TOPIC : ATOMIC STRUCTURE EXERCISE # 1

SECTION (A)

- **9.** Net charge is –1. (17 e+ 18 p)
- **12.** Isoelectronic species should have same number of electrons.
- 13. It is fact.
- 14. It is fact.

SECTION (B)

- 1. More energy means less wavelength.
- 2. Violet colour has minimum wavelength so maximum energy.

3.
$$v = \frac{c}{\lambda} = \frac{3 \times 10^8 \text{ ms}^{-1}}{600 \times 10^{-9} \text{ m}} = 5.0 \times 10^{14} \text{ Hz}$$

5. (1)
$$v = \frac{c}{\lambda} = \frac{3 \times 10^8}{400 \times 10^{-9}} = 7.5 \times 10^{14} \text{ Hz}.$$

(2)
$$\overline{v} = \frac{1}{\lambda} = \frac{1}{400 \times 10^{-9}} = 2.5 \times 10^{6} \text{ m}^{-1}$$

(3) It is a fact

7.
$$\lambda = \frac{12400}{2} A^{\circ} = 6200 A^{\circ}$$

9.
$$\lambda$$
 (in Å) = $\frac{12400 \text{ eVÅ}}{4\text{eV}}$ = 3100 Å.

10.
$$\lambda = \frac{hc}{E} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})}{3.31 \times 10^{-20} \text{ J}} = 6.01 \times 10^{-6} \text{ m}.$$

 $\textbf{11.} \qquad \text{For photoelectric effect to take place, } \mathsf{E}_{\text{light}} \ \geq \ \mathsf{W} \ \ \therefore \ \frac{hc}{\lambda} \geq \frac{hc}{\lambda_0} \ \ \text{or} \ \ \lambda \leq \lambda_0 \ .$

15. The number of photoelectrons emitted depend on the intensity or brightness of incident radiation.

SECTION (C)

2. Bohr radius =
$$=\frac{r_2}{r_1} = \frac{(2)^2}{(1)^2} = 4$$

- 7. Radius of He⁺ is = $\frac{0.53}{2} = 0.265 \text{\AA}$
- 8. Radius of ground state of hydrogen atom = 0.529 Å

So, 0.529 = 0.529 ×
$$\frac{n^2}{Z}$$

0.529 = 0.529 × $\frac{n^2}{4}$ ∴ n = 2

9.	$V_3 = V_1 \times \left(\frac{Z}{n}\right)$		
	$v_3 = 2.18 \times 10^6 \times \left(\frac{1}{3}\right) = 7.27 \times 10^5 \text{ m/s}$		
11.	Angular momentum J = mvr $J^2 = m^2 v^2 r^2$ or $\frac{J^2}{2} = \left(\frac{1}{2}mv^2\right) mr^2$ or K.E. = $\frac{J^2}{2mr^2}$		
14.	It is fact.		
17.	: Total energy $(E_n) = KE + PE$		
	In first excited state = $\frac{1}{2}mv^2 + \left[-\frac{ze^2}{r}\right] = +\frac{1}{2}\frac{Ze^2}{r} - \frac{ze^2}{r} - 3.4 \text{ eV} = -\frac{1}{2}\frac{Ze^2}{r}$ \therefore KE = = + 3.4 eV		
22.	E_1 for Li ⁺² = E_1 for H × Z ² [for Li, Z = 3] = 13.6 × 9 = 122.4 eV		
23.	1.51 Z ² = 13.6. So, Z = 3 (Li ⁺²)		
25.	Given binding energy of Ist excited state (n = 2) = 54.4 eV \Rightarrow $3.4 Z^2 = 54.4 eV$ \Rightarrow $Z^2 = 16$ \Rightarrow $Z = 4$		
26.	$40.8 = (\Delta E)_{2 \to 1} \times Z^2 \implies 40.8 = 10.2 \times Z^2 \implies Z^2 = 4 \text{ or } Z = 2$ IE = 13.6 Z ² = 13.6 × 4 = 54.4 eV		
27.	(1) Energy of ground state of He ⁺ = $-13.6 \times 2^2 = -54.4 \text{ eV}$ (iv)		
	(2) Potential energy of I orbit of H-atom $= -27.2 \times 1^2 = -27.2 \text{ eV}$ (ii)		
	(3) Kinetic energy of II excited state of He ⁺ = $13.6 \times \frac{2^2}{3^2} = 6.04 \text{ eV}$ (i)		
	(4) Ionisation potential of He ⁺ = $13.6 \times 2^2 = 54.4 \text{ V}$ (iii)		
SECTION (D)			

7. For 1^{st} line of Balmer series $(3 \rightarrow 2)$

$$E_3 - E_2 = \frac{hc}{\lambda}$$

- **9.** Visible lines \Rightarrow Balmer series \Rightarrow 3 lines. (5 \rightarrow 2, 4 \rightarrow 2, 3 \rightarrow 2).
- **10.** When electron falls from n to 1, total possible number of lines = n 1.
- For Bracket Series, electrons jump from high energy level to 4th energy level if high energy level is 10th, then number of spectral line belong to bracket series is 6 (5 to 4), (6 to 4), (7 to 4),(8 to 4), (9 to 4) and (10 to 4)

SECTION (E)

- 1. An electron has particle and wave nature both.
- **2.** For a charged particle $\lambda = \frac{h}{\sqrt{2mqV}}$, $\therefore \qquad \lambda \propto \frac{1}{\sqrt{V}}$.

