Self Practice Paper (SPP)

1. What will be the product of the following reaction $C_{_{6}}H_{_{5}}$ -C-Me $\xrightarrow{\text{RCO}_{3}H}$?

C - CH < Me = (3) PhCH(Me)OCOOMe = (4) None of these O

2. In which reaction acetaldehyde cannot be obtained ?

(1)
$$CH_2 = CH - CH_2 - CH = CH_2 \xrightarrow{O_3/Zn}_{H_2O}$$

(2) $CH_3 - CH = \underbrace{O_3/Zn}_{H_2O}$
(3) $HC = CH + H_2O \xrightarrow{HgSO_4}_{H_2SO_4}$
(4) $CH_3COCI + H_2 \xrightarrow{Pd+BaSO_4}$

- **3.** HCHO can be separated from the mixture of HCHO, CH₃COCH₃ & PhCOCH₃ by treating the mixture with :-
 - (1) NaHSO₃
 (2) 2, 4 DNP
 (3) Semi carbazide
 (4) Fehling solution
- 4. $CH_3CH = N NH_2$ is called acetaldehyde hydrazone. Which is false about it
 - (1) It is formed by nucleophilic addition elimination reaction.
 - (2) It shows geometrical isomerism
 - (3) This compound shows geometrical isomerism after protonation.
 - (4) On heating with NaOH it will produce ethane

5.
$$(B) \xleftarrow{KMnO_4} CH_2OH \xrightarrow{PCC} (A) \xrightarrow{OH^{\Theta}} (D) \xrightarrow{H^{\Theta}} (E)$$

Select the incorrect statement.
(1) (D) is COO^{Θ}
(2) (B) & (E) are same compounds
(3) (A) is CHO
(4) (E) On oxidation gives (B)
(4) (E) On oxidation gives (B)

6. In the given reaction which of the following statements is/are correct –

$$C_6H_5 - C = O + NH_2 - OH \longrightarrow Oxime \xrightarrow{PCI_5} Amide CH_3$$

- (1) Oxime may be E/Z.
- (2) Amides on hydrolysis gives a mixture of acetic acid, benzoic acid, aniline and methylamine.
- (3) Preparation of oxime is nucleophilic addition followed by elimination reaction.
- (4) All are correct
- 7. For the given reaction which option is wrong

- 8. The reaction. $C_{e}H_{5}CHO + CH_{3}COOC_{2}H_{5} \longrightarrow C_{e}H_{5}CH = CHCOOC_{2}H_{5}$, is called (1) Benzoin condensation (2) Claisen condensation (4) Perkin reaction
 - (3) Cannizaro's reaction
- 9. In the given reaction the product is :

(1)
$$CH_{3}-CH_{2}-C-CH_{2}-C-OCH_{3}$$

 H H
 O O
 CH_{3}
(3) $H-C-CH_{2}-CH-COOCH_{3}$
 H
 O

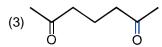
~ . .

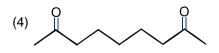
(4)
$$CH_3 - C - CH_2 - C - OCH_3$$

 $|| \qquad || \qquad || \qquad 0$

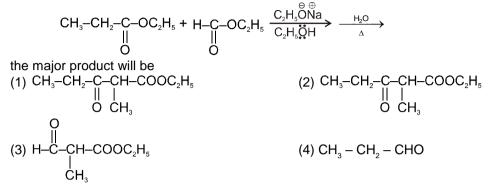
10. A mixture of benzaldehyde and formaldehyde on heating with aqueous NaOH solution gives : (1) Benzyl alcohol and sodium formate (2) Sodium benzoate and methyl alcohol

- (3) Sodium benzoate and sodium formate
- (4) Benzyl alcohol and methyl alcohol
- 11. 1-Propanol and 2-Propanol can be best distinguished by
 - (1) oxidation with alkaline KMnO, followed by reaction with Fehling solution
 - (2) oxidation with acidic dichromate followed by reaction with Fehling solution
 - (3) oxidation by heating with copper followed by reaction with Fehling solution
 - (4) oxidation with concentrated H₂SO₄ followed by reaction with Fehling solution
- 12. Compound 'A' (molecular formula C₃H₈O) is treated with acidified potassium dichromate to form a product 'B' (mol. Formula C₃H₆O). 'B' forms a shining silver mirror on warming with ammonical AgNO₃. 'B' when treated with an aqueous solution of H₂NCONHNH₂. HCl & sodium acetate gives a product 'C'. Identify the structure of 'C'.


