	Self Practio	ce Paper (SP	P)							
1.	Oxidation number of O (1) + 2	s in OsO ₄ : (2) + 4	(3) + 8	(4) + 10						
2.	The oxidation number of (1) + 2	of sulphur in $H_2S_2O_7$ is : (2) + 6	(3) + 4	(4) + 8						
3.	CrO_{5} has structure as shown 0 $Cr \\ Cr \\ O$									
	The oxidation number of (1) 4	of chromium in the above (2) 5	compound is (3) 6	(4) 0						
4.	Which of the following is a set of reducing agents ? (1) HNO_3 , Fe^{2+} , F_2 (2) F^- , CI^- , MnO_4^- (3) I^- , Na, Fe^{2+} (4) $Cr_2O_7^{2-}$, CrO_4^{2-} , N									
5.	Both oxidation and red (1) NaBr + HCl \longrightarrow Na (3) H ₂ + Br ₂ \longrightarrow 2HBr	uction takes place in : ICl + HBr	(2) HBr + AgNO ₃ \longrightarrow AgBr + HNO ₃ (4) CaO + H ₂ SO ₄ \longrightarrow CaSO ₄ + H ₂ O							
6.	$\begin{array}{ll} MnO^{2-}_{4} (1 \text{ mol}) \text{ in neutral aqueous medium is disproportionate to :} \\ (1) 2/3 \text{ mol of } MnO^{-}_{4} \text{ and } 1/3 \text{ mol } MnO_{2} \\ (3) 1/3 \text{ mol of } Mn_{2}O_{7} \text{ and } 1/3 \text{ mol } MnO_{2} \\ \end{array} \qquad \begin{array}{ll} (2) 1/3 \text{ mol of } MnO^{-}_{4} \text{ and } 2/3 \text{ mol } MnO_{2} \\ (4) 2/3 \text{ mol of } Mn_{2}O_{7} \text{ and } 1/3 \text{ mol } MnO_{2} \\ \end{array}$									
7.	Which of the following i (1) KCN + Fe(CN) ₂ \longrightarrow (3) H ₂ O ₂ \longrightarrow H ₂ O + O	s not a redox reaction ? → K₄ [Fe(CN)₀]	(2) Rb + H ₂ O \longrightarrow RbOH + H ₂ (4) CuI ₂ \longrightarrow CuI + I ₂							
8.	Which of the following reaction is balanced ? (1) $AsO_4^{2-} + MnO_4^{-} \longrightarrow AsO_4^{3-} + MnO_2^{} + 2H_2O$ (2) $MnO_4^{-} + C_2O_4^{2-} \longrightarrow Mn^{2+} + CO_2^{}$ (3) $Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2NO_2^{}$ (4) $H_2S + HNO_3 \longrightarrow H_2O + NO + S$									
9.	In the reaction As ₂ S ₅ + x HNO ₃ \longrightarrow 5 H ₂ SO ₄ + yNO ₂ + 2 H ₃ AsO ₄ + 12 H ₂ O the values of x and y are (1) 40, 40 (2) 10, 10 (3) 30, 30 (4) 20, 20									
10.	The normality of orthop (1) 11 N	hosphoric acid having pu (2) 22 N	ırity of 70% by weight an (3) 33 N	d specific gravity 1.54 is : (4) 44 N						
11.	Normality of 0.3 M $H_{3}P$ (1) 0.3 N	O_4 solution is : (2) 0.4 N	(3) 0.6 N	(4) 0.9 N						
12.	The normality of mixtur (1) 0.0267	e obtained by mixing 100 (2) 0.2670) mL of 0.2 M H ₂ SO ₄ and (3) 1.0267	200 mL of 0.2 M HCl is : (4) 1.1670						

