M.I. of a circular wire of mass M and radius R about its diameter is  
 

40. If a body has mass M and radius of gyration is K, then Ι = MK2  

 Moment of inertia of a disc and circular ring about a tangential axis in their planes are respectively. 

 Ιd =   ⇒ Ιr = but  Ι = MK2  ⇒  K =  

 ∴    or  ∴  Ιd : Ιr =  
 

41. Moment of inertia of the system about AX is given by  

  
 MΙ = mAr2

A +  mBr2
B + mCr2

C  

 MΙ = m(0)2 + m()2 + m( sin30°)2 = m2 +  = m2  

 Alternative : Moment of inertia of a system about a line OC perpendicular to AB, in the plane of ABC is  

  
 

 ΙCO = m× 0  + m ×  + m ×  ∴  ΙCO =  

 According to parallel-axis theorem 

 ΙAX =  ΙCO + Mx2 where x = distance of AX from CO, M = total mass of system  

 ΙAX =  ⇒ IAX =  

42. We should use parallel axis theorem  

  
 Moment of inertia of disc passing through its centre of gravity and perpendicular to its plane is  

 ΙAB =  Using theorem of parallel axes, we have, 

 ΙCD = ΙAB + MR2 =  =  
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 Note : The role of moment of inertia in the study of rotational motion is analogous to that of mass in study 
of linear motion. 

45. Let same mass and same outer radii of solid sphere and hollow sphere are M and R respectively.  
 The moment the moment of inertia of hollow sphere (spherical shell) B about its diameter  

 ΙA =  MR2     ...................(i) 

 Similarly the moment of inertia of hollow sphere (spherical shell) B about its diameter  

 ΙB = MR2     ...................(ii) 

 Ιt is clear from eqs. (i) and (ii), ΙA < ΙB 

 

46. The mass of complete (circular) disc is  
    M + M = 2M 

 The moment of inertia of disc is I =  

            
 = Mr2  
  Let the moment of inertia of semicircular disc is I1.  
 The disc may be assumed as combination of two semicircular parts. 

 Thus,   I1 = I – I1 ∴ I1 =  

47.  I = 2m (/ )2 + m( )2 = 3m2 .  
 

48. ΙAC =  =  , ΙEF = , ΙAC = ΙEF .  

49. IA = Icm + m  

  

 =  +  =  ma2  
 
SECTION (C)  
 

2.  α = τ  
 α = 0.25 rad/s2  
 

4. τ = Ι α 

 Ι =  = 2.5 kgm2 

 

5.  = 3 kg m2, τ = 6 Nm, t = 20 sec . From τ =  Iα  

 Angular accleration  = 2 rad/sec2 ∴ Angular displacement  
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 =  = 0 × 20 +  (2)(20)2 = 400 radian 
 

6. F = 4  – 10 ⇒  = (–5  – 3 )  ⇒ τ =  ×  = (– 5  – 3 ) × (4  – 10 ) = 50  + 12  = 62  

7.  = 2  + 3 –  at point  (2,–3,1) torque about point  (0, 0, 2)   

  =  –  ⇒ =  ×  =  

  =  ⇒  =  
 

8. Torque of a couple always remains constant about any point 
 

9. τ = Ια  

 30 = 2 × α ⇒  α = 15 rad/sec2  

 From equation of angular motion  

 θ = ω0t +  = 0 +   × 15 × 10 × 10 = 750 rad  

10. implies that r, F and τ all are mutually perpendicular to each other. ∴  ,   

 
SECTION (D)  
1. Torque about O 
 F × 40 + F × 80 – (F × 20 + F × 60)   
 In clockwise direction = F × 40 
 

2.  = 2i + 3j + 4k  

  = –2i – 3j – 4k 

  = 3i + 3j + 4k   = i 

  =  × =  ×   

  =  

  =  

  =  ×  = ( ) × ( ) = –3  + 4  

 body in rotation equilibrium 
3. tA = 0   

       

 T1 ×   – mg  = 0  ....(1) 

 T1 =   
 T1 + T2 = mg   ....(2) 
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 T2 =  ⇒   Ans.  
 

4.  

 For rotational equilibrium N1 ×  = N2  ×  ⇒  N1 : N2 = 4 : 3  

5.   
 From equilibrium,  
 friction = mg  N = F 
 about centre of mass   

 τ = 0 ⇒ mg a = torque due to normal  
∴ Normal will produce torque since F passes through centre its torque is zero. 