	C⊓3
(1) $CH_3CH_2CH = NNHCONH_2$	(2) CH ₃ – C = N – CONHNH ₂
(3) $CH_3 - CH = N.NH - CONH_2$	(4) $CH_3CH_2CH = NCONHNH_2$


13. Which of the following will be product of following reactions ?

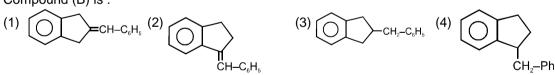
$$(1) \qquad \begin{array}{c} CH_{3} \\ | \\ | \\ CH_{2} - C - CH_{2} - OH \xrightarrow{acid} \\ | \\ CH_{3} \\ (excess) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (3) \\ (3) \\ (3) \\ (4) \\ (0) \\ (4) \\ (0) \\ (4) \\ (0) \\ (4) \\ (0) \\ (4) \\ (0) \\ (4) \\ (0) \\ (4) \\ (0) \\ (4) \\ (0) \\ (4) \\ (1) \\ ($$


14. The final product in the following reaction is : $\underset{H}{\overset{R}{\longrightarrow}} C \underset{Y}{\overset{X}{\longrightarrow}} + KCN \underset{X}{\longrightarrow} A \underset{H_{3}O^{+}}{\overset{H_{3}O^{+}}{\longrightarrow}} B \underset{\Delta}{\overset{\Delta}{\longrightarrow}} C$

•				•						
	(1) ^R >C <cooh (2)<="" th=""><th>) R–CH₂–COOH</th><th>(3) ^R_H>c<^{CO}_{CO}>0</th><th>(4) 1 and 2 both</th></cooh>) R–CH ₂ –COOH	(3) ^R _H >c< ^{CO} _{CO} >0	(4) 1 and 2 both						
15.	$CH_{3}CHO + HCHO - \frac{Ca(OH)}{\Delta}$	\rightarrow Products of this re	eactions will be :							
				00-						
16.	Under Wolf Kishner reduct (1) Benzaldehyde into Ben (3) Cyclohexanone into Cy									
17.		ds, the most suscept) MeCHO	pducts of this reactions will be : $C-CH_{2}OH \qquad (2) (CH_{2}OH)_{4}C + HCOO^{-} (4) (CH_{2}OH)_{3}C-CHO$ ditions, the conversions which may be brought about is ? phol (2) Cyclohexanol into Cyclohexane anol (4) Benzophenone into Diphenylmethane most susceptible to nucleophilic attack at the carbonyl group is : HO (3) MeCOOMe (4) MeCOOCOMe is not give a precipitate with 2, 4-dinitrophenyl hydrazine reagent also m it could be : COCH ₃ (3) CH ₂ =CH-CH ₂ -OH (4) CH ₂ =CH-OCH ₃ h-CH ₂ -CHO $\xrightarrow{\text{NaOH}} \xrightarrow{\Lambda} \xrightarrow{\text{H}_{2}/\text{Ni}}$ (X) (2) Ph-CH ₂ -CH ₂ -CH-Ph CH ₂ OH (4) Ph-CH ₂ -CH ₂ -CH-Ph CH ₃ OH (4) Ph-CH ₂ -CH ₂ -CH-Ph CH ₃ OH (4) C ₆ H ₅ N H N H ₂ .							
18.	does not react with metallic	sodium it could be :								
19.	Product (X) will be : (1) Ph–CH ₂ –CH–CH–Ph OH CHO	ence Ph–CH ₂ –CHO –	(2) Ph–CH ₂ –CH ₂ –CH–F CH ₂ O	Ph H						
	(3) Ph–CH ₂ –CH ₂ –CH–Ph CHO		(4) Ph–CH ₂ –CH ₂ –CH–Ph I CH ₃							
20.			vill react with acetone to	o give a product that contains						
	(1) C_6H_5 $\dot{N}HC_6H_5$ (2)) (CH ₃) ₃ N	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	(4) $C_6H_5NHNH_2$.						
21.	KMnO₄/OH (X) -	HIO₄[O] (Y)	→ (Z)							
	The product (Z) of the above CH_3 (1) CH_3 (2)		$(3) \qquad \begin{array}{c} O \\ C - CH_3 \\ C - CH_3 \\ U \\ O \end{array}$	(4) CH ₃						
22.	Consider following intramo $X \xrightarrow{OH} \Delta \longrightarrow \bigcup$	lecular aldol condens	ation reaction.							
	X can be : (1)									

