Exercise-1

marked Questions may have for Revision Questions.

ONLY ONE OPTION CORRECT TYPE

Section	on (A) : Calculation	of oxidation number	er					
1.	The oxidation number o	f Oxygen in Na_2O_2 is : (2) + 2	(3) – 2	(4) – 1				
2.	One of the following has both positive and negative oxidation states (1) F (2) Cl (3) He (4) Na							
3.≥	The oxidation state of or (1) + 7	smium (Os) in OsO_4 is (2) + 6	(3) + 4	(4) + 8				
4.2	Oxidation number of niti	rogen in (NH ₄) ₂ SO ₄ is						
	$(1)-\frac{1}{3}$	(2) – 1	(3) + 1	(4) – 3				
5.	In which of the following (1) IF ₇	compounds, the oxidation (2) I_3^-	on number of iodine is from (3) IF ₅	actional ? (4) IF ₃				
6.≥	The oxidation number o (1) 0	f cobalt in $K_3[Co(NO_2)_6]$ is (2) + 4	s (3) + 3	(4) + 6				
7.	Phosphorus has the oxi (1) Phosphorous acid (3) Hypophosphorous a		(2) Orthophosphoric acid					
8.	The oxidation number o (1) + 3	f Phosphorus in Mg_2P_2O (2) + 2	₇ is : (3) + 5	(4) – 3				
9.	In which of the following (1) N ₂ O	compounds, nitrogen ha (2) NO ₂ -	as an oxidation state of - (3) NH ₂ OH	-1 ? (4) N ₂ H ₄				
10.5s.	Which of the following is (1) NaCl + $KNO_3 \longrightarrow$ (3) Mg $(OH)_2 + 2 NH_4Cl$		(2) CaC ₂ O ₄ + 2 HCl <i>─</i> H(4) Zn + 2 AgCN <i>─</i> →					
Section	on (B) : Balancing o	f redox reactions						
1.2s.	• •	undergoes increase in o undergoes decrease in o (s)						
2.3	Consider the following r	eaction:						

 $3Br_2 + 6CO_3^2 + 3H_2O \longrightarrow 5Br - + BrO_3 - + 6HCO_3 -$

Which of the following statements is true regarding this reaction:

- (1) Bromine is oxidized and the carbonate radical is reduced.
- (2) Bromine is reduced and the carbonate radical is oxidized.
- (3) Bromine is neither reduced nor oxidized.
- (4) Bromine is both reduced and oxidized.

3.≿⊾	(1) 2 CrO ₄ ²⁻ + 2H ⁺ -	2 , 2	•	$_3 \rightarrow [Cu (NH_3)_4] SO_4$	
	(3) $2Na_2S_2O_3 + I_2 -$	$\rightarrow Na_2S_4O_6 + 2NaI$	(4) $Cr_2O_7^{2-} + 2OH$	$1^- \rightarrow 2 \text{ CrO}_4^{2-} + \text{H}_2 \text{ O}$	
4.	Consider the reaction Zn + Cu ²⁺	n ²⁺ + Cu e above, which one of th	ne following is the corre (2) Zn is oxidised		
	(3) Zn ²⁺ is oxidised t	:o Zn	(4) Cu ²⁺ is oxidise	d to Cu.	
5.≿⊾	Which reaction does (1) $Cl_2 + OH^- \longrightarrow$ (3) $2Cu^+ \longrightarrow Cu^2$	V 2	$(2) 2H_2O_2 \longrightarrow I$		
6.	In the reaction X = 4 (1) 1:5	$+ XO_3^- + H^+ \longrightarrow X_2 +$ (2) 5 : 1	H_2O , the molar ratio in (3) 2 : 3	which X - and XO ₃ - react is : (4) 3 : 2	
7.	The compound that (1) KMnO ₄	can work both as an oxidate (2) H ₂ O ₂	idising as well as a redu (3) Fe ₂ (SO ₄) ₃	ucing agent is : (4) K ₂ Cr ₂ O ₇	
8.	Which of the following (1) H ₂ SO ₄	ng behaves as both oxid	dising and reducing age (3) H ₂ S	nts ? (4) HNO ₃	
9.🔈		as an oxidising agent a rons transferred in each (2) 1, 5, 3, 7		mO_4^{2-} , MnO_2 , Mn_2O_3 and Mn^{2+} , (4) 3, 5, 7, 1	ther
Sect	• •	I Concept of Equivers	_	s, Equivalent weight, e	
1.≿.	When N ₂ is converte (1) 1.67	ed into NH ₃ , the equivale (2) 2.67	ent weight of nitrogen w	vill be : (4) 4.67	
2.	In the ionic equation the equivalent weight (1) M/5	n 2K+BrO ₃ - + 12H+ + 10 ht of KBrO ₃ will be : (2) M/2	$0e^- \longrightarrow Br_2 + 6H_2O +$ (3) M/6	2K+, (4) M/4	
	(where M = molecul	` '	()	()	
3.	If molecular weight (1) M	of KMnO $_4$ is 'M', then its (2) M/2	equivalent weight in act (3) M/5	idic medium would be : (4) M/4	
4.	In the conversion Note the equivalent weight (1) M/4 (M = molecular weight)	ht of NH ₂ OH will be : (2) M/2	(3) M/5	(4) M/1	
5.	In the reaction betw (1) the same as its r (3) one-third of the r		(2) half the molec		
6.		ght of phosphoric acid (HPO ₄ \longrightarrow NaH ₂ PO ₄ + H(2) 49	•	(4) 98	
7		tht of MnSO is half its m	, ,		