 

6. For pure translatory motion, net torque about centre of mass should be zero. Thus  is applied at centre 
of mass of system. 

 P = =  

    ∴ PC = =   
SECTION (E) 
 

1.  

 N =   
2. Initial velocity of each point onthe rod is zero so angular velocity of rod is zero. 
 Torque about O  

 T = Ι α  

 20g (0.8) =  ⇒    20g (0.8) =  

 ⇒    = α = angular acceleration     

3. For the circular motion of com :   
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 mg = m ω2  ⇒  ω =  

 Note : Since the reaction at the end is zero, the gravitational force will have to provide the required 
centripetal force.  

5. Beam is not at rotational equilibrium, so force exerted by the rod (beam) decrease 
 

6.  
 There is no slipping between pulley and thread.   

 So,  (a = αr)   ..........(i) 

 For point mass :   
 mg – T = ma  ...........(ii) 
 Equation of torque for disc   
 Tr = Ι.α 

 Tr =  

 T =  =  ...........(iii) 

 mg –  = ma  ⇒ mg =   ⇒ a = . 
 
SECTION (F)  

2. KE =   Ιω2  

 1500 =  (1.2) ω2 

 ω =   

 ωf – ωi = α t 

  = 25 t 
 t = 2 s 
 

3. mg  sin α =  Ιω2 ⇒ mg  sin α =    

  
   

  
 

4. mgh =  mV2 +  Ιω2  ⇒ mgh =  mr2ω2 +  Ιω2  ⇒ ω =   

 

6. Given aA = 2 α  = 5 m/s2  ⇒  α = 5/2   rad/s2  ⇒  aB = 1.(α ) = 5/2 m/s2  

 

7. Immediately after string connected to end B is cut, the rod has tendency to rotate about point A. 
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 Torque on rod AB about axis passing through A and normal to plane of paper is  

   α  =  mg  ⇒ α =  

 Aliter : Applying Newton’s law on center of mass  
 mg – T  =ma   .....(i)  

 Writing τ = Iα  about center of mass  

     

 T  =    ....(ii)   

 Also a =  α    ....(iii) From (i) , (ii) and (iii) α =   

8. Given : Ι = 2kg - m2, ω0 =  rad/s, 

 ω = 0, t = 60s  

 The torque required to stop the wheel's rotation is  

 τ = Ια = Ι  ⇒  τ =  N-m  

10. mg – T = ma  

       

 TR =   ⇒ T =  =  ⇒ mg –  = ma  ⇒  = mg ⇒  a =   Ans. 
 

11. Since the work done is independent of the information about which point the rod is rotating, by  
work-energy theorem the kinetic energy will also be independent of the same. Hence (2)   

 

12. From conservation of angular momentum (Ιω = constant), angular velocity will remain half.  

As, K =  Ιω2 the rotational kinetic energy will become half. Hence, the correct option is (2). 
 

SECTION (G)  

3.   ⇒  = 5 
 

4. ΙA ωA = ΙB ωB  

 ΙA > ΙB therefore ωA < ωB  
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7. τ =  = 0.4  N – m 

 
8. Direction of Angular momentum is along the direction of angular velocity, which is an axial vector. 
 

13. MR2ω = (MR2 + 2mR2)ω'  

       ω' =  
 

15. Ιω = cosntant 
 

16. External torque = 0  
 L = constant. 
 

19. Ι = mVd (constant)  

  
 

21. KE =  Ιω2 ⇒ 360 =  Ι (30)2 

 Ι = 0.8 kg m2  

 
22. L = Ιω  

 L = (mr2) ω 

 Fc = mrω2 =   

 

23.  
 

24. The angular momentum of a particle of mass m moving with velocity υ about origin is  

J = mυ × d = m υ d = constant    
 
25. From law of conservation of angumar momentum, if no external toruque is acting upon a body rotating 

about an aixs, then the angular momentum of the body remains constant that is  

  J = Iω  

 Also, Ι =  for a solid sphere. 

 Given, R1 = R R2 =   ∴  MR2ω1 =  ⇒  ω2 = n2ω1 = m2ω  

26. Angular momentum  
  L = Ιω  

 Kinetic energy  

 K =  {from Eq. (i)}  ∴  L =  

 Now L' =  ⇒ L' =  
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27. KER =  

 L = Ιω 

 KER = . 