- According to de-Broglie equation, $\lambda = \frac{h}{m_{1}}$ 4. Given, $h = 6.6 \times 10^{-34} \text{ J s}$ m = 0.66 kgv = 100 m s⁻¹ $\therefore \qquad \lambda = \frac{6.6 \times 10^{-34}}{0.66 \times 100} = 1 \times 10^{-35} \, \text{m}$ $\lambda = \frac{h}{\sqrt{2mkE}} = \frac{6.6 \times 10^{-34}}{\sqrt{2} \times 1 \times 0.5} = 6.62 \times 10^{-34}$ 5. $\lambda = \frac{h}{m_V} = 1.33 \times 10^{-3} \text{ Å}$ 6. $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{V_2}{V_4}} = \sqrt{\frac{200}{50}} = \frac{2}{1}.$ 7. $\lambda = \frac{h}{mu} = 0.416 \text{ nm}$ 8. $\lambda = v$ then $\lambda = \frac{h}{mV}$ or $\lambda^2 = \frac{h}{m}$ So, $\lambda = \sqrt{\frac{h}{m}}$. 9. **10.** $\lambda \propto \frac{n}{Z}$ \therefore $\frac{n_1}{Z_1} = \frac{n_2}{Z_2}$ or $\frac{2}{3} = \frac{4}{6}$ (n = 4 of C⁵⁺ ion) 11. $v = 2.18 \times \frac{z}{n} 10^{-6} \text{ m/s}$ $\lambda = \frac{h}{my}$ $\Delta X \ \Delta P \geq \frac{h}{4\pi}$ 13. $\Delta X \rightarrow 0 \Rightarrow \Delta P \rightarrow \infty$ $\Delta p \cdot \Delta x = \frac{h}{4\pi}$ \Rightarrow $\Delta x = \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 1 \times 10^{-10}} = 5.27 \times 10^{-25} \text{ m}.$ 14. SECTION (F)
- 2. Any orbital can accommodate only 2 electrons with opposite spins.
- 4. $n = 4, \ \ell = 2, \ s = -\frac{1}{2} \ or + \frac{1}{2}$
- 6. Maximum no. of electrons in a subshell = $2(2\ell + 1) = 4+ 2$.
- 7. Two electrons in K shell will differ in spin quantum number $s = +\frac{1}{2}$ or $-\frac{1}{2}$.
- **9.** Total number of electrons in an orbital = 2 (2ℓ +1).

The value of ℓ varies from 0 to n – 1. \therefore Total numbers of electrons in any orbit = $\sum_{\ell=0}^{\ell=n-1} 2(2\ell+1)$.

14. Orbital angular momentun = $\frac{h}{2\pi}\sqrt{\ell}$ (ℓ + 1)

For 2s-orbital $\ell = 0 \Rightarrow$ Orbital angular momentun = 0

- **15.** (1) This set of quantum number is permitted.
 - (2) This set of quantum number is not permitted as value of 's' cannot be zero.
 - (3) This set of quantum number is not permitted as the value of 'l' cannot be equal to 'n'.
 - (4) This set of quantum number is not permitted as the value of 'm' cannot be greater than 'l'.
- **16.** No two electrons in an atom can have identical set of all the four quantum numbers.
- **20.** Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts when each of them is singly filled.
- 21. 1s² 2s² 2p⁶ 3s¹ m = 0 is for 2 + 2 + 2 + 1 electrons = 7 e⁻
 - Zn2+:[Ar] 3d10 (0 unpaired electrons).Fe2+:[Ar] 3d6 (4 unpaired electrons) maximum.Ni3+:[Ar] 3d7 (3 unpaired electrons).
 - Cu^+ : [Ar] $3d^{10}$ (0 unpaired electrons).

23. d^7 : 3 unpaired electrons. \therefore Total spin = $\pm \frac{n}{2} = \pm \frac{3}{2}$.

SECTION (G)

22.

- 1. s orbital is spherical so non-directional.
- 9. Factual
- **10.** Spherical node = $n \ell 1$

non spherical = ℓ

- 11. Factual
- $\textbf{12.} \quad n,\,\ell \text{ and } m.$

EXERCISE # 2

3.
$$\frac{(e/m)_{e}}{(e/m)_{\alpha}} = \frac{e/m_{e}}{2e/4 \times 1836 m_{e}} = \frac{3672}{1}$$

4. Charge on oil drop = 6.39×10^{-19} C \therefore 1.602×10^{-19} C is charge on one electron

:. 6.39 × 10⁻¹⁹ C is charge on =
$$\frac{6.39 \times 10^{-19}}{1.602 \times 10^{-19}}$$
 = 4 electrons.