	(1) Mn ₂ O ₃	(2) MnO ₄ -	(3) MnO ₂	(4) MnO ₄ ²⁻
8.	The equivalent weight of (1) Its molecular weight (3) half-its molecular we		 H₄)₂SO₄.6H₂O is equal to (2) Atomic weight (4) one-third its molecul 	ar weight
9.3	When HNO_3 is converted (1) $M/2$ (M = molecular weight of	(2) M/1	nt weight of HNO ₃ will be (3) M/6	e : (4) M/8
10.		$_{3} + 4CI_{2} + 5H_{2}O \longrightarrow N$ $_{3} Na_{2}S_{2}O_{3}$ will be : (M = r (2) M/8	$Ia_2SO_4 + H_2SO_4 + 8HCI$, molecular weight of Na_2S (3) M/1	₂ O ₃) (4) M/2
11.	Which of the following re (1) 3 N $AI_2(SO_4)_3 = 0.5$ (3) 1 M $H_3 PO_4 = 1/3$ N	= : *	olutions ? (2) 3 M $H_2SO_4 = 6 N H_2$ (4) 1 M $AI_2 (SO_4)_3 = 6 N$	•
12.	Equivalent weight of car (1) 1 : 1	rbon in CO and CO ₂ are (2) 1 : 2	in the ratio of : (3) 2 : 1	(4) 1 : 4
13.১		$_2$ O 6AsO $_4$ ³⁻ + 28NO + 9 ent mass of As $_2$ S $_3$ in about	SO ₄ ²⁻ + 8H ⁺ . ove reaction : (Molecular	mass of $As_2S_3 = M$)
	$(1) \frac{M}{2}$	$(2) \frac{M}{4}$	(3) $\frac{M}{24}$	(4) $\frac{M}{28}$
Section	on (D) : Titration			
1.	How many millilitres of containing 0.125 g of pu	= :	will be required for com	nplete reaction with a solution
	(1) 23.6 mL	(2) 25.6 mL	(3) 26.3 mL	(4) 32.6 mL
2.	If 25 mL of a H ₂ SO ₄ sol acid solution : (1) 1 N	ution reacts completely (2) 0.5 N	with 1.06 g of pure Na_2C (3) 1.8 N	O ₃ , what is the normality of this (4) 0.8 N
3.≿⊾	A certain weight of pure mL of CO ₂ gas at STP.	e CaCO ₃ is made to read The normality of the HCl	ct completely with 200 m solution is:	L of a HCl solution to give 224
	(1) 0.05N	(2) 0.1 N	(3) 1.0 N	(4) 0.2 N
4.	Equivalent mass of a bir (1) 68.2	valent metal is 32.7. Mole (2) 103.7	ecular mass of its chlorid (3) 136.4	le is : (4) 166.3
5.29.	10 mL of 1 N HCl is minhas: (1) 20 meq of H+ ions (3) 0 meq of H+ or OH-	xed with 20 mL of 1 M I	H_2SO_4 and 30 mL of 1 M (2) 20 meq of OH- (4) 30 milli moles of H+	I NaOH. The resultant solution
Section	on (E) : Hydrogen p	eroxide, Hardness	of water	
1.	The volume strength of (1) 4.8 V	1.5 N H ₂ O ₂ solution is : (2) 8.4 V	(3) 3 V	(4) 8 V
2.3	Temporary hardness is follows: Ca(HCO ₃) ₂ + CaO ——		Mg ²⁺ and Ca ²⁺ . It is re	emoved by addition of CaO as