28.  =  =  =   

29.  
 ⇒ L = (mvx) = cont: because v = cont and x = cont. 
 

30. L = Ιω     ⇒ ω' = 2ω    

   =  Ι' ω'2   ⇒ = Ι´ 4ω2 

 Ι´ =   ⇒ L´ =  Ι´ ω´ =  2ω =  =  
 

31. External torque  = 0 

 Ι1ω1 = Ι2ω2 when he folds his arms Ι reduces. So, Ι1 > Ι2 then (ω1 < ω2). So, (L = constant)  
 

32. The direction of L is perpendicular to the line joining the bob to point C. Since this line keeps changing 

its orientation in space, direction of L keeps changing however as ω is constant, magnitude of L remain 

constant. 
 Aliter : The torque about point is perpendicular to the angular momentum vector about point C. Hence it 

can only change the direction of L, and not its magnitude. 
 

33. The angular momentum about axis CO is the component of angular momentum about point C along the 
line CO. This is constant both in direction and magnitude. 

 Aliter : Torque about axis CO is zero hence L about CO is constant in both direction and magnitude.  
 

35. In uniform circular motion the only force acting on the particle is centripetal (towards center). Torque of 
this force about the center is zero. Hence angular momentum about center remain conserved. 

 

37. Conservation of angular momentum about C.O.M. of m of loop of mass m gives  

  =  ⇒  V = 3 ωR ⇒ ω =   Ans. (B) 

 
SECTION (H)  

1. KEr =   ⇒ KETotal =  ⇒ Ratio =   

3. KE =  mV2 +  Ι ω2 =  mV2 +  mR2  ⇒ KE = mV2 = 4 Joule 
 

4. KEt =  mV2  ⇒  KEr =  Ιω2 =  

⇒  mV2   
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6. mgh =  mV2 +  Ιω2  ⇒ mgh =  mV2  +    

⇒ mgh =  mV2 +  mV2  ⇒ V =  
 

7. The total energy of a body rolling without slipping  

 Ktotal = Krot + Ktrans =  I ω2  +  Mυ2 but Idisc =  Mr2 and υ = r ω 

 ∴ Ktotal =   ω2 + M (r ω)2 = Mr2 ω2 +  Mr2 ω2  = Mr2 ω2  =  Mυ2  
  

 

8. The velocity of solid sphere on the bottom of inclined plane is  

 υ =  where, I = M.I of sphere,   

 M = mass of sphere and R = radius of sphere  
 The moment of inertia so solid sphere about its diameter  

 I =  MR2  ∴ υ =  =    ∴ h =   

9. The kinetic energy of sphere while rolling on an inclined plane is given by 

 Eg = Translational kinetic energy + Rotational kinetic energy = mv2 +  

 EK =  × 2 × (0.5)2 +  ×  × 2× (0.1)2 ×  = 0.25 + 0.17 = 0.42 J 
 

10. In pure rolling, mechannical energy remains conserved. Therefore, when heights of inclines are equal, 
speed of sphere will be same in both the cases. But as acceleration down the plane, a ∝ sin θ therefore, 

acceleration and time of descent will be different.  
 

11. Friction force is zero and impulas is pases through centre so external torque is zero and angular 
momentum and linear momentum remains const. so  

⇒ (ωA = ω) but due to collision linear velocity inter change. 
 

12. For a body rolling without slipping, the velocity of any point P on the body is  where 
= Rω in direction perpendicular to line joining centre and point P. 

 Velocity of point A is , 

 vA = vcm + Rω = vcm + vcm  (vcm = Rω) = 2vcm 

 velocity of point B is, 

 vB = vcm – Rω = vcm – vcm = 0 

 Thus, the velocity of point a is 2vcm and velocity of point B is zero. 
 

13. When the wheel rolls on the ground without slipping and completes half rotation, point P takes new 

position as P' as shown in figure. Horizontal displacement, x = πR 

  
 Vertical displacement, y= 2R 
 Thus, displacement of the point P when wheel completes half rotation, 

 s =  =   = but R = 1m (given) ∴ s  =   m  
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14. Linear kinetic energy  

 K =  =  

 Rotational kinetic energy Kr =   

 Total kinetic energy K = K + Kr =   

  
 



 

    Rigid Body Dynamics 
 

16 | Page 

16. Moment of inertia of sphere  

 I  =  MR2    … (1)    

 and for pure rolling υ = R ω  …(2) 

   =   from (1) and (2)   =   
   
17. Since the inclined plane is frictionless, then there will be no rolling and the mass will only slide down 

 Hence acceleration a = g sinθ  is same for solid sphere, hollow sphere and ring. 