5. Volume of nucleus
$$= \frac{4}{3} \pi r^3 = \frac{4}{3} \pi (10^{-13})^3 \text{ cm}^3 \implies$$
 Volume of atom $\frac{4}{3} = \pi (10^{-8})^3 \text{ cm}^3$
 $\frac{V_N}{V_{Atom}} = \frac{10^{-39}}{10^{-24}} = 10^{-15} \implies$ $V_{Nucleus} = 10^{-15} \times V_{Atom}$
8. $\lambda = \frac{c}{v} = \frac{3 \times 10^8 \text{ m/s}}{1200 \times 10^3 \text{ s}^{-1}} = 250 \text{ m} = 0.25 \text{ km}.$

$$\overline{v} = \text{Wave no.} = \frac{1}{\lambda} = \frac{2 \text{ km}}{0.25 \text{ km}} = 8 \text{ wave per km.}$$
9.
$$E = \frac{nhc}{\lambda} \Rightarrow n = 28$$
10.
$$n = \frac{E_{\lambda}}{hc} = 2.5 \times 10^{19} \text{ photons}$$
11.
$$\frac{hc}{\lambda} = 1 + \phi \qquad \dots(1)$$
3 ×
$$\frac{hc}{\lambda} = 4 + \phi \qquad \dots(2) \text{ from, e.q., (1) and (2) } \phi = 0.5 \text{ eV}$$
12.
$$E_{\text{absorbed}} = E_{\text{armiled}}$$

$$\therefore \qquad \frac{hc}{300} = \frac{hc}{400} + \frac{hc}{\lambda} \qquad \therefore \qquad \lambda = 1200 \text{ nm.}$$

$$\therefore \qquad \frac{hc}{300} = \frac{hc}{400} + \frac{hc}{\lambda} \qquad \therefore \qquad \lambda = 1200 \text{ nm.}$$

$$\therefore \qquad \frac{hc}{300} = \frac{hc}{400} + \frac{hc}{\lambda} \qquad \therefore \qquad \lambda = 1200 \text{ nm.}$$
14.
$$\frac{T_{\text{uc}}}{T_{\text{u}}^{-1}} = \frac{\left(\frac{n^{2}}{2}\right)_{\text{le}}}{\left(\frac{n^{2}}{2^{2}}\right)_{\text{le}}^{-1}} = \frac{\left(\frac{2^{2}}{2^{2}}\right)}{\left(\frac{4^{2}}{3^{2}}\right)^{2}} = \frac{9}{32}$$
18.
$$E_{1} \text{ for } L^{1/2} = E_{1} \text{ for } H \times Z^{2} = E_{1} \text{ for } H \times 4$$
or $E_{1} \text{ for } H^{2} = E_{1} \text{ for } H \times Z^{2} = E_{1} \text{ for } H \times 4$
or $E_{1} \text{ for } H^{2} = \frac{9}{4} E_{1} \text{ for } H \times Z^{2} = E_{1} \text{ for } H \times 4$
or $E_{1} \text{ for } L^{1/2} = \frac{9}{4} E_{1} \text{ for } H \times 2^{2} = E_{1} \text{ for } H \times 4$
or $E_{1} \text{ for } L^{1/2} = \frac{9}{4} E_{1} \text{ for } H \times 2^{2} = E_{1} \text{ for } H \times 4$
or $E_{1} = -13.6Z^{2} = 100 \text{ unit} \qquad \Rightarrow E^{2} = -\frac{-13.6Z^{2}}{4} = 25 \text{ unit}$
21. $KE = \frac{1}{2} \frac{KZe^{2}}{r} = \frac{3e^{2}}{8\pi c_{0}r}$
22. $E_{2} - E_{1} = 1312 - 1312/4 = 984 \text{ kJ/mol}$
23. $E_{\text{torination}} = E_{n} - E_{n} = \frac{13.6Z^{2}}{n^{2}} \text{ eV} \Rightarrow \qquad \left[\frac{13.6Z^{2}}{n^{2}} - \frac{13.6Z^{2}}{n^{2}}\right] \Rightarrow E = hv = \frac{13.6 \times 1^{2}}{(1)^{2}} - \frac{13.6 \times 1^{2}}{(2)^{2}}$
 $hv = 13.6 - 3.4 \Rightarrow v \cup \frac{E}{h} = \frac{10.2 \times 1.6 \times 10^{-16}}{6.625 \times 10^{-34}} = 2.46 \times 10^{-16} \text{ sec^{-1}}$
25. $\frac{1}{\lambda_{\text{typean}}} = R_{h}\left(\frac{1}{\eta}\right) \qquad \Rightarrow \qquad \frac{1}{\lambda_{\text{tabure}}} = R_{h}\left(\frac{1}{4}\right) :\Rightarrow \frac{\lambda_{\text{maxin}}}{\lambda_{\text{typean}}} = 4$
26.x. For 1^{st} line of Balmer series $\overline{v}_{1} = R_{h}(3)^{2} \left[\frac{1}{(2)^{2}} - \frac{1}{(3)^{2}}\right] = 9R\left(\frac{5}{36}\right) = \frac{5}{4}R$