Mass of CaO required to precipitate 2 g CaCO₃ is:

- (1) 2 g
- (2) 0.56 g
- (3) 0.28 g
- (4) 1.12 g
- 3. The mass of oxalic acid crystals $(H_2C_2O_4. 2H_2O)$ required to prepare 50 mL of a 0.2 N solution is :
 - (1) 4.5 g
- (2) 6.3 g
- (3) 0.63 g
- (4) 0.45 g
- 4.2 125 mL of 63% (w/v) $H_2C_2O_4$. $2H_2O$ solution is made to react with 125 mL of a 40%(w/v) NaOH solution. The resulting solution is: (ignoring hydrolysis of ions)
 - (1) neutral
- (2) acidic
- (3) strongly acidic
- (4) alkaline

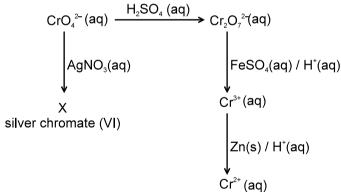
Section (F): Equivalent Concept for Redox reactions, KMnO₄ / K₂Cr₂O₇ v/s Reducing Agents & their Redox Titration

- 1.3 If equal volumes of 0.1 M KMnO₄ and 0.1 M K₂Cr₂O₇ solutions are allowed to oxidise Fe²⁺ to Fe³⁺ in acidic medium, then Fe²⁺ oxidised will be:
 - (1) more by KMnO₄

(2) more by K₂Cr₂O₇

(3) equal in both cases

- (4) cannot be determined.
- 2. Which of the following solutions will exactly oxidize 25 mL of an acid solution of 0.1 M iron (II) oxalate:
 - (1) 25 mL of 0.1 M KMnO₄


(2) 25 mL of 0.2 M KMnO₄

(3) 25 mL of 0.6 M KMnO₄

- (4) 15 mL of 0.1 M KMnO₄
- 3. An element A in a compound ABD has oxidation number –n. It is oxidised by $Cr_2O_7^{2-}$ in acid medium. In the experiment, 1.68 × 10⁻³ moles of $K_2Cr_2O_7$ were used for 3.36 × 10⁻³ moles of ABD. The new oxidation number of A after oxidation is :
 - (1) 3

- (2) 3 n
- (3) n 3
- (4) + n

4.a Consider the reactions shown below:

Which of the following statements is false: [Atomic Mass of Zinc = 65.4]

- (1) Silver chromate (VI) has the formula Ag₂CrO₄.
- (2) The minimum mass of zinc required to reduce 0.1 mole of Cr3+ to Cr2+ is 6.54 g.
- (3) The conversion of CrO₄²⁻ into Cr₂O₇²⁻ is not a redox reaction.
- (4) The equation $Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$ correctly describes the reduction of $Cr_2O_7^{2-}$ by acidified $FeSO_4$.
- 5. The number of moles of oxalate ions oxidized by one mole of MnO₄ ion in acidic medium is:
 - $(1) \frac{5}{2}$
- (2) $\frac{2}{5}$
- (3) $\frac{3}{5}$
- $(4) \frac{5}{3}$

Exercise-2

Marked Questions may have for Revision Questions.