13.	One gram equimolecular mixture of Na_2CO_3 and $NaHCO_3$ is reacted with 0.1 NHCI. The milliliters of 0.7 N HCI required to react completely with the above mixture is :									
	(1) 15.78 mL	(2) 157.8 mL	(3) 198.4 mL	(4) 295.5 mL						
14.	The reagent commonly (1) oxalic acid (3) sodium citrate	y used to determine hard	ness of water titrimetrically is : (2) disodium salt of EDTA (4) sodium thiosulphate							
15.	Consider the redox real (1) $S_2O_3^{2-}$ gets reduce (3) I_2 gets reduced to 1	action $2S_2O_3^{2-} + I_2 \longrightarrow$ ed to $S_4O_6^{2-}$	• $S_4O_6^{2-} + 2 I^-$: (2) $S_2O_3^{2-}$ gets oxidised to $S_4O_6^{2-}$ (4) I_2 gets oxidised to I^-							
16.	Equivalent weight of chlorine molecule in the equation is :									
	3 Cl ₂ + 6 NaOl	H \longrightarrow 5 NaCl + NaClC	O ₃ + 3 H ₂ O							
	(1) 42.6	(2) 35.5	(3) 59.1	(4) 71						
17.	$\operatorname{Cr}_2O_7^{2-} \xrightarrow{H^+} \operatorname{Cr}^3 + ,$ (1) mol. wt./6	Eq. wt of Cr₂O ₇ ²⁻ is (2) mol.wt./3	(3) mol.wt./4	(4) mol.wt./1						
18.	One mole of acidified I	$K_{2}Cr_{2}O_{7}$ on reaction with e	excess KI will liberate	mole (s) of I_2						
	(1) 6	(2) 1	(3) 7	(4) 3						
19.	Number of moles of $K_2Cr_2O_7$ reduced by 1 mole of Sn^{2+} is (1) 1/6 (2) 1/3 (3) 2/3 (4) 1									
20.	Which compound deco (1) H ₂ SO ₄	blourises iodine solution 3 (2) Na ₂ S	(3) Na ₂ SO ₄	(4) $Na_2S_2O_3$						
21.	For neutralisation of or	ne mol of NaOH the mass	s of 70% H_2SO_4 required	is :						
	(1) 48 g	(2) 70 g	(3) 49 g	(4) 35 g						
22.	Which will be the proper alternative in place of A in the following equation. $2Fe^{3+}(aq) + Sn^{2+}(aq) \longrightarrow 2Fe^{2+}(aq) + A$ (1) Sn ⁴⁺ (2) Sn ³⁺ (3) Sn ⁴⁺ (4) Sn ⁴⁺									
	(1) Sh ⁴	(2) 511	(3) 511-1	(4) 511						
23.		reaction is disproportiona	ation?							
	$(1) 2\Pi_2 3 + 3\Theta_2 \longrightarrow$	и И								
	(2) $Oa + H_2 \longrightarrow Oa$ (3) 4 P + 3NaOH	$\sim 3HO + PH + 3N_{2}HO + PH$	า							
	(4) All of the above		2							
24.	In which of the followin	ng metal is reduced (this i	s not balanced equation)	:						
	(1) $[Cr_2O_7]^{2-} \longrightarrow [Cr_2O_7]^{2-}$	O ₄] ²⁻	(2) $[Fe(CN)_6]^{4-} \longrightarrow [Fe(CN)_6]^{3-}$							
	(3) $MnO_4^- \longrightarrow MnC$	2	(4) $MnO_4^{2-} \longrightarrow MnO_2^{-1}$							
25.	In the reaction : Na_2S_2 the equivalent weight ($O_3 + 4CI_2 + 5H_2O \longrightarrow Na$ of $Na_2S_2O_3$ will be : (M =	$a_2SO_4 + H_2SO_4 + 8HCI,$ molecular weight of Na ₂ S	$S_2O_3)$ (4) M/2						
	\'/ W/ T	(2) 10/0		(1) 10/2						