  
 

18. In case of pure rolling bottommost point is the instantaneous centre of zero velocity. 

     
 Velocity of any point on the disc, v = rω, where r is the distance of point from O. 

 rQ > rC > rP ∴  vQ > vC > vP 
 Therefore, the correct option is (1). 
 

19.    

 ;  ;   

   

   2  = –2ωR( ) 

 Hence     =  

 so    =  

    = ωR( ) 

    = ωR( ) 

    

 Hence     

    ;   = 4V( ) = 4ωR ( ) 

 Hence      

20.   
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 For pure rolling ωR = υ0,  υ =  =  

21. Since the two bodies have same mass and collide head-on elastically, the linear momentum gets 
interchanged.  

 Hence just after the collision 'B' will move with velocity 'v0' and 'A' becomes stationary but continues to 

rotate at the same initial angular velocity . Hence, after collision.   

 (K.E.)B =  and (K.E.)A =  =  ⇒   Hence  (4). 
 Note : Sphere 'B' will not rotate, because there is no torque on 'B' during the collision as the collision is 

head-on.  

22. a =  For solid sphere ⇒ Icm =  mk2 ⇒ ks =  

 For hollow sphere =  mR2 = mk2  ⇒ kH =   
 So, ks < kH then as > aH (so speed of solid sphere is greater then hollow sphere )  

23.  a =   

 For solid sphere  ⇒ Icm =  mk2  ⇒  ks =   

 For hollow sphere =  mR2 = mk2 ⇒ kH =  
 So,  ks < kH then as > aH (so speed of solid sphere is greater then hollow sphere)  
 

24.    
 mg sin θ – f = ma 

 a = . a is equal for each body so all the object will reach at same time. 
 

25. Let velocity of c.m. of sphere be v. The velocity of the plank = 2v. 

 Kinetic energy of plank =  × m × (2v)2  = 2mv2 

 Kinetic energy of cylinder =  mv2 +  + = =    

 ∴ =   = . 

26. The horizontal shift of end x will be double the shift of centre of spool. Hence centre travels by  . 
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27.  
 When A point travels  distance then B point 2 so, 2 length of string passes through the hand of the boy 

. 

SECTION (I) 

1. Total KE =  MV2 +  Ιω2 =  MV2  

 Δ KE =  M (4V2 – V2) =  MV2  

2. a =  ⇒ K (solid sphere) =  R ⇒  K (solid cylinder) =  ⇒  
 
3. Both spheres reach the ground due to vertical component of velocity. As initial component of velocity of 

both spheres is zero, therefore both will reach the earth silmultaneously. The time taken being given by: 

 h = uyt +  = 0 +   ⇒  t =  
 

4. There is no relative motion between sphere and plank so friction force is zero then no any change in 
motion of sphere and plank. 

 

5. Due to linear velocity body will more forword before pure rolling. 
 

6.  
 Friction will act in forward direction so body will always move in forward direction. 
 

7. Disc in pure rolling and external force zero after smooth surface pure rolling continue. 
 

8. mg sin θ component is always down the plane whether it is rolling up or rolling down. Therefore, for no 

slipping, sense of angular acceleration should also be same in both the cases. Therefore, force of friction 
f always act upwards. 

 

9.  
 Torque about COM  

 f.R = Ι · α (a = αR) ⇒ F.R =  a =   ⇒   

10. As the disc is in combined rotation and translation, each point has a tangential velocity and a linear 
velocity in the forward direction. 

 From figure vnet (for lowest point) = v – Rω = v – v = 0 and Acceleration =  + 0 =  

        
 (Since linear speed is constant). Hence (4). 
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11. When a body rolls down without soliiping along an inclined plane of inclination θ, it rotates about a 

horizontal axis through its centre of mass and also its centre of mass moves. Therefore, rolling motion 
may be regarded as a rotational motion about an axis through its centre of mass plus a translational 
motion of the centre of mass. As it rolls down, it suffers lossin gravitational potential energy provided 
translational energy due to frictional force is converted into rotational energy. 