- 1.> In which of the following reactions is there a change in the oxidation number of nitrogen atom:
 - $(1) 2 NO_2 \longrightarrow N_2 O_4$

- (2) $NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$
- (3) $N_2O_5 + H_2O \longrightarrow 2HNO_3$
- (4) None of these
- 2. In the reaction $xHI + yHNO_3 \longrightarrow NO + I_2 + H_2O$:
 - (1) x = 3, y = 2
- (2) x= 2, y = 3
- (3) x = 6, y = 2 (4) x = 6, y = 1
- 3. For the redox reaction $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$, the correct stoichiometric coefficients of MnO_4^- , $C_2O_4^{2-}$ and H^+ are respectively:
 - (1) 2, 5, 16
- (2) 16, 5, 2
- (3) 5, 16, 2
- (4) 2, 16, 5
- **4.** When SO₂ is passed through an acidified solution of potassium dichromate, the oxidation state of S changes from :
 - (1) + 4 to 0
- (2) + 4 to +2
- (3) + 4 to +6
- (4) + 6 to +4
- 5. When SO₂ is passed through a solution of potassium iodate, the oxidation state of iodine changes from
 - (1) + 5 to 0
- (2) + 5 to 1
- (3) 5 to 0
- (4) 7 to 1
- **6.** The number of electrons required to balance the following equation,

$$NO_3^- + 4H^+ + e^- \longrightarrow 2H_2O + NO$$
 is

- (1)5
- (2) 4

- (3) 3
- (4) 2

7. Oxidation state of nitrogen is correctly given for

Compound

Oxidation state

Compound

Oxidation state

- (1) [Co(NH₂)₅Cl]Cl₂
- 0

- (2) NH₂OH
- + 1

- $(3) (N_2H_5)_2SO_4$
- + 2

- (4) Mg₃N₂
- 3
- 8. Volume V_1 mL of 0.1M $K_2Cr_2O_7$ is needed for complete oxidation of 0.678 g N_2H_4 in acidic medium. The volume of 0.3 M KMnO₄ needed for same oxidation in acidic medium will be:
 - $(1) \frac{2}{5} V_1$

(2) $\frac{5}{2}$ V₁

(3) 113 V₁

- (4) can not be determined
- 9.2. In which of the following reactions, hydrogen is acting as an oxidising agent?
 - (1) With iodine to give hydrogen iodide
- (2) With lithium to give lithium hydride
- (3) With nitrogen to give ammonia
- (4) With sulphur to give hydrogen sulphide
- **10.** The violent reaction between sodium and water is an example of :
 - (1) Reduction
- (2) Oxidation
- (3) Redox reaction
- (4) Neutralization reaction

- **11.** SO₂ acts as an oxidant when it reacts with :
 - (1) Acidified KMnO₄
- (2) Acidified K₂Cr₂O₇
- (3) H₂S
- (4) Acidified C₂H₅OH

- **12.** Which of the following is not a redox reaction?
 - (1) $CaCO_3 \longrightarrow CaO + CO_3$

- (2) $O_2 + 2H_2 \longrightarrow 2H_2O$
- (3) Na + $H_2O \longrightarrow NaOH + 1/2 H_2$
- (4) $MnCl_3 \longrightarrow MnCl_2 + 1/2 Cl_2$