26.	n the reaction, $2CuSO_4 + 4KI \longrightarrow 2Cu_2I_2 + I_2 + 2K_2SO_4$ he equivalent weight of $CuSO_4$ will be :									
	(1) 79.75	(2) 159.5	(3) 329	(4) None of these						
27.	100 milli moles of dich	moles of dichloroacetic acid (CHCl ₂ COOH) can neutralize how many moles of ammonia to								
	form ammonium dichloi (1) 0.0167	roacetate : (2) 0.1	(3) 0.3	(4) 0.6						
28.	The number of moles o (1) 5/2	f ferrous oxalate oxidised (2) 2/5	d by one mole of KMnO ₄ (3) 3/5	in acidic medium is : (4) 5/3						
29.	How many moles of $KMnO_4$ are needed to oxidise a mixture of 1 mole of each $FeSO_4 \& FeC_2O_4$ in acidic medium :									
	(1) 4/5	(2) 5/4	(3) 3/4	(4) 5/3						
30.	22.7 mL of (N/10) Na_2C that must be added to 4	22.7 mL of (N/10) Na_2CO_3 solution neutralises 10.2 mL of a dilute H_2SO_4 solution. The volume of water that must be added to 400 mL of this H_2SO_4 solution in order to make it exactly N/10.								
	(1) 490.2 mL	(2) 890.2 mL	(3) 90.2 mL	(4) 290.2 mL						
31.	HNO_3 oxidises NH_4^+ ion mole of $(NH_4)_2SO_4$ is :	ns to nitrogen and itself	gets reduced to NO ₂ . Th	e moles of HNO_3 required by 1						
	(1) 4	(2) 5	(3) 6	(4) 2						
32.	The mass of oxalic acid (1) 4.5 g	l crystals (H ₂ C ₂ O ₄ . 2H ₂ C (2) 6.3 g	0) required to prepare 50 (3) 0.63 g	mL of a 0.2 N solution is : (4) 0.45 g						
33.	When HNO ₂ is converted into NH ₂ , the equivalent weight of HNO ₂ will be :									
	(1) M/2 (M = molecular weight of	(2) M/1 of HNO ₃)	(3) M/6	(4) M/8						
34.	In the conversion NH_2 the equivalent weight o	$DH \longrightarrow N_2O$, f NH ₂ OH will be :								
	(1) M/4 (M = molecular weight of	(2) M/2 of NH ₂ OH)	(3) M/5	(4) M/1						
35.	In the reaction : Na ₂ S ₂ C	$D_3 + 4Cl_2 + 5H_2O \longrightarrow Na$	2SO4 + H2SO4 + 8HCI,							
	the equivalent weight of $Na_2S_2O_3$ will be : (M = molecular weight of $Na_2S_2O_3$)									
	(1) M/4	(2) M/8	(3) M/1	(4) M/2						
36.	In the reaction Ca(OH) mass)	$_2$ +H $_3$ PO $_4$ \longrightarrow Ca $_3$ (PO $_4$	$)_2$ + H ₂ O, the equivalent	mass of H_2O is : (M molecular						
	(1) M	(2) M / 2	(3) M / 3	(4) M / 6						
37.	When hypo solution is added to $KMnO_4$ solution then									
	(1) $Na_2S_2O_3$ is converted to Na_2SO_4 (2) $Na_2S_2O_3$ is converted to $Na_2S_4O_6$									
	(3) KMnO ₄ is converted	to K ₂ MnO ₄	(4) KMnO ₄ is converted	I to MnSO ₄						
38.	In the reaction $H_2O_2^{18} + O_3 \rightarrow$ water + oxygen, radioactivity will be shown by which of the product :									
	(1) water	(2) oxygen	(3) both (1) & (2)	(4) none of these						