 Note : In fact, friction is needed to cause the body to roll. However the rolling friction is so small that we 
can use conservation of mechanical energy. 

 

12. ma1 =    ........ (i) 

 and ma2 =   ........ (ii)   

      

 and  =   ∴  
 

13.  mg sinθ – ƒ = maCM  ..........(i) 

 ƒ.R = Ια   ..........(ii)   

 aCM = Rα   ..........(iii) 

 On solving (i),(ii) & (iii) 

  

aCM = . 
 
14.  a = (g tan θ) so net force along the indined plane is zero so it will continue in pure rolling with constant 

angular velocity. 
 
SECTION (J) 
 

1.  As the inclined plane is smooth, the sphere can never roll rather it will just slip down. 
 Hence, the angular momentum remains conserved about any point on a line parallel to the inclined plane 

and passing through the centre of the ball.   
 

2. KE =  mv2 (1 + 1) = mv2 = 0.4 × 0.12 = 4 × 10–3 . 

3.  
      

50–T = 5a  (1) 
 TR = I∝ = Ia/R  (2) 
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 Ia = TR2  

 Now. 5 =  so a =  = 0.1 m/sec2  
 So, 50 – T = 0.5  
 So, T = 50 – 0.5 = 49.5 

 So, I × 0.1 =    
 So, I = 4.95 kg m2   None of the answer given. 
4. From the theorem –  

  

  .......(1) 
 We may write 
 Angular momentum about O = Angular momentum about COM + Angular momentum of  COM about 

origin 

 ∴ L0 = Iω + MRV =  MR2 ω + MR(Rω)  

  

 =  MR2ω 

 Note that in this case both the terms in equation (1) i.e. and M   have the same direction . 
That is why we have used L0 = Iω+ MRV. We will use L0 = I ω ~ MRV if they are in opposite directions 

shown in figure (2). 
 
5. As the inclined plane is smooth, the sphere can never roll rather it will just slip down. 
 Hence, the angular momentum remains conserved about any point on a line parallel to the inclined plane 

and passing through the centre of the ball.   
 
SECTION (K)  
 

1.    

 For topling about edge xx′ _________  

 Fmin.  = mg  ⇒ Fmin. = .  
 

2. At the critical condition, normal reaction N will pass through point P. In this condition  
 τN = 0 = τfr  (About P) 

 the block will topple when  
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 τF > τmg  

 or  FL > (mg)   ∴   F > mg / 2   
 
 
 

EXERCISE # 2 

1.   
 by parellel axis theorem I = Icm

 + md2 

 M r2 = ICM
 + M    ⇒ ICM  = Mr2   

 

2.  

 I0 = ICM + Md2  ⇒  = ICM + M  ⇒ ICM = MR2   

3. Mass of the ring M = ρL     

 Let R be the radius of the ring. Then L = 2π R    or R =  

 Moment of inertia about an axis passing through O, and parallel to XX’ will be Ι0 =  MR2   

 Therefore, moment of inertia about XX’ (from parallel axis theorem) will be given by :  

Ιxx’ =  (ρL)  =   

4.    
 weight of object = w 
 w ( – x) = w1x  ...........(i) 
 If weight is kept in another pan then : 
 w2( – x) = wx  ...........(ii) 
 By (i) & (ii)  

  =    ⇒ w2 = w1 w2  ⇒ w = . 
 

5. key Idea : The net moment about point of contact between ground and ladder should ge zero. Let (as 
shown in figure) AB be a ladder and F be the horizontal force to keep it from slipping. w is the weight of 
man. Suppose N1 and N2 be normal reactions of ground and wall respectively.  
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 In horizontal equlibrium,  
  N1 = F   
 In vertical equilibrium,.       
  N1 = w  
 Taking moments about A;  

 Clockwise torque = Anticlockwise torque N1 × CD = N2 × OB but in ΔAOB, sin 60° =   

 In ΔAOB, cos 60° =   ⇒  CD = BC cos 60°  

 Substitutingh in Eq.(i), we have N1 × BC cos 60° = N2 × AB sin 60°  

       

 ⇒   w × BC ×  = F × AB × . Given : w = 150 pouns, AB = 20 ndr., BC = 4 mft.  