13.	elements?	ng pairs, there is greate $(2) \underline{P}_{2}O_{5} \text{ and } \underline{P}_{4}O_{10}$		dation number of the under lined (4) <u>S</u> O ₂ and <u>S</u> O ₃
14.&	In the chemical reaction	n, $K_2Cr_2O_7 + XH_2SO_4 + Y$	-	-
	X, Y and Z are : (1) 1, 3, 1	(2) 4, 1, 4	(3) 3, 2, 3	(4) 2, 1, 2
15.	$14H^+ + Cr_2O_7^{2-} + 3Ni$	es as reducing agent in t 2Cr³+ + 7H₂O + 3N	j ²⁺	
	(1) H ₂ O	(2) Ni	(3) H ⁺	(4) $\operatorname{Cr_2O_7^{2-}}$
16.	M is molecular weight (1) M	of KMnO ₄ . The equivaler (2) M/3	nt weight of KMnO ₄ where (3) M/5	In it is converted into K_2MnO_4 is: (4) M/7
17.	Which of the following (1) $SO_2 + H_2O \longrightarrow F$	reactions depicts the oxi	dising property of SO_2 ? (2) $2H_2S + SO_2 \longrightarrow$	
	$(3) \operatorname{Cl}_2 + \operatorname{SO}_2 \longrightarrow \operatorname{SO}_2$	2 0	. ,	$H_2O \longrightarrow 5SO_4^{2-} + 2Mn^{2+} + 4H^+$
18.	(1) $4KCIO_3 \longrightarrow 3KC$	ig reactions, there is no one $IO_4 + KCI$ $\rightarrow BaSO_4 + H_2O_2$	change in valency? (2) $SO_2 + 2H_2S \longrightarrow$ (4) $2BaO + O_2 \longrightarrow$	2
40	2 2 4	7 2 2	2	2DaO ₂
19.	$(1) 4NH_3 + 5O_2 \longrightarrow$	-	(2) $2NO + 3I_2 + 4H_2O$	→ 2NO ₃ ⁻ + 6I ⁻ + 8H ⁺
	(3) 2NO + H ₂ SO ₃ ——	$\rightarrow N_2O + H_2SO_4$	$(4) 2NO + H_2S \longrightarrow$	$N_2O + S + H_2O$
20.	(1) FeCl ₃ acts as an ox	$I_3 + H_2S \longrightarrow 2FeCl_2 + 1$ sidizing agent hile H_2S is reduced	(2) Both H ₂ S and FeC	-
21.	When KMnO ₄ reacts w (1) Only FeSO ₄ is oxid (3) FeSO ₄ is oxidised a	ised	(2) Only KMnO ₄ is oxic (4) None of the above	
22.34	Which of the following (1) H ₂ SO ₄ with NaOH (2) In atmosphere, O ₃ (3) Nitrogen oxides fro (4) Evaporation of H ₂ O	from ${\sf O_2}$ by lightning m nitrogen and oxygen b	by lightning	
23.	Which of the following (1) Ni(CN) ₄	elements has least oxida (2) Ni(CO) ₄	ation number ? (3) Fe ₂ O ₃	(4) SF ₆
24.	KMnO ₄ oxidises oxaliable balanced equation is (1) 10	c acid in acidic mediun	n. The number of CO_2	molecule produced as per the
25.≿⊾		B electrons, its oxidation (2) +6		(4) –3
26.		g, transition metal has zo (2) NH ₂ .NH ₂		(4) CrO ₅
27.	Which statement is not		. , 4	

- (1) Potassium permanganate is a powerful oxidising substance(2) Potassium permanganate is a weaker oxidising agent than potassium dichromate
- (3) Potassium permanganate is a stronger oxidising agent than potassium dichromate
- (4) Potassium dichromate oxidised a secondary alcohol into a ketone.
- **28.** What is the coefficient of oxalate ion in the following reaction?

$$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$$

- (1) 4
- (2) 2

- (3) 3
- (4) 5
- 29. How many litres of Cl_2 at STP will be liberated by the oxidation of NaCl with 10 g KMnO₄ in acidic medium: (Atomic weight: Mn = 55 and K = 39)
 - (1) 3.54
- (2)7.08
- (3) 1.77
- (4) None of these

Exercise-3

PART - I: NEET / AIPMT QUESTION (PREVIOUS YEARS)

1. The values of x and y in the following redox reaction, $xCl_2 + 6OH^- \longrightarrow ClO_3^- + yCl^- + 3H_2O$ are \overline{q}

[AIPMT 2000]

- (1) x = 2, y = 4
- (2) x = 5, y = 3
- (3) x = 3, y = 5
- (4) x = 4, y = 2
- 2. The oxidation states of sulphur in the anions SO_3^{2-} , $S_2O_4^{2-}$ and $S_2O_6^{2-}$ follow the order : [AIPMT 2003]
 - (1) $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$

(2)
$$SO_3^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$$

(3) $S_2O_4^{2-} < S_2O_6^{2-} < SO_3^{2-}$

- (4) $S_2O_6^{2-} < S_2O_4^{2-} < SO_3^{2-}$
- 3. For decolourization of 1 mole of $KMnO_4$, the moles of H_2O_2 required is

[AIPMT 2004]

- (1) 1/2
- (2) 3/2
- (3) 5/2
- (4) 7/2
- 4. Which is the best description of the behaviour of bromine in the reaction given below? [AIPMT 2004] $H_2O + Br_2 \longrightarrow HOBr + HBr$
 - (1) Proton acceptor only