39.	The equivalent mass of $MnSO_4$ is half its molecular mass when it is converted to :								
	(1) Mn ₂ O ₃	(2) MnO ₂	(3) MnO ₄ -	(4) MnO ₄ ²⁻					
40.	An aqueous solution of required to completely	6.3 g of oxalic acid dihy neutralise 10 mL of this s	drate is made upto 250 i solution is :	mL. The volume of 0.1 N NaOH					
	(1) 40 mL	(2) 20 mL	(3) 10 mL	(4) 4 mL					
41.	Which amongst the following has the highest normality ?								
	(1) 16.0 g of NaOH in 2	00 mL of water	(2) 1 N oxalic acid						
	(3) 2 M sulphuric acid		(4) 1.5 hydrochloric acid						
42.	The number of moles of KMnO ₄ that will be needed to react completely with one mole of ferrous oxalate								
	$[Fe(C_2O_3)]$ in acidic solution is								
	(1) 1	(2) 2/5	(3) 3/5	(4) 4/5					
43.	What volume of water will be 0.2 N ?	on so that the resulting solution							
	(1) 40 mL	(2) 50 mL	(3) 100 mL	(4) 20 mL					
44.	In alkaline medium, KM	InO₄ reacts as follows (A	tomic weights K = 39.09,	Mn = 54.94, O = 16.00)					
	$2KMnO_{4} + 2KOH \rightarrow 2K_{3}MnO_{4} + H_{2}O + [O]$								
	Hence its equivalent weight is								
	(1) 31.6	(2) 63.2	(3) 126.4	(4) 158					
	()	()	(-)						
45.	0.14 g of a substance when burnt in oxygen yields 0.28 g of oxide. The substance is $-$								
	(1) nitrogen	(2) carbon	(3) sulphur	(4) phosphorous					

	SPP Answers												
1.	(3)	2.	(2)	3.	(3)	4.	(3)	5.	(3)	6.	(1)	7.	(1)
8.	(3)	9.	(1)	10.	(3)	11.	(4)	12.	(2)	13.	(2)	14.	(2)
15.	(3)	16.	(1)	17.	(1)	18.	(4)	19.	(2)	20.	(4)	21.	(2)
22.	(1)	23.	(3)	24.	(3)	25.	(2)	26.	(2)	27.	(2)	28.	(4)
29.	(1)	30.	(1)	31.	(3)	32.	(3)	33.	(4)	34.	(2)	35.	(2)
36.	(1)	37.	(1)	38.	(2)	39.	(2)	40.	(1)	41.	(3)	42.	(3)
43.	(1)	44.	(4)	45.	(3)								

SPP Solutions

- 1. Let oxidation number of Os = xOxidation number of oxygen = -2x + 4 (-2) = 0x = + 8
- 2. Let the oxidation number of 'S' be x $H_2S_2O_7$

 $\therefore 2 \times 1 + 2x + 7 \times -2 = 0$ x = + 6 Oxidation number of S = +6 H₂S₂O₇ is oleum.

 $\begin{array}{cccc} \mathsf{H_2SO_4} \ + \ \mathsf{SO_3} & \longrightarrow & \mathsf{H_2S_2O_7} & \longrightarrow & \mathsf{2H_2SO_4} \\ \text{Sulphuric} & & \text{Oleum} & & \text{Sulphuric} \\ \text{acid} & & & \text{acid} \end{array}$

3.
$$\bigcup_{\substack{(-1)\\(-1)\\(+6)\\(-1)}}^{(-2)} \bigcup_{\substack{(-1)\\(-1)\\(-1)}}^{(-2)} \bigcup_{(-1)}^{(-1)} \bigcup_{(-1)}$$

- I⁻ can be oxidised to I₂
 Na can be oxidised to Na⁺
 Fe²⁺ can be oxidised to Fe³⁺
 So, all are reducing agent.
- 5. Both oxidation and reduction are taking place in : Oxidised (Reducing agent)

Reduced (oxidising agent)