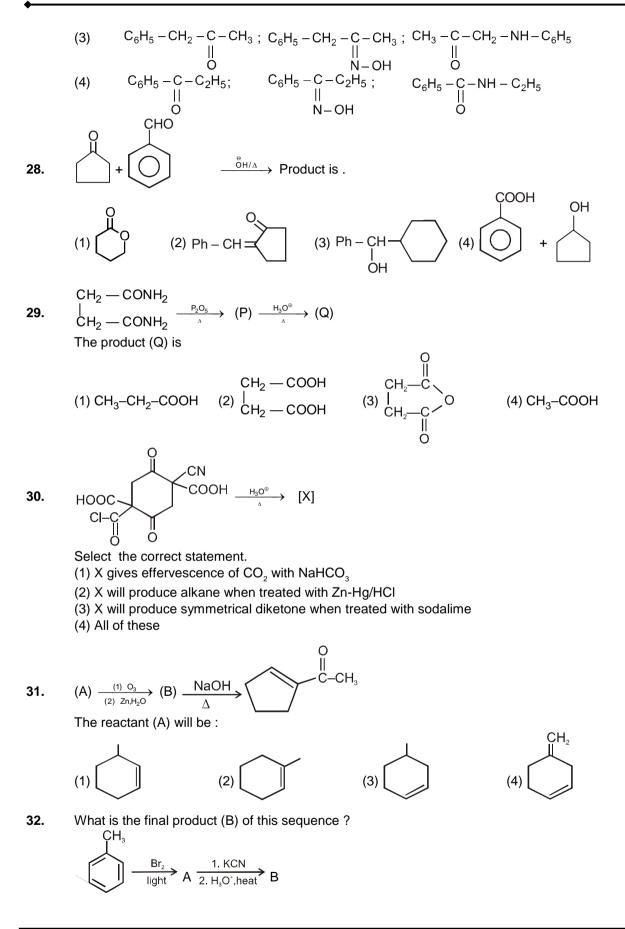
23. In the given reaction

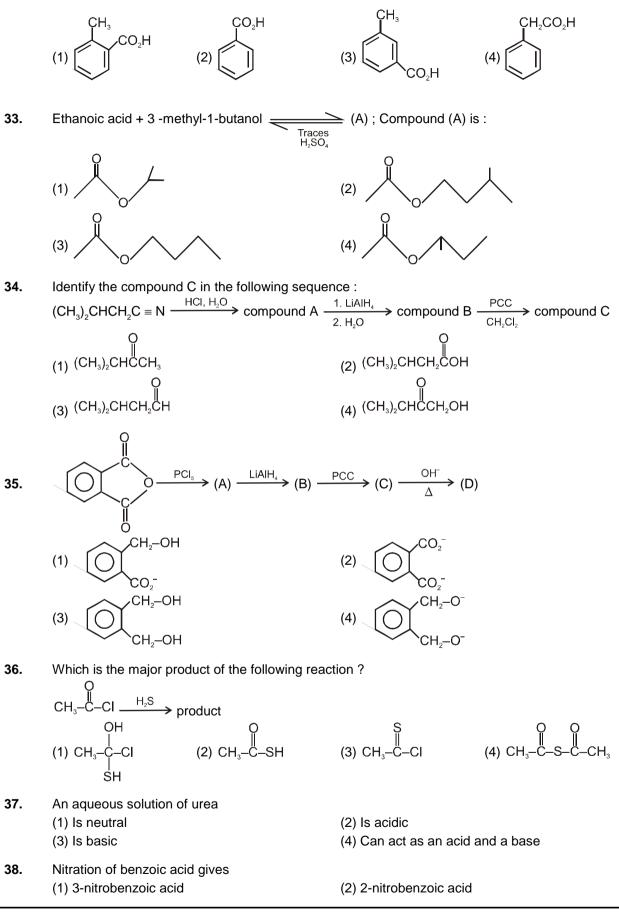
24. Which of the following reaction will give β -keto aldehyde as the final product ?