(2) Both oxidised and reduced

(3) Oxidised only

- (4) Reduced only
- 5. The number of moles of KMnO₄ reduced by one mole of KI in alkaline medium is [AIPMT 2005]
 - (1) one
- (2) two
- (3) five
- (4) one fifith
- Number of moles of MnO₄⁻ required to oxidize one mole of ferrous oxalate completely in acidic medium will be:
 - (1) 7.5 moles
- (2) 0.2 moles
- (3) 0.6 moles
- (4) 0.4 moles
- 7. When Cl₂ gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from : [AIPMT 2012]
 - (1) Zero to +1 and zero to -5

(2) Zero to -1 and zero to +5

(3) Zero to -1 and zero to +3

- (4) Zero to +1 and zero to -3
- 8. In which of the following compounds, nitrogen exhibits highest oxidation state? [AIPMT 2012]
 - (1) N₂H₄
- (2) NH₃
- (3) N₃H
- (4) NH₂OH
- 9. A mixture of potassium chlorate, oxalic acid and sulphuric acid is heated. During the reaction which element undergoes maximum change in the oxidation number?
 [AIPMT 2012]
 - (1) S
- (2) H
- (3) CI
- (4) C

10. (a) $H_2O_2 + O_3 \rightarrow H_2O + 2O_2$

[AIPMT 2014]

(b) $H_2O_2 + Ag_2O \rightarrow 2Ag + H_2O + O_2$

Role of hydrogen peroxide in the above reactions is respectively:

- (1) oxidizing in (a) and reducing in (b)
- (2) reducing in (a) and oxidizing in (b)

(3) reducing in (a) and (b)

- (4) oxidizing in (a) and (b)
- 11. Assuming complete ionization, same moles of which of the following compounds will require the least amount of acidified KMnO₄ for complete oxidation [AIPMT 2015]
 - (1) FeSO,
- (2) FeSO₃
- (3) FeC₂O₄
- (4) Fe(NO₃)₃
- Hot concentrated sulphuric acid is a moderately strong oxidizing agent. Which of the following reactions 12. does not show oxidizing behaviour? [NEET-2-2016]
 - (1) $CaF_2 + H_2SO_4 \longrightarrow CaSO_4 + 2HF$
- (2) $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 + 2H_2O$
- $(3) 2S + 2H_2SO_4 \longrightarrow 2SO_2 + 2H_2O$
- (4) C + $2H_2SO_4 \longrightarrow CO_2 + 2SO_2 + 2H_2O_3$
- Name the gas that can readily decolourise acidified KMnO₄ solution: 13.

[NEET 2017]

- (1) CO₂
- (2) SO₂
- (3) NO₂
- (4) P₂O₅

14. For the redox reaction [NEET 2018]

$$MnO_4^{-2} + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$$

the correct coefficients of the reactants for the balanced equation are

	MnO_4^-	$C_2O_4^{2-}$	H^{+}
(1)	16	5	2
(2)	5	16	2
(3)	2	16	5
(4)	2	5	16

PART - II: AIIMS QUESTION (PREVIOUS YEARS)

1. In the balanced chemical reaction,

$$IO_3^- + aI^- + bH^+ \longrightarrow cH_2O + dI_2$$

a, b, c and d respectively correspond to

[AIIMS 2005]

- (1) 5, 6, 3, 3
- (2) 5, 3, 6, 3
- (3) 3, 5, 3, 6
- (4) 5, 6, 5,5
- 2. **Assertion**: K₂Cr₂O₇ is used as a primary standard in volumetric analysis.

Reason: It has a good solubility in water.

[AIIMS 2006]

- (1) If both assertion and reason are true and reason is a correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not a correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If assertion and reason both are false.
- Assertion: Change in colour of acidic solution of potassium dichromate by breath is used to test drunk 3.

Reason: Change in colour is due to the complexation of alcohol with potassium dichromate.