For last line of Pachen series $\overline{v}_2 = R_H(3)^2 = R$ so, $\overline{v}_1 - \overline{v}_2 = \frac{5}{4}R - R = \frac{R}{4}$. 27. Shortest wave length of Lyman series of H-atom $\frac{1}{\lambda} = \frac{1}{x} = R\left[\frac{1}{(1)^2} - \frac{1}{(\infty)^2}\right]$ so, $x = \frac{1}{R}$ For Balmes series $\frac{1}{\lambda} = R(1)^2 \left\{\frac{1}{(2)^2} - \frac{1}{(3)^2}\right\}$ $\frac{1}{\lambda} = \frac{1}{x} \times \frac{5}{36}$ so, $\lambda = \frac{36x}{5}$. 28. According to energy, $E_{4 \to 1} > E_{3 \to 1} > E_{2 \to 1} > E_{3 \to 2}$. According to energy, Violet > Blue > Green > Red. \therefore Red line \Rightarrow $3 \to 2$ transition. 29. $\frac{1}{\lambda_H} = R(1)^2 \left[\frac{1}{1^2} - \frac{1}{2^2}\right]$ & $\frac{1}{\lambda_{Hac}} = R(2)^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$

But $\lambda_{H} = \lambda_{He+}$ \therefore from above 2 equations, $n_{1} = 2 \& n_{2} = 4$.

- **30.** Number of lines in Balmer series = 2. \therefore n = 4 (lines will be 4 \rightarrow 2, 3 \rightarrow 2). KE of ejected photoelectrons = $E_{photon} - BE_n = 13 - \frac{13.6}{4^2} = 13 - 0.85 = 12.15 \text{ eV}.$
- 32. Number of lines = $\frac{n(n-1)}{2}$ = 1 + 2 + 3(n 1)
- **34.** To produce a maximum of 6 spectral lines, minimum two atoms/ions must be present in the sample, as shown in the diagram.

37.
$$\lambda = \frac{h}{\sqrt{2mK}} = 3.328 \times 10^{-10} \text{ m}$$

38.
$$r_1 = 0.529 \text{ Å}$$

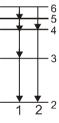
 $r_3 = 0.529 \times (3)^2 \text{ Å} = 9x$
So, $\lambda = \frac{2\pi r}{r_1} = \frac{2\pi (9x)}{3} = 6 \pi x.$

43. Magnetic moment = $\sqrt{n(n+2)} = \sqrt{24}$ B.M. \therefore No. of unpaired electron = 4. $X_{26}: 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$.

To get 4 unpaired electrons, outermost configuration will be 3d⁶.

$$\therefore \qquad \text{No. of electrons lost} = 2 \text{ (from } 4s^2\text{)}. \qquad \therefore \qquad n=2.$$

48. I : For n = 5, $I_{min} = 0$. \therefore Orbital angular momentum = $\sqrt{\ell (\ell + 1)}$ $\hbar = 0.$ (False) II : Outermost electronic configuration = 3s¹ or 3s². \therefore possible atomic number = 11or 12 (False).



III : $Mn_{25} = [Ar] 3d^5 4s^2$. \therefore 5 unpaired electrons. \therefore Total spin = $\pm \frac{5}{2}$ (False).

IV : Inert gases have no unpaired electrons. \therefore spin magnetic moment = 0 (True). Cr (Zn = 24)

49. Cr (Zn = 24)Electronic configuration is : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$ so, no of electron in $\ell = 1$ i.e. p subshell is 12 and no of electron in $\ell = 2$ i.e. d subshell is 5.

50. Number of values of ℓ = total number of subshells = n.

Value of $\ell = 0, 1, 2, \dots, (n - 1)$.

 ℓ = 2 \Rightarrow m = – 2, – 1, 0, + 1 , + 2 (5 values)

m = + ℓ to – ℓ through zero.

51. n = 4, m = -3 \therefore only possible value of ℓ is 3.

: Orbital angular momentum =
$$\sqrt{\ell(\ell+1)} = \frac{2\sqrt{3}h}{2\pi} = \frac{\sqrt{3}h}{\pi}$$
.

52. Number of unpiared electron are given by

Magnetic moment = $\sqrt{[n(n+2)]}$ B.M.

where n is number of unpaired electrons

or
$$1.73 = \sqrt{[n(n+2)]}$$
 or $1.73 \times 1.73 = n^2 + 2n$ \therefore $n = 1$

Now Vanadium atom must have one unpaired electron and thus its configuration is $_{_{23}}V^{_{4+}}$: $1s^2$, $2s^2\,2p^6,\,3s^2\,3p^6\,3d^1$

- **53.** E.C. $\stackrel{,}{_{\sim}}$ 1s²,2s²,2p⁶,3s²,3p⁶,3d¹,4s²
- **54.** Number of radial nodes = $n \ell 1 = 1$, n = 3. $\therefore \qquad \ell = 1$.

Orbital angular momentum = $\sqrt{\ell} (\ell + 1) \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi}$.

55. Dumbell lies at 45° to x & y axis.

EXERCISE # 3 PART - I

1. According to formula, $E = \frac{hc}{\lambda}$

 $3.03 \times 10^{-19} = \frac{hc}{\lambda}$ $\lambda = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{3.03 \times 10^{-19}} = 6.56 \times 10^{-7} \text{ m} = 6.56 \times 10^{-7} \times 10^9 \text{ nm} = 6.56 \times 10^2 \text{ nm} = 256 \text{ nm}$

2. $n = 3, l = 2, m = +2, s = \pm 1/2$ These values of quantum numbers are possible for only one of the five 3d orbitals as + 2 value of m is possible only for one orbital. m is possible only for one orbitals.