 ∴  150 × 4 ×  = F × 20 ×   ⇒  F =  = 17.3 pound   
 
6. Net external torque on the system is zero. Therefore, angular momentum is conserved.  
 Forces acting on the system are only conservative. Therefore, total mechanical energy of the system is 

also conserved.  
 

7.  ×  then  ||  so  may increase   
 

8. Here, u = V0, ω0 = At pure rolling V = V0 –  t 

 &  =  t (In pure rolling V = Rω) (α = = ) 

 ⇒ V0 – V = V +  ⇒ 2V =   ⇒ V =   Ans.  

9.   
 Net torque about O is zero. 
 Therefore, angular momentum (L) about point O will be conserved, 
 or Li  = Lf  

 MV  = Ι0ω = (Ιcom + Mr2)ω =   = Ma2 ω   ⇒  ω =  

10. The linear acceleration of centre of mass will be a =  wherever the force is applied. hence, the 
acceleration will bes ame whatever the value of h may be  

 
11. The situation is shown in the figure. 
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 Potential energy of cylinder at the top will be converted into rotational kinetic energy and translational 

kinetic energy. So, energy conservation gives,  

 Mgh =  =  So, Mgh =  

 or Mgh =  or v2 =  or v =  
 
 

12. Mass of disc (X), mx = πR2tρ 

 Where ρ = density of material of disc 

 ∴  lX =  mXR2 =  R2tρR2 

 lX = πρR4  .......(i) Again mass of disc (Y) 

 my =  π = (4R)2 ρ= 4πR2 tρ and lY =  mY (4R2) =  4πR2 tρ.16R2 

 ⇒ lY = 32πtρR4 ......(ii)  ∴ = 64 ∴ lY = 64 lx 

13. Mass of the whole disc = 4 M  

 Moment of inertia of the disc about the given axis =  (4M)R2 = 2MR2  

 ∴ Moment of inertia of quarter section of the disc =  (2MR2) = MR2 
 These type of questions are often asked in objective. Students generally err in taking mass of the whole 

disc. They take it M instead of 4 M.  
 

14. Ι0 = Ι1 – Ι2 where Ι1 = (M.Ι. of full disc about O) 

 Ι2 (M.Ι. of small removed disc about O) since mass α area 

   

  =  =  ∴ mass of cut disc = m 

 ∴ Ι0 =   – m  (by theorem of parallel axis.) 

 =  – mR2 =  –  =  = 4mR2. 
15. 2/5 MR2 = 1/2 Mr2 + Mr2 ∴ 2/5 MR2 = 3/2 Mr2  

 r2 = R2  ⇒ r =  
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16. If torque external = 0, then angular momentum = constant = Ιω  
 

17. The acceleration of centre of mass of either cylinder  

 a =   where K is radius of gyration.    
 So acceleration of centre of hollow cylinder  

  
 is less than that of solid cylinder.      
 Hence time taken by hollow cylinder will be more. 
 So statement-1 is wrong. Ans. (4) 
18. (1) Since there in no resultant external force, linear momentum of the system remains constant. 
 (2) Kinetic energy of the system may change. 
 (3) Angular momentum of the system may change as in case of couple, net force is zero but torque is not 

zero. Hence angular momentum of the system is not constant. 
 (4) Potential energy may also change. 
 

19. By conservation of angular momentum 

   

 MR2 ω =  ⇒ R2 =   

 225 R2 – 209 R2 = 25 d2  

 d =  ⇒ d =  
20. Moment of Inertia about the shortest side BC is greater than the other two sides  

 ΙBC > ΙAB  

21. Conserving the angular momentum :   

 mua =   ⇒ ω =    Ans. 

22. By conservation of angular momentum about hinge O. 

  L = Ι ω 

 mv  =  ⇒    

      ⇒  
23. L = Pr  so log = log P + log r  
  y = x + logr  
  so (b) ans. 

24.   
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 x = v0 cos 45º × t =  ⇒ τ = mgx =  =  ⇒  L =  =  

25. In rolling without slippping, total energy of ball is the sum of its translational and rotational energy. 
 Kinetic energy of rotation is  

 Krot =  = where K is radius of gyration. 