6. The reaction of MnO^{2-}_{4} in aqueous medium takes place as below $3MnO^{2-}_{4} + 2H_2O \rightarrow MnO_2$

- 7. KCN + Fe $(CN)_2 \longrightarrow K_4 [Fe(CN)_6]$ This is not redox reaction.
- 8. The balanced chemical equation is : $Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$
- **9.** $As_2S_5 + 40 HNO_3 \longrightarrow 5 H_2SO_4 + 40 NO_2 + 2 H_3AsO_4 + 12 H_2O$
- 10.70% by weight means70 g of orthophosphoric acid is present in 100 g acid

$$N = \frac{w}{Eq. wt.} \times \frac{1000}{V_{(cc)}}$$

$$w = 70 \text{ g}$$
Eq. wt. =
$$\frac{mol. mass}{no. \text{ replacable } H-atoms} = \frac{98}{3}$$

$$V = \frac{mass}{density} = \frac{100}{1.54}$$

$$N = \frac{70 \times 3 \times 1000 \times 1.54}{98 \times 100} = 33 \text{ N}$$

11. Normality = molarity \times x x = number of replacable H atom or OH groups in a molecule In H₃PO₄ (orthophosphoric acid) x = 3

HO
$$OH$$

N = 0.3 × 3 = 0.9 N

1

2. Normality of a mixture (N) =
$$\frac{N_1V_1 + N_2V_2}{V_1 + V_2}$$

Normality(N₁) of H₂SO₄ = molarity × basicity = 0.2 × 2 = 0.4 N
N₂ = 0.2 × 1 = 0.2 N
V₁ = 100mL, V₂ = 200 mL
N = $\frac{0.4 \times 100 + 0.2 \times 200}{100 + 200} = \frac{40 + 40}{300} = \frac{80}{300} = 0.2670$ N
Normality of mixture of acid and base(N')
(N') = $\frac{N_1V_1 - N_2V_2}{V_1 + V_2}$

13. Suppose the molecules of Na_2CO_3 and $NaHCO_3$ in a mixture are 'a' . milli-equivalent of HCI

$$\begin{split} & \mathsf{N}_{1}\mathsf{V}_{1}+\mathsf{N}_{2}\mathsf{V}_{2}=\mathsf{NV} \\ a \times 2 \times 1000 + a \times 1 \times 1000 = 0.1 \ \mathsf{V} \\ & 3a = 10\text{-}4 \ \mathsf{V} \\ & 3a = 10\text{-}4 \ \mathsf{V} \\ \hline & & \text{i.....(i)} \\ \hline & \text{(:) N = basicity/acidity \times M]} \\ \text{wt. of Na}_{2}\mathsf{CO}_{3} + \text{wt. of Na}\mathsf{HCO}_{3} = 1 \ \mathsf{g} \\ & (\therefore \ \text{wt. of mixture} = 1 \ \mathsf{g}) \\ \Rightarrow \quad a \times 106 + a \times 84 = 1 \\ & a = 5.26 \times 10^{-3} \quad(ii) \\ \hline & \text{From Eqs. (i) and (ii) we have } 3 \times 5.26 \times 10^{-3} = 10^{-4} \ \mathsf{V} \\ & \mathsf{V} = 157.8 \ \text{mL} \\ \end{split}$$

- 14. The hardness of water is estimated by simple titration of ethylene diamine tetra acetate (EDTA) solution.EDTA forms stable complexes with the metal ions present in the hard water since stability consatants of calcium and magnesium complexes of EDTA are different, even the selective estimation of these ions is possible.
- **15.** S undergoes increase in oxidation number from +2 to +2.5, while I undergoes decrease in oxidation number from 0 to -1.
- **17.** Valency factor of $Cr_2O_7^{2-} = 6$ Equivalent weight = $\frac{\text{molecular weight}}{\text{v.f}} = \frac{\text{molecular weight}}{6}$
- **18.** $\operatorname{Cr}_{2}O_{7}^{2-} + 14H^{+} + 6I^{-} \longrightarrow 3I_{2} + 2Cr^{3+} + 7H_{2}O$ (v.f.=6) (v.f.=2) Equivalents of K₂Cr₂O₇ = equivalents of I₂ 1×6 = moles of I₂ $\times 2$ Moles of I₂ = 3
- **19.** Moles of $K_2 Cr_2 O_7 \times v.f. = moles of Sn^{2+} \times v.f.$