3.
$$\therefore$$
 Total energy (E_n) = KE + PE. In first excited state $=\frac{1}{2}mv^2 + \left[-\frac{ze^2}{r}\right]$
 $= +\frac{1}{2}\frac{Ze^2}{r} - \frac{ze^2}{r} - 3.4 \text{ eV} = -\frac{1}{2}\frac{Ze^2}{r} \therefore KE = \frac{1}{2}\frac{Ze^2}{r} = +3.4 \text{ eV}$
4. $\lambda = \frac{c}{v} = \frac{3 \times 10^n}{8 \times 10^{15}} \frac{\text{s}^{-1}}{\text{s}^{-1}} = 0.375 \times 10^{-7} \text{ m} = 37.5 \times 10^{-9} \text{ m} = 37.5 \text{ nm} = 4.0 \times 10 \text{ nm}$
5. I.E = E_x - E₁ = 0 - E₁ = 2.18 × 10⁻¹⁶ J atom⁻¹
Thus, E_n = $-\frac{2.18 \times 10^{-18}}{n^2}$ J atom⁻¹
 $\Delta E = E_4 - E_1 = -2.18 \times 10^{-16} \left(\frac{4z}{r} - \frac{1}{r^2}\right) = 2.044 \times 10^{-16} \text{ J} \text{ atom}^{-1}$
 $\Delta E = hv$ or $v = \frac{\Delta E}{h} = \frac{2.044 \times 10^{-16} \text{ J}}{6.625 \times 10^{-54}} \text{ Js} = 3.085 \times 10^{15} \text{ s}^{-1}$
6. $z_2\text{Ti} = 3d^24s^6$, $\text{Ti}^{2*} = 3d^2$,
 $z_2\text{V} = 3d^24s^2$, $\text{Vi}^{4*} = 3d^2$,
 $z_2\text{V} = 1328 \text{ kJ mol}^{-1}$ $\therefore K = 1312 \text{ kJ mol}^{-1}$
 $E_4 = -\frac{K}{4^2} = -\frac{1312}{16} = -82 \text{ kJ mol}^{-1}$
8. $\text{Ax mA V} = h/4\pi$
 $\therefore (0.1 \times 10^{-10} \text{ m}) (9.11 \times 10^{-31} \text{ kg}) (\text{AV}) = \frac{6.626 \times 10^{-34} \text{ kgm}^2 \text{s}^{-1}}{4 \times 3.14}$ or $\text{Av} = 5.79 \times 10^6 \text{ ms}^{-1}$
(v) is not possible because when $n = 2$, $n \neq 3$
 n n I m S
(i) 2 1 1 H , $z \approx 3$
 n n I m S
(ii) 2 1 1 H $x = 3$
 n n I m S
(iii) 2 1 1 1 H , $z \approx 3$
 n $\text{Av} = 1 \times 10^5 \text{ cm s}^{-1}$
12. $\text{Ax} \text{Ap} = \frac{h}{4\pi}$, i.e. m , $\text{Ve} = \frac{h}{4\pi}$ or $\text{Av} = \frac{1}{m} \sqrt{\frac{h}{4\pi}} = \frac{1}{2m} \sqrt{\frac{h}{\pi}}$
13. Total num

:. Maximum number of electrons in the subshell = 2(2l + 1) = 4l + 2

14. KE of molecule = energy absorbed by molecule – BE per molecule = $(4.4 \times 10^{-19}) - (4.0 \times 10^{-19}) J = 0.4 \times 10^{-19} J$

KE per atom = $\frac{0.4 \times 10^{-19}}{2}$ J = 2.0 × 10⁻²⁰ J

15. If n = 3

s

...

$$l = 0$$
 to $(3 - 1) = 0, 1, 2$
m = l to + l = -2, -1, 0, +1, +2

$$=\pm \frac{1}{2}$$
. Therefore, option (3) is not a permissible set of quantum numbers.

16. According to de-Broglie equation, $\lambda = \frac{h}{mv}$ Given, $h = 6.6 \times 10^{-34} \text{ J s} \Rightarrow m = 0.66 \text{ kg} \Rightarrow v = 100 \text{ m s}^{-1}$

$$\lambda = \frac{6.6 \times 10^{-34}}{0.66 \times 100} = 1 \times 10^{-35} \,\mathrm{m}$$

17. Total No. of atomic orbital in a shell = n^2

18.
$$E_1 = 25 \text{ eV}, \quad E_2 = 50 \text{ eV}$$

 $E_1 = \frac{hc}{\lambda_1}, \quad E_2 = \frac{hc}{\lambda_2} \implies \frac{25}{50} = \frac{\lambda_2}{\lambda_1}$

$$\lambda_1 = 2\lambda_2$$

19.
$$ns \rightarrow (n-2) f \rightarrow (n-1)d \rightarrow np$$
 $n = 6$

20. Energy of photon obtained from the transition n = 6 to n = 5 will have least energy.

$$\Delta E = 13.6Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

21.
$$(n = 4, \ell = 3) \Rightarrow 4f$$
 subshell

So, total No. of electron in subshell = $2(2 \ell + 1) = 2(2 \times 3 + 1) = 14$ electron.