25. An organic compound X on treatment with acidified $K_2Cr_2O_7$ gives compound Y which reacts with I_2 and sodium carbonate to form Triiodomethane. The compound X can be :

(1)
$$CH_3OH$$
 (2) CH_3CCH_3 (3) CH_3CHO (4) $CH_3CH(OH)CH_3$.

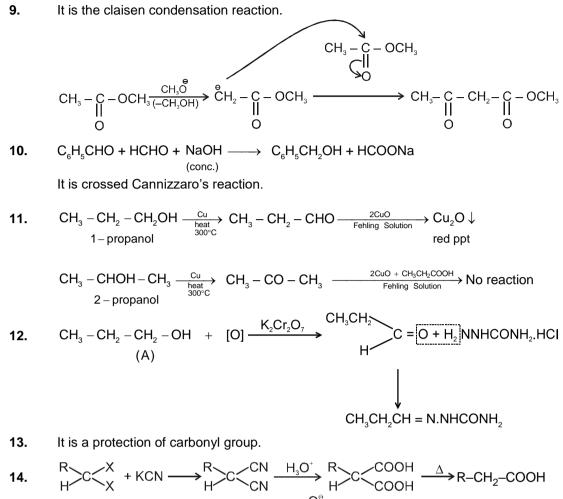
26. In the given reaction sequence


$$(A) \xrightarrow{(1) \overset{\circ}{O}H} (A) \xrightarrow{(1) \overset{\circ}{O}H} (B)$$


Compound (B) is :

27. Compound (X) $C_{g}H_{10}O$ gives yellow coloured ppt with 2,4 DNP but does not give red coloured ppt with Fehling's solution. (X) on treatment with NH₂OH/H⁺ gives compound (Y) $C_{g}H_{11}NO$. (Y) when treated with PCI gives isomeric compound (Z). (Z) on hydrolysis gives propanoic acid and aniline. What will be the correct structure of (X), (Y) and (Z) ?

CHEMISTRY FOR NEET



CHEMISTRY FOR NEET

	(3) 2, 3-dinitrobenzoic	acid	(4) 2, 4-dinitrobenzoic	acid			
39.	When benzoic acid is (1) Benzoyl chloride (3) p-chlorobenzoic ac	treated with PCl₅ at 100° id	C, it gives (2) o-chlorobenzoic acid (4) Benzyl chloride				
40.	Benzoic acid is less ac (1) Hydrogen bond	cidic than salicylic acid be (2) Inductive effect	ecause of (3) Resonance	(4) All of these			
41.	Lactic acid on heating (1) Acetic acid	with conc. H_2SO_4 gives (2) Propionic acid	(3) Acrylic acid	(4) Formic acid			
42.	Which of the following (1) Formaldehyde	is used in the manufactu (2) Acetaldehyde	ire of thermosetting plast (3) Acetone	iics (4) Benzaldehyde			
43.	Which of the following (1) Ethane	compound will react with (2) Acetyl chloride	n ethanolic KCN (3) Chlorobenzene	(4) Benzaldehyde			
44.	Acetaldehyde reacts w (1) Chloral	vith Cl ₂ (in excess) to give (2) Chloroform	(3) Acetic acid	(4) Trichloroacetic acid			
45.	The compound which (1) C ₆ H ₅ COOH	reacts with Fehling soluti (2) HCOOH	on is (3) C ₆ H ₅ CHO	(4) CH ₂ CICH ₃			