- (1) If both assertion and reason are true and reason is a correct explanation of assertion. [AIIMS 2006]
- (2) If both assertion and reason are true but reason is not a correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If assertion and reason both are false.
- 4. The oxidation states of iodine in HIO₄, H₃IO₅ and H₅IO₆ are, respectively: [AIIMS 2008]
 - (1) + 1, + 3, + 7
- (2) + 7, + 7, + 3 (3) + 7, + 7, + 7 (4) + 7, + 5, + 3
- **Assertion :** Equivalent weight of a base = $\frac{\text{Molecular weight}}{\text{Acidity}}$ 5. [AIIMS 2008]

Reason: Acidity is the number of replaceable hydrogen atoms in one molecule of the base.

- (1) If both assertion and reason are true and reason is a correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not a correct explanation of assertion.

(3) If assertion is true but reason is false.(4) If assertion and reason both are false.

6.	x moles of potassium of	dichromate oxidises 1 mo	ole of ferrous oxalate, in a	acidic medium. H	
	(1) 3	(2) 1.5	(3) 0.5	(4) 1.0	[AIIMS 2009]
7.	In the following redox $e^{xUO^{2+}} + Cr_{o}O^{2-}$	equation, -₂ + yH⁺ → aUO²+₂ + zCr³⋅	+ bH ₂ O		
	_	its x, y and z are, respec (2) 3, 8, 7	-	(4) 3, 1, 8	[AIIMS 2009]
8.	KMnO ₄ reacts with oxa	lic acid according to the	equation		[AIIMS 2013]
	$2KMn O_4^- + 5C_2O_4^- + 16$	$6H^+ \rightarrow 2Mn^{++} + 10CO_2 +$	8H ₂ O Here 20mL of 0.1 I	M KMnO₄ is equi	valent to:
	(1) 20 mL of 0.5 M H ₂ C		(2) 50 mL of 0.5 M H ₂ C	2 7	
	(3) 50 mL of 0.1 M H ₂ (C_2O_4	(4) 20 mL of 0.1 M H ₂ C	C_2O_4	
9.		n dichromate crystals req tassium dichromate = 29 (2) 0.37 g	uired to oxidise 750 cm ³ 94, Mohr's salt = 392) (3) 22.05 g	of 0.6 M Mohr's	salt solution is [AIIMS 2016]
10.	•		ssolved and made up to HCl solution. Then, the p (3) 34		
11	MnO ₂ + NaCl H-SO ₄	choose incorrect state	ment for above reaction.		[AIIMS 2018]
	(1) Mn goes from +4 to (3) Cl ₂ yellow gas is re		(2) CI ⁻ is oxidized (4) SO ₄ ²⁻ reduces to SO	O ₂	
	PART - III : JEE	(MAIN) / AIEEE I	PROBLEMS (PR	EVIOUS YE	ARS)
1.		an oxidising agent and s transferred in each cas (2) 1, 5, 3, 7	ultimately forms $Mn O_4^{2-}$ se is : (3) 1, 3, 4, 5	, MnO ₂ , Mn ₂ O ₃ (4) 3, 5, 7, 1	and Mn ²⁺ , then [AIEEE 2002]
2.	(1) Cr reduces in the of	xidation state +3 from Cr xidation state +7 from Cr Ill be formed.	•	ss amount of nitr	ic acid [AIEEE 2003]
3.	The oxidation state of potassium dichromate (1) + 4		roduct formed by the rea $(3) + 2$	action between I	KI and acidified [AIEEE 2005]
4.	Amount of oxalic acid	oresent in a solution can	be determined by its titra	ation with KMnO	. solution in the
			factory result when carr		•
	because HCl :	Ŭ	,		E 2008, 3/105]
		addition to those from o	xalic acid.	L	
	(2) reduces permangai				
		to carbon dioxide and w	rater.		
	(4) gets oxidised by ox				
		-			Page 24
					raye 24