- 22. Electronic configuration = [Kr] 5s¹ Set of quantum numbers \Rightarrow n = 5 $\ell = 0$ m = 0 s = 1/2 23. Orbital angular momentum = $\frac{h}{2\pi} \sqrt{\ell(\ell+1)}$ $\ell = 1$ So = $\frac{h}{2\pi} \sqrt{2} = \frac{h}{\sqrt{2\pi}}$
- 24. $C = v\lambda$ $\lambda = \frac{C}{v} = \frac{3 \times 10^{17}}{6 \times 10^{15}} = 50$ nm

- **25.** One orbital of 3p sub shell Any orbital can accomodate maximum 2 electron.
- 26. Electron is more tightly bound in the smallest allowed orbit.
- 27. It is 3P orbital with magnetic Q.N. = 0 So, it should be $3P_7$

28.
$$E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{45 \times 10^{-9}} = 4.4 \times 10^{-18}$$

30. Magnetic moment = $\sqrt{n(n+2)}$

2.84 Bohr magneton, means 2 unpaired electrons are present in ion.

$$Ni^{+2} = 4s^{0} 3d^{8} \boxed{\uparrow \downarrow} \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow$$

- **31.** $Fe^{+2} = 3d^64s^0$ six d electrons, p-electrons in chlorine $(1s^22s^22p^63s^23p^5)$ are = 11 as p-electrons = 6 + 5 = 11
- 32. Angular momentum = $\sqrt{\ell} (\ell + 1) \frac{h}{2\pi} = \sqrt{\ell} (\ell + 1) \hbar$

For d orbital $\ell = 2$

Angular momentum = $\sqrt{2(2+1)}$ $\hbar = \sqrt{6}$ \hbar

33. Same orbital can have two different values of spin of e- of +½ and -½ (spin quantum number)

3p orbital can have only 2 elelctron.

- 36. For a single electronic species like H, energy depends on value of n and does not depend on value of I.
- **37.** According to Hund's rule.
- 38. Ist four line of Balmer series of spectrum of hydrogen atom falls in visible region.

39.	- 37 ()		
	Orbitals	(n+l) value	
	5f	5 + 3 = 8	
	6р	6 + 1 = 7	
	4d	4 + 2 = 6	
	5р	5 + 1 = 6	
40.	The total no. of modes = $(n - angular nodes = \ell$		

0. The total no. of modes = (n - 1)angular nodes = ℓ the radial nodes = $n - \ell - 1$ n = principal Q. No. ℓ = Azimethel Q. No. Total nodes = 3 n - 1 = 3(n - 4) ℓ = 3 for f – orbital have 4f orbital. 41. For 2nd bohr orbit \Rightarrow (n = 2) $2\pi r = n\lambda$ $\lambda = \frac{2\pi r}{n}$ $r = r_0 n^2$ $r = 52.9 \times 4$

$\lambda = 52.9 \times 4 \times \pi$

PART - II

- 1. Electron in $CIO_2^- = 17 + 9 \times 2 1 = 34$ Electron in $CIF_2^+ = 17 + 2 \times 8 + 1 = 34$
- 2. α , β and γ radiations can be detected by using ZnS screen. α rays cause maximum glow of ZnS screen and γ rays cause minimum glow.

3.
$$r_n = \frac{52.9 \times n^2}{Z}$$
 pm \therefore For He⁺, $r_1 = \frac{52.9 \times 1^2}{2} = 26.5$ pm.

4.
$$\frac{1}{2}$$
mv² = 0.5 J \Rightarrow $\frac{1}{2}$ × 1 kg × v² = 0.5 J or v² = 1 or v = 1 ms⁻¹

$$\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34} \text{ kgm}^2 \text{s}^{-1}}{1 \text{ kg} \times 1 \text{ m s}^{-1}} = 6.626 \text{ x} 10^{-34} \text{ m}.$$

5. According to Heisenberg

$$\Delta \mathbf{x} \times \mathbf{m} \Delta \mathbf{v} = \frac{\mathbf{h}}{4\pi}$$

For particle A :

$$\Delta x = \Delta x_A$$

m = m

$$\Delta v = 0.05$$

So,
$$\Delta x_A \times m \times 0.05 = \frac{h}{4\pi}$$
 (i)

For particle B :

$$\Delta x = \Delta x_B$$

m = 5m
 $\Delta v = 0.02$

So,
$$\Delta x_{\rm B} \times 5m \times 0.02 = \frac{h}{4\pi}$$
 (ii)

Eq. (i) / (ii), we get

$$\frac{\Delta x_{A}}{\Delta x_{B}} = 2.$$

6.
$$V_{\text{rms}} = \sqrt{\frac{3\text{RT}}{M}} = \sqrt{\frac{3 \times 8.314 \times 298}{4 \times 10^{-3}}} = 1363 \text{ ms}^{-1}$$

 $\lambda = \frac{h}{4\pi} = \frac{6.626 \times 10^{-34} \times 6.023 \times 10^{23}}{4 \times 10^{-3} \times 1363} = 7.34 \times 10^{-11} \text{ m}$