Moles of $K_2 Cr_2 O_7 = \frac{1 \times 2}{6} = \frac{1}{3}$

20. Hypo $(Na_2S_2O_3)$ decolouriese iodine solution.

 $2Na_2S_2O_3 + I_2 \longrightarrow 2NaI + Na_2S_4O_6$ Sodium tetra thionate

21. The neutralization of NaOH by H_2SO_4 takes place as follows $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + H_2O$ For complete neutralization Equilvalents of acid = equivalents of base Equilvalents of NaOH = moles × Acidity = 1 × 1 = 1 Equilvalents of $H_2SO_4 = \frac{\chi}{98} \times 2 = \frac{\chi}{49}$ (Mol. mass of $H_2SO_4 = 98$ Putting the values $1 \times 1 = \frac{\chi}{49} \Rightarrow \chi = 49$ g but H_2SO_4 is 70% let y 70% H_2SO_4 is required $\frac{70}{100} \times y = 49$

- **22.** $2Fe^{3+}(aq) + Sn^{2+}(aq) \longrightarrow 2Fe^{2+}(aq) + Sn^{4+}(aq)$
- **23.** When a compound is simultaneously get reduced as well as oxidised in a reaction, then this type of reaction is called disproportionation reaction. Following reaction is an example of it. $4 P + 3NaOH \longrightarrow 3H_2O + PH_3 + 3NaH_2PO_2$
- **24.** $MnO_4^- \longrightarrow MnO_2$

 $Mn^{+7} \longrightarrow Mn^{+4}$ In this reaction Mn^{+7} reductive by Mn^{+4}

25. $\operatorname{Na}_{2}\overset{+2}{S}_{2} O_{3} \longrightarrow \operatorname{Na}_{2} \overset{+6}{S} O_{4}$ the total change in oxidation number = 4 × 2 = 8 $\therefore \qquad \operatorname{E}_{\operatorname{Na}_{2}\operatorname{S}_{2}\operatorname{O}_{3}} = \frac{\operatorname{mol. wt.}}{\operatorname{V.f}} = \frac{\operatorname{M}}{8}$

- 26. $2CuSO_4 + 4KI \longrightarrow Cu_2I_2 + I_2 + 2K_2SO_4 .$ $Cu^{2+} + 1e^{-} \longrightarrow Cu^{+}.$ $E_{Cu} = ?. \quad V.F. = 1.$ $E_{CuSO4} = \frac{159.5}{1} = 159.5$
- 27. $eq_{acid} = eq_{base}$ (VF = 1 for both) CHCl₂COOH + NH₃ \longrightarrow CHCl₂COONH₄ From reaction, m.moles of NH₃ = m.moles of dichloroacetic acid = 100

:. Moles of
$$NH_3 = \frac{100}{1000} = 0.1$$

- 28. Equivalents of FeC_2O_4 = equivalents of $KMnO_4$ x (mole) x 3 = 1 x 5 $x = \frac{5}{3}$ mole
- **29.** Equivalent of $KMnO_4$ = equivalent of $FeSO_4$ + equivalent of FeC_2O_4 x × 5 = 1 × 1 + 1 × 3

$$x = \frac{4}{5}$$
 mole

- 30. meq of Na₂CO₃ = meq of H₂SO₄ $\frac{1}{10} \times 22.7 = N \times 10.2$ Normality = 0.2225 N 0.2225 × 400 = $\frac{1}{10} \times V_f$ or $V_f = 890.2 \text{ mL}$ ∴ Volume of H₂O mixed = 890.2 - 400 = 490.2 mL
- **31.** $HNO_3 + NH_4^+ \longrightarrow N_2 + NO_2$ V.F. of $HNO_3 = (5 - 4) = 1$ V.F. of $NH_4^+ = [0 - (-3)] = 3$ so molar ratio of HNO_3 and NH_4^+ is 3 : 1. 1 mole $(NH_4)_2SO_4$ is found to contain 2 mole of NH_4^+ So, required moles of HNO_3 is 3 x 2 = 6 mole.
- 32. $H_2C_2O_4$. $2H_2O = 2 + 24 + 64 + 36 = 126$ and Equivalent wt. $= \left\lfloor \frac{126}{2} \right\rfloor$

$$0.2 = \frac{W \times 1000}{\left(\frac{126}{2}\right) \times 50} \qquad \therefore W = 0.63 \text{ g}$$