 Kinetic energy of translation is Ktrans. =  

 Thus, total energy E = Krot. + Ktrans. =  =  =  

 Hence,   
26. As no external torque is applied to the system, the angular momentum of the system remains conserved.  
 ∴ Li = Lf  According to given problem, 

  Ιtωi = (Ιt + Ιb)ωf 

 or   .........(i) 

 Initial energy, Ei =  .........(ii) 

 Final energy, Ef =  .........(iii) 

 Substituting the value of ωf from equation (i) in equation (iii) we get  

 Final energy, Ef =  

   =   ........(iv) 

 Loss of energy, ΔE = Ei –Ef =    (Using (ii) and (iv)) 

 =  =  
27. Balancing torque about the centre of the rod : 

 N1 .  – N2 .  = 0    

  
 ⇒ N1 = N2. 
 

EXERCISE # 3 
PART - I 

 
3. Mass of the disc = 9M  
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 Mass of removed portion of disc = M 
 The moment of inertia of the complete disc about an axis passing through its centre O and perpendicular 

to its plane is I1 =  

 Now, the moment of inertia of the disc with removed portion I2 =  

                                     
 Therefore, moment of inertia of the remaining portion of disc about O is  

 I = I1 – I2 =    
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4. When angular acc. (α) is zero than torque on the wheel becomes zero 

 θ(t) =  2t3 – 6t2 

  = 6t2 – 12t  ⇒  = 12t – 12 = 0 ⇒  t = 1 Sec. 
 

6. It's always in axial direction so  
 

7. at maximum compression the solid cylinder will stop  
 so loss in K.E. of cylinder = gain in P.E. of spring    

 ⇒   mv2 +  Ιω2 =  kx2 ⇒  mv2 +  

 ⇒     ⇒   

 ⇒     ⇒  x = 0.6 m 
 
8. F1 x +F2 x  = F3 x  ⇒ F3  = F1 + F2   
 
9. using angular momentum conservation  
 Li = 0 

 Lt = mvR – Ιω  

 mvR = Ι.ω 

 ω =  

 (v + ωR)t = 2πR  

  
 t = 2π sec. 

 
10. Ι = Ιcm + md2 

  d is maximum for point B so  

  Ιmax about B  

 

11.  

 Iω2  + 0 +  mv2 = mg ×  3v2  

 Iω2  = mv2 –  mv2 =   

   I =   ⇒ I =  mR2   Disc  

12.  

 I =  = Iα =   ⇒  a =   
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13. (T) × (R) =  

  

 T =  =  (2 × 2π) = 157N  

 
14. Equating torque about center of mass 

  
 NA x = NB (d-x) 

 NA
  +  NB  = mg  ⇒ Solving NA =   

15. Idiameter =   

  

 Itengential = . So Itotal =  =  

16. K.E. =  I ω2  

 I is min. about the centre of mass  
 So. (m1) (x) = (m2) (L–x)  

 x =   
 

17. If  

  should be parallel to  so coefficient should be in same ratio.So  

 So α  = – 1 Ans (4)  

 



 

    Rigid Body Dynamics 
 

29 | Page 

18.  

 I1 =  

 I2 =  ⇒ Inet = I1 – I2 =  So, answer is 3. 

 

19. Time does not depend on mass, else 

  ⇒  is least for sphere and hence least time is taken by sphere 

 

20. The angular speed of disc increases with time, and hence centripetal acceleration 

 also anet =  

 ac =  

 υ = tangential speed  

 R = Radius = 0.5 m 

 V = 2m/s at t =2  ⇒ ac = 8m/s ; at = Rα = (0.5)(2) ⇒  anet =  ~ 8 

 

21. KEA = KEB    

  ⇒ since IB > IA so ωB < ωA  

 LAωA = LBωB ⇒ LB > LA   Ans. 

22. KE of sphere =  = mR2ω2   

 KE of cylinder = (2ω)2 = mR2ω 2  So,  Ans.  

23.  

 I =  = m1  + m2  =  =   Ans. 
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24.  

   ⇒   

25. τext = 0, so Angular momentum will remain conserved. 

 
26. Measured diameter of ball = Main scale reading + Circular scale reading × least count  
 = 5 mm + (25) × (0.01 mm) = 5.25 mm 
 Actual diameter = measured diameter – zero error = (5.25 mm) – (– 0.04 mm) = 5.29 mm 
 

27. ω0 = 3 rpm =  

 ω2 = ω0
2  + 2 ∝ θ 

   ⇒  

  ⇒  

28. work done = ΔKE 

 (KE)i  = Ιω2 + mv2 =  mv2 = × 100 × (20 × 10–2)2  =  × 100 × 400 × 10–4 = 3J 

29.  