7. Lower the (n + I) of an electron, lower will be its energy. If for any two electrons (n + I) is same, the electron with lower value of n, has lower energy. Hence, the correct order of energy is :

$$\begin{split} n &= 2, \ \ell = 1 \quad < \quad n = 3, \ \ell = 0 \quad < \quad n = 4, \ \ell = 0 \quad < \quad n = 3, \ \ell = 2 \\ (n + \ell = 3) \qquad \qquad (n + \ell = 3) \qquad \qquad (n + \ell = 4) \qquad \qquad (n + \ell = 5) \end{split}$$

11. $E = \frac{hc}{\lambda}; \frac{\lambda_2}{\lambda_1} = \frac{6000}{3000} = 2:1$

- 12. Both assertion and reason are correct. Reason is not the correct explanation of assertion.
- **13.** Magnetic moment $\mu = \sqrt{n(n+2)}$ where n = number of unpaired electrons $\sqrt{15} = \sqrt{n(n+2)}$ \therefore n = 3

17.
$$\Delta E = 2.178 \times 10^{-18} \left(\frac{1}{1^2} - \frac{1}{2^2} \right) = \frac{hC}{\lambda}$$

2.178 × 10⁻¹⁸ $\left(\frac{1}{1^2} - \frac{1}{2^2} \right) = \frac{6.62 \times 10^{-34} \times 3.0 \times 10^8}{\lambda}$
 $\therefore \lambda \approx 1.214 \times 10^{-7} m$

21.
$$\frac{1}{\lambda} = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right) \times Z^2$$

for $\lambda_{He^+} = \frac{400}{2^2} = \frac{400}{4} = 100 \text{ nm}$

23.
$$\frac{1}{\lambda} = 1.09 \times 10^7 \times 1^2 \left(\frac{1}{2^2} - \frac{1}{3^2}\right)$$
 (transition 3 \rightarrow 2)

24.
$$v = 2.18 \times 10^6 \times \frac{1}{2} = 1.09 \times 10^6 \text{ m/sec}$$

25.
$$\frac{hc}{\lambda_1} - h\upsilon_0 = \frac{1}{2}mv_1^2$$
$$\frac{hc}{\lambda_2} - h\upsilon_0 = \frac{1}{2}mv_2^2$$
$$\frac{hc}{\lambda_2} - \frac{hc}{\lambda_1} = \frac{1}{2}m(v_2^2 - v_1^2)$$
$$\frac{2hc}{m}\left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}\right)(v_2^2 - v_1^2)$$

PART - III

- 1. Mn²⁺ has the maximum number of unpaired electrons (5) andtherefore has maximum moment.
- 2. 2^{nd} excited state will be the 3^{rd} energy level. En = $\frac{13.6}{n^2}$ eV or E = $\frac{13.6}{9}$ = 1.51 eV.

3.
$$\Delta x. \ \Delta v = \frac{h}{4\pi m}$$
 $\Delta v = \frac{6.6 \times 10^{-34}}{4 \times 3.14 \times 25 \times 10^{-5}}$ $\therefore \qquad \Delta v = 2.1 \times 10^{-18} \text{ ms}^{-1}.$

- 4. $\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34} \times 1000}{60 \times 10} = 11.05 \times 10^{-34} = 1.105 \times 10^{-33}$ metres.
- 5. The electron has minimum energy in the first orbit and its energy increases as n increases. Here n represents number of orbit, i.e., 1^{at} , 2^{nd} , 3^{rd} The thired line from the red end corresponds. To yellow region i.e., 5. In order to obtain less energy electron tends to come 1^{st} or 2^{nd} orbit. So jump may be involved either $5 \rightarrow 1$ or $5 \rightarrow 2$. Thus option (2) is correct here.
- 6. ${}_{26}Fe = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^6, 4s^2,$ $Fe^{++} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^6$ The number of d -electrons retained in $Fe^{2+} = 6$. Therefore, (4) is correct option.
- 7. The value of ℓ (azimuthal quantum number) for s -electron is equal to zero.

Orbital angular momentum = $\sqrt{\ell(\ell+1)} \cdot \frac{h}{2\pi}$

Substituting the value of I for s-electron = $\sqrt{0(0+1)} \cdot \frac{h}{2\pi} = 0$

8.
$$\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \frac{1}{\lambda} = 1.097 \times 10^7 \text{ m}^{-1} \left(\frac{1}{1^2} - \frac{1}{\infty^2}\right) \therefore \qquad \lambda = 91 \times 10^{-9} \text{ m} = 91 \text{ m}.$$

9. For 4*f* orbital electrons, n = 4
$$\ell = 3$$
 (because $\begin{array}{c} s & p & d & f \\ 0 & 1 & 2 & 3 \end{array}$) m = + 3, + 2, + 1, 0, -1, -2, -3 s = + 1/2.

- 10. $_{24}Cr \rightarrow 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^1$ $\ell = 1, \ell = 1, \ell = 2$ (we know for p, $\ell = 1$ and for d, $\ell = 2$).For $\ell = 1$, total number of electrons = 12For $\ell = 2$, total number of electron = 5.
- **11.** The electron having same principle quantum number and azimuthal quantum number will be the same energy in absence of magnetic and electric field.

(iv) n = 3, l = 2, m = 1(v) n = 3, l = 2, m = 0Have same n and l value.