	SP	P A	nsw	/ers									
	(1)	2.	(1)	3.	(1)	4.	(4)	5.	(2)	6.	(4)	7.	(4)
	(2)	9.	(4)	10.	(1)	11.	(3)	12.	(1)	13.	(1)	14.	(2)
5.	(2)	16.	(4)	17.	(1)	18.	(4)	19.	(2)	20.	(4)	21.	(1)
2-	(4)	23.	(4)	24.	(1)	25.	(4)	26.	(1)	27.	(2)	28.	(2)
-	(3)	30.	(2)	31.	(2)	32.	(4)	33.	(2)	34.	(3)	35.	(1
•	(2)	37.	(1)	38.	(1)	39.	(1)	40.	(1)	41.	(3)	42.	(1
•	(4)	44.	(1)	45.	(2)								
	SP	PP S	olut										
			R – C	- 0 – C	ЭН		R – Me –	C – O –	00	C.H.			
	CªH*-	-C–Me	Ö		\rightarrow C.	H. – C –	Me —	<u> </u>	Me	– C – O	- 0 - C	– R	
	- 6 5	-C–Me II O				Г ОН			mo	ї ОН	V I	TX .	
						Ð				1			
						More e	⁻ releasi	ng group	o Migrate	e			
										↓			
						C ₆ H ₅ –O-	C–Me ∢ II O	, UÐ	— Me	– C – O ≁∣	$-C_6H_5$		
							Ö	-1		≻:ÖH			
						0 II							
	CH ₃ -	сн≠		$\xrightarrow{D_3/Zn}$ (CH₃CHO	+	7						
							1						
		$HC \equiv CH + H_2O \xrightarrow{HgSO_4} CH_3CHO$ $CH_3COCI + H_2 \xrightarrow{Pd+BaSO_4} CH_3CHO$											
	HCHO on reaction with $NaHSO_3$ produces white precipitates of formaldehyde sodium bisulphite.												
	$CH_{3}-CHO+H_{2}N-NH_{2} \xrightarrow{-H_{2}O} CH_{3}CH = \dot{N}-NH_{2}$ (Syn/anti)												
						,		H [⊕] C(ООН				
	 	H	[∑] - CH₂C CH₂C	ЭН	CHO	,	Г СН,–О	H CI	H,-OH				
			earrange				-		_				
			•		ц (1) (CH₃MgX			(1) K ₂	Cr ₂ O ₇ H	³ C	CH	
	HU≡(_ <u> </u>		▼ ∪ H₃–C	–Ħ <u></u>		→ CH,-	CH-CH	3	<u>→</u>		э	
					(2) I	H³O≞	→ CH₃-		ँ (2) H ^e	ש	Ĩ		