 By energy conservation mv2  = mgx =  mg sinθ  

 So  =  ⇒ L =  = 2.4 meter 

PART - II  

1.  Ιω2 = mgh 

   ω2 = mgh  h =  

2.  
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 From angular momentum conservation about vertical axis passing through centre. When insect is coming 
from circumference to center. Moment of inertia first decrease then increase. So angular velocity 
inecrease then decrease.   

 

3. To reverse the direction  (work done is zero) 
 τ = (20 t – 5t2) 2 = 40t – 10t2  

 α =   ⇒  ω =  = 2t2 –   

 ω is zero at 2t2 –  = 0  

 t3 = 6t2     ⇒ t = 6 sec.  

 θ =  =   ⇒   = 216   = 36 rad. 

 No of revolution  Less than 6 

4.  
 mg – T = ma   .....(1) 

 T.R = mR2   .....(2)  ⇒   = a   
 

5.  
 Angular momentum of the pendulum about the suspension point 'O' is  

  
 Then   can be resolved into two components, radial component rrad,  and axial component raxial. Due to 

rrad, L will be axial and due to raxial, L will be radially outwards as shown.  
 So net angular momentum will be as shown in figure whoose value will be constant (|L| = mv). But its 

direction will change as shown in the figure. 
Short Solution 

  
 Angular momentum of the pendulum about the suspension point 'O' will have a constant magnitude : (L) 

= mv (op) but its direction will change as shown in the figure. 
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6. AB =  2R      

 a  = 2R 

 a =  

        

 Mass of cube =  =  =  

  

 Moment of inertia of cube about given axis is =  =  =  
7. From C to D 

  from B to C 

  from D to A 

  from A to B 

  

8.  

 At distance x0 from O  v = ωR 

 distance less than X0 v > ωR 

 Initially, there is pure rolling at both the contacts. As the cone moves forward slipping at AB will start in 
forward direction as radius at left contact decreases. 
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 Thus the cone will start turning towards left. As it moves further slipping at CD will start in backward 
direction which will also turn the cone towards left. 

 At distance x0 from O  v = ωR 

 Distance less than X0 v > ωR 

9.  

 

   ⇒ M = (πR2)ρ   ⇒     

  ⇒  

  ⇒   ⇒  

10.  

 ⇒  

11. Ip = I0 + 7M(3R)2 = + 7M(3R)2 =  

12.  

[Using negative mass concept] 

=  

13. From Dimension analysis I0 = kMa2  

 Now for small lamina  

 I' = k  ⇒ I' =  

 So moment of inertia of remaining part I – I' =   

14. Lets considered mass of each rod is m for equilibrium the torque about point O should be zero. 
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 Torque balance about O 

 mg  sinθ = mg  

 tanθ =  ⇒    

15.  

  

 ⇒  ⇒  ⇒ rad/s 

16.  

 Net torque =  Torque on ring  

  

  
 

17.  

F – fr = ma   ........(1) 

 frR = Ια =  ….....(2) 

 for pure rolling   
 a = αR    ….....(3) 

 from (1)(2) and (3)  
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⇒  F =   ⇒ α =  

18. 5Mog – 4Mog = [2Mo (2)2 + 5Mo (2)]α 
Mog = (13Mo2)α 

  
 

19. I0 = (M.I. of A & B) + (M.I. of C) 

 I0 = =  = 3MR2  

20. Taking torque about the point of contact 

 40 × [1] = [mr2 + mr2]α 

 40 = 2m × α  ⇒  40 = 2 × 5 × α. ∴ α = 16 rad/s2 

21.   ⇒ τ = rF sinθ   ⇒  2.5 = 5 × 1 × sinθ ⇒ θ = 30° 

22.  =  

=  =     

23. Applying conservation of energy  

  

 mgR =  

 V2 = =  

 V2 = 15 m/s 

 L0 = mVBr = 20 × 10–3 × 20 × 15 

 L0 = 6 kgm2/s 
 

24. Ix = Icm + mx2  

 Ix = mR2 + mx2 ⇒ Parabola opening upward 
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25.  

  = mk2 ⇒   

 cm 