- **12.** For hydrogen the energy order of orbital is 1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d = 4f.
- **13.** According to Heisenberg's uncertainity principle

$$\Delta \mathbf{x} \times \Delta \mathbf{p} = \frac{\mathbf{h}}{4\pi}$$

$$\Delta \mathbf{x} \times (\mathbf{m}.\Delta \mathbf{v}) = \frac{\mathbf{h}}{4\pi} \Rightarrow \Delta \mathbf{x} = \frac{\mathbf{h}}{4\pi \mathbf{m}.\Delta \mathbf{v}}$$

$$\Delta \mathbf{v} = \frac{0.001}{100} \times 300 = 3 \times 10^{-3} \, \mathrm{ms}^{-1} \qquad \therefore \qquad \Delta \mathbf{x} = \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 3 \times 10^{-3}} = 1.29 \times 10^{-2} \mathrm{m}.$$

14. Angular momentum of the electron, mvr =
$$\frac{nh}{2\pi}$$
 where n = 5 (given)
∴ Angular momentum = $\frac{5h}{2\pi} - 2.5\frac{h}{\pi}$
15. $_{m}Ni \rightarrow [Ar]3d^{n} s^{2}$
$$\boxed{100} \frac{2}{2\pi} - 2.5\frac{h}{\pi}$$
16. The atoms of unpaired electrons (n) = 2
 $\mu = \sqrt{n(n+2)} = \sqrt{2(2+2)} - \sqrt{5} \approx 2.84$
16. The atoms of the some elements having same atomic number but different mass numbers are called isotopes.
(1) $\frac{5}{2}X - \frac{4h}{2-5}X^{-1}Y(2) \frac{5}{2}X - \frac{3h}{2-5}X^{-1}Y(3) \frac{5}{2}X - \frac{3h}{2-5}X^{-1}Y(3) \frac{5}{2}X - \frac{3h}{2-5}X^{-1}Y(3) \frac{5}{2}X - \frac{3h}{2-5}X^{-1}Y(3) \frac{5}{2}X - \frac{3h}{2-5}X^{-1}Y(4) \frac{5}{2}X^{-1}Y(4) \frac{5}{$

For H-atom $n_1 = 1$, $n_2 = 2$

- **23.** (a) 4 p (b) 4 s (c) 3 d (d) 3 p Acc. to $(n + \ell)$ rule, increasing order of energy (d) < (b) < (c) < (a)
- 25. Z = 37.
 Rb is in fifth period.
 [Kr]5s¹ is its configuration.

So n = 5, l = 0, m = 0, s = $+\frac{1}{2}$ or $-\frac{1}{2}$

26. $(E_n)_H = -13.6 \frac{1^2}{n^2} eV$ $n = 2 \implies E_2 = -3.4 eV$ 27. K.E. = eV

$$\lambda = \frac{h}{\sqrt{2meV}} \quad \Rightarrow \quad \frac{h}{\lambda} = \sqrt{2meV}$$

28. R = 0.529
$$\frac{n^2}{z}$$
 Å = 0.529 $\frac{2^2}{1}$ Å = 2.12 Å

$$\vec{v} = R_{H}Z^{2}\left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right) = R_{H}(1)^{2}\left(\frac{1}{n_{f^{2}}} - \frac{1}{8^{2}}\right)$$
$$\vec{v} = \frac{R_{H}}{n_{f^{2}}} - \frac{R_{H}}{64}$$

Slope for graph of $\overline{v} \& \frac{1}{n_{f^2}}$ is + R_H

29.
$$mvr = \frac{nh}{2\pi}$$

28.

According to wave mechanics, the ground state angular momentum is equal to $\frac{h}{2\pi}$.

30. K.E. of Electron $KE_{max} = hv - hv_0$ $tan \theta = h$ Intercept = $-hv_0$ Frequency of Light \rightarrow

31. E = -13.6
$$\left(\frac{Z^2}{n^2}\right)$$
 = -13.6 $\left(\frac{2^2}{3^2}\right)$ = -6.04 eV

32.
$$hv = hv_0 + \frac{1}{2}mv^2 \qquad \Rightarrow \qquad h(v - v_0) = \frac{1}{2}mv^2 \qquad \Rightarrow \qquad v = \left(\frac{2h(v - v_0)}{m}\right)^{1/2}$$
$$\lambda = \frac{h}{mv} = \frac{h}{m}\frac{\sqrt{m}}{\sqrt{2h(v - v_0)}} = \sqrt{\frac{h}{m(v - v_0)}} \qquad \Rightarrow \qquad \lambda \propto \frac{1}{(v - v_0)^{1/2}}$$
33.
$$\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \qquad \Rightarrow \qquad \frac{1}{\lambda} = 10^7 \left(\frac{1}{(3)^2} - \frac{1}{\infty}\right)$$
$$\lambda = 9 \times 10^{-7} m$$
$$\lambda = 900 \text{ nm}$$
34.
$$2\pi r = n\lambda$$
$$2\pi a_0 \frac{n^2}{Z} = n\lambda \qquad \Rightarrow \qquad 2\pi a_0 \frac{n^2}{Z} = n1.5\pi a_0 \qquad \Rightarrow \qquad \frac{n}{Z} = \frac{1.5}{2} = \frac{3}{4} = 0.75$$