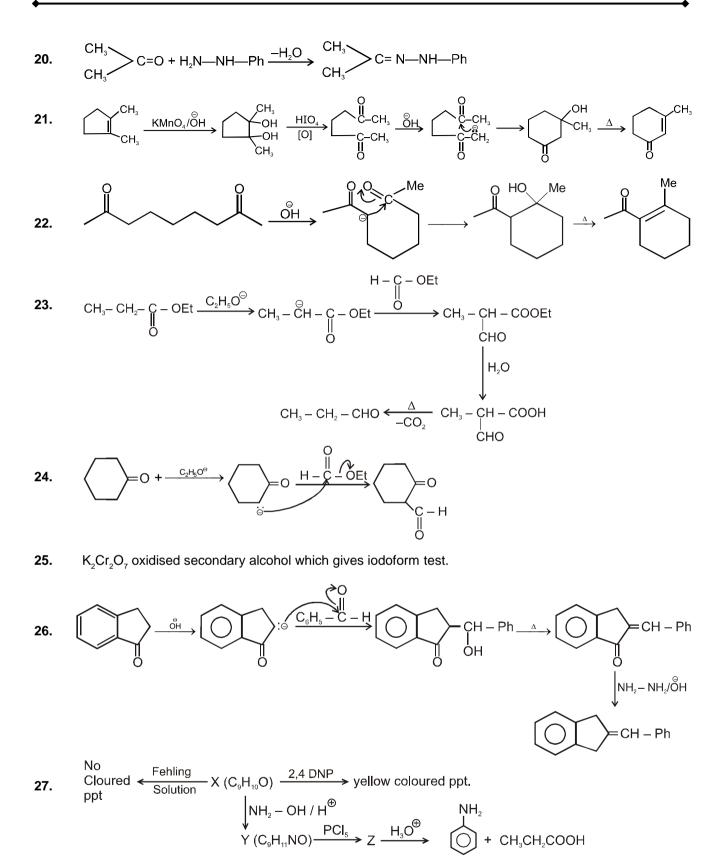
CHEMISTRY FOR NEET

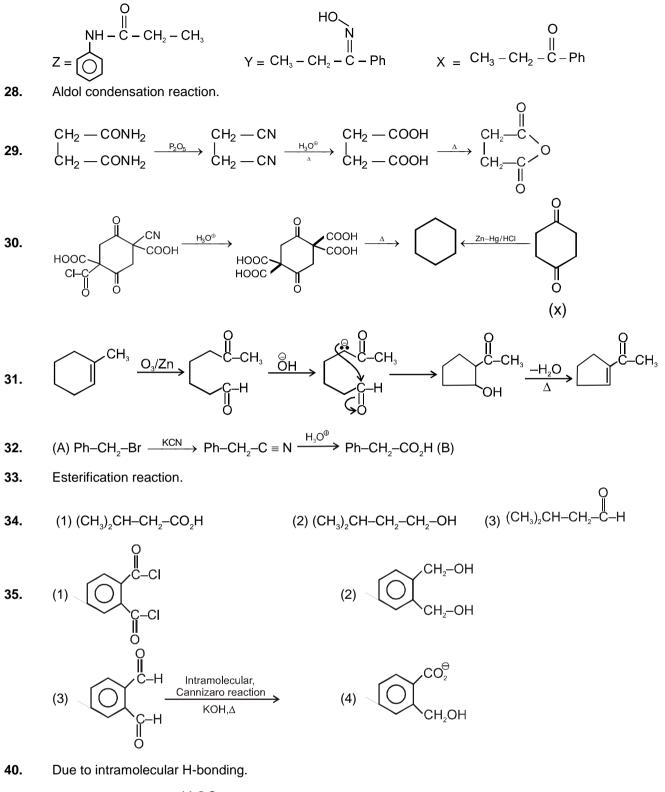
15.
$$CH_{3}CHO \xrightarrow{OH^{\Theta}} CH_{2}CHO \xrightarrow{HCHO} H \xrightarrow{-CHO} CH_{2} \xrightarrow{-CHO} HOCH_{2} \xrightarrow{-CH_{2}CHO} CH_{2}CHO \xrightarrow{-CH_{2}OH} HOH_{2}C \xrightarrow{-CHO} CH_{2}OH \xrightarrow{-(1)^{\Theta}OH} HOH_{2}C \xrightarrow{-CHO} CH_{2}OH \xrightarrow{-(2)HCHO} HOH_{2}C \xrightarrow{-CHO} CH_{2}OH \xrightarrow{-(P)} (P)$$

This is cross aldol condensation. Now (P) does not contain α - H atom so further addition of HCHO will lead to cross Cannizaro reaction.

 $(HOH_2C)_3C - CHO + HCHO \xrightarrow{OH^{\Theta}} (HOCH_2)_4C + HCOO^{\Theta}$

- 16. In Wolf-Kishner reduction carbonyl compound is converted to hydrocarbon.
- **17.** Rate of nucleophilic attack ∞ amount of +ve charge at carbonyl carbon.


19.
$$Ph - CH_2 -$$


$$CHO \xrightarrow{\ddot{O}H} Ph - CHO \xrightarrow{Ph - CH_2 - C - H} Ph - CH - CH - CH_2 - Ph \xrightarrow{\Delta} Ph - CH = CH - CH_2 - Ph$$

$$CHO \xrightarrow{OH} CHO \xrightarrow{CHO} CHO \xrightarrow{H_2/Ni} Ph - CH_2 - CH_2 - Ph$$

$$CHO \xrightarrow{CHO} CHO \xrightarrow{H_2/Ni} Ph - CH_2 - CH_2 - CH_2 - Ph$$

$$CHO \xrightarrow{CHO} CH_2 - CH_2 - CH_2 - Ph$$

41. CH_3 -CH-COOH $\xrightarrow{H_2SO_4}$ CH_2 =CH-COOH I OH