- **33.** $H_{NO_{3}}^{+5} \longrightarrow H_{3}^{-3} \therefore V.f. \text{ of } H_{NO_{3}} = 8$ Eq. wt. = M/8.
- $NH_2OH \longrightarrow N_2O$ **34.** -1 +1
 - $\therefore \text{ V.f. of } \text{NH}_2\text{OH} = 2$
 - ∴ Eq wt = M/2

 $Na_2 \stackrel{+2}{S}_2O_3 \longrightarrow Na_2 \stackrel{+6}{S} O_4$ 35. the total change in oxidation number = $4 \times 2 = 8$ $\mathsf{E}_{\mathsf{Na}_2\mathsf{S}_2\mathsf{O}_3} = \frac{\mathsf{mol.} \quad \mathsf{wt.}}{\mathsf{V}_2} = \frac{\mathsf{M}}{\mathsf{8}}$ *.*.. 36. In Acid Base neutralisation 1 H⁺ combines with 1 OH⁻ to produce 1 H₂O therefore its equivalent mass = molecular mass. 37. $8KMnO_4 + 3Na_2S_2O_3 + H_2O \rightarrow 2KOH + 8MnO_2 + 3Na_2SO_4 + 3K_2SO_4$ O₃ will oxidise H₂O₂ into oxygen, hence radioacitve oxygen of H₂O₂ will go only in oxygen, not in water. 38. Half reactions : $O_3 + 2H^+ + 2e^- \longrightarrow O_2 + H_2O$; $H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^-$ Eq. mass = $\frac{\text{Molecular weight}}{\text{Change in oxidation No. of Mn}} = \frac{\text{Mol. wt.}}{4-2} = \frac{\text{Mol. wt.}}{2}$ 39. (O.N. of Mn in $MnSO_4 = +2$; O.N. of Mn in $MnO_2 = +4$). (1) Equilivalents of $H_2C_2O_4$.2H₂O in 10 mL = Equivalents of NaOH 40. $\left(\frac{6.3}{126/2} \times \frac{1000}{250}\right) \times \frac{10}{1000} = 0.1 \times V$ (in litre) ÷. V = 0.04 L = 40 mL. $\mathsf{K}\overset{+7}{\underline{\mathsf{Mn}}}\mathsf{O}_{4} + \overset{+2}{\underline{\mathsf{Fe}}}\mathsf{C}_{2}^{2}\mathsf{O}_{4} \longrightarrow \overset{+3}{\underline{\mathsf{Fe}}}^{3*} + \overset{+2}{\underline{\mathsf{Mn}}}^{2*} + \overset{+4}{\underline{\mathsf{CO}}}_{2}$ $\downarrow_{5e^{-}} \land \uparrow_{1e^{-}1e^{-}x2}$ 42. $3KMnO_4 + 5FeC_2O_4 \longrightarrow Products$ by mole-mole analysis. $\frac{{}^{n}\mathsf{K}\mathsf{M}\mathsf{n}\mathsf{O}_{4}}{3} = \frac{{}^{n}\mathsf{Fe}\mathsf{C}_{2}\mathsf{O}_{4}}{5}$ ⁿKMnO₄ = $\frac{3}{5} \times 1$ moles. 45. wt of metal = 0.28 - 0.14 gm. = 0.14 gm wt.of substance = wt. of oxygen equivalent of substance = equivalent of oxygen $\frac{w_{(sub.)}}{E_A} = \frac{w_{(oxygen)}}{E_O}$ i.e. $E_{A} = E_{O} = \frac{32}{4} = 8$

For SO₂

$$\mathsf{E}_{\mathsf{Sulphur}} = \frac{32}{4} = 8$$