Ť				·
5.	the evolved ammonia	was absorbed in 20 mL	of 0.1 M HCl solution. Th	cording to Kjeldahl's method and ne excess of the acid required 15 of nitrogen in the compound is:
				[AIEEE 2010, 4/144]
	(1) 59.0	(2) 47.4	(3) 23.7	(4) 29.5
6.	Consider the following	reaction :		[JEE Mains-2013, 4/120]
	$xMnO_4^- + yC_2O_4^{2-} + z$	$H^+ \rightarrow xMn^{2+} + 2yCO_2 + \frac{z}{2}$	H ₂ O	
	The values of x, y and	z in the reaction are, res	spectively:	
	(1) 5, 2 and 16	(2) 2, 5 and 8	(3) 2, 5 and 16	(4) 5, 2 and 8
7.	For the estimation of	nitrogen, 1.4 g of an orga	anic compound was dige	sted by Kjeldahl method and the
	evolved ammonia was	s absorbed in 60 mL of	$\frac{M}{10}$ sulphuric acid. The u	inreacted acid required 20 mL of
	$\frac{M}{10}$ sodium hydroxide	for complete neutralizati	on. The percentage of ni	trogen in the compound is:
				[JEE(Main) 2014, 4/120]
	(1) 6%	(2) 10%	(3) 3%	(4) 5%
8.	Sodium salt of an orga	anic acid 'X' produces eff	ervescence with conc. H	₂ SO ₄ . 'X' reacts with the acidified
	aqueous CaCl ₂ solution	on to give a white precipit	ate which decolourises a	acidic solution of KMnO ₄ . 'X' is:
				[JEE(Main) 2017, 4/120]
	(1) HCOONa	(2) CH ₃ COONa	(3) $Na_2C_2O_4$	(4) C ₆ H ₅ COONa
9.	The hardness of wate	r sample (in terms of equ	ivalents of CaCO₃) conta	aining 10 ⁻³ M CaSO₄ is :
	(molar mass of CaSO	₄ = 136 g mol ⁻¹)		[JEE(Main) 2019, 4/120]
	(1) 10 ppm	(2) 50 ppm	(3) 90 ppm	(4) 100 ppm
10.	The volume strength of	of 1M H ₂ O is: (Molar mas	s of $H_2O_2 = 34 \text{ g mol}^{-1}$)	[JEE(Main) 2019, 4/120]
	(1) 11.35	(2) 22.4	(3) 16. 8	(4) 5.6

		CI		re
æ	M	2		12

							010=						
						EXER	CISE	- 1					
SECT	ΓΙΟΝ (A)												
1.	(4)	2.	(2)	3.	(4)	4.	(4)	5.	(2)	6.	(3)	7.	(1)
8.	(3)	9.	(3)	10.	(4)								
SECT	ΓΙΟΝ (B)												
1.	(1)	2.	(4)	3.	(3)	4.	(2)	5.	(4)	6.	(2)	7.	(2)
8.	(2)	9.	(3)										
SECT	TION (C)												
1.	(4)	2.	(1)	3.	(3)	4.	(2)	5.	(2)	6.	(4)	7.	(3)
8.	(1)	9.	(4)	10.	(2)	11.	(3)	12.	(3)	13.	(4)		
SECT	TION (D)												
1.	(1)	2.	(4)	3.	(2)	4.	(3)	5.	(1)				
SECT	ΓΙΟΝ (E)												
1.	(2)	2.	(2)	3.	(3)	4.	(1)						
SECT	ΓΙΟΝ (F)												
1.	(2)	2.	(4)	3.	(2)	4.	(2)	5.	(1)				
						EXER	CISE	- 2					
1.	(4)	2.	(3)	3.	(1)	4.	(3)	5.	(2)	6.	(3)	7.	(4)
8.	(1)	9.	(2)	10.	(3)	11.	(3)	12.	(1)	13.	(4)	14.	(1)
15.	(2)	16.	(1)	17.	(2)	18.	(3)	19.	(2)	20.	(1)	21.	(3)
22.	(3)	23.	(2)	24.	(1)	25.	(2)	26.	(1)	27.	(2)	28.	(4)
29.	(1)												
						EXER	CISE	- 3					
						P/	ART-I						
1.	(3)	2.	(1)	3.	(3)	4.	(2)	5.	(1)	6.	(3)	7.	(2)
8.	(3)	9.	(3)	10.	(3)	11.	(1)	12.	(1)	13.	(2)	14.	(4)
						PA	RT-II						
1.	(1)	2.	(3)	3.	(3)	4.	(3)	5.	(3)	6.	(3)	7.	(1)
8.	(3)	9.	(3)	10.	(2)	11	(4)						
						PA	RT-III						
1.	(3)	2.	(4)	3.	(4)	4.	(2)	5.	(3)	6.	(3)	7.	(2)