TOPIC : MOLE CONCEPT EXERCISE # 1

SECTION(A)

- **1.** 1 Torr = 1 mm.
- 2. This is the required relation in Centigrade and Fahrenheit scales.
- 4. Atoms of an element are alike.
- 8. The mass of one mole of a substance will remain unchanged.SECTION(B)
- **1.** mole = $\frac{\text{mass}}{\text{at. wt.}} = \frac{46}{23} = 2$ mole.
- 3. We know that, 1 amu = $\frac{1}{12}$ × weight of one ¹²C atom or weight of one ¹²C atom = 12 amu (at. wt. of C = 12 amu). Similarly, as the atomic weight of He is 4 amu, weight of one He atom = 4 amu. Thus, the number of atoms in 100 amu of He = $\frac{100}{4}$ = 25.
- 4. In 18 g, no. of molecules = N_{A}

so in 0.09 g no. of molecules =
$$\frac{N_A}{18} \times 0.09 = \frac{N_A}{2 \times 100} = 3.01 \times 10^{21}$$
.

- 5. mole = $\frac{w}{m} = \frac{1}{m}$ for largest no. of molecule m should be lowest.
- 8. molecule of $H_2SO_4 = \frac{196}{98} = 2$.

Hence : H = 4 atoms, S = 2 atoms, O = 8 atoms.

10. 17 g $NH_3 = N_A$ molecules

11. 1 mole
$$P_4 = N$$
 molecules of $P_4 = 4$ N atoms of P_4 .

12. 560g of Fe No. of moles = $\frac{560 \text{ g}}{56 \text{ g}}$ = 10 mole

70 g of N 14g = 1 mole atom of N 70g = 5 moles of N 20g H = 20 moles of H-atoms.

- **13.** (1) moles of C = 24/12 = 2, So no. of atoms = $2N_A$ (2) moles of Fe = 56/56 = 1, So no. of atoms = N_A (3) moles of Al = 27/27 = 1, So no. of atoms = N_A (4) moles of Fe = 108/108 = 1, So no. of atoms = N_A
- 14. 12 g $_{6}C^{12}$ contains $6N_{A}$ electrons and $6N_{A}$ neutrons.
- **15.** 4 g He = N_A atoms

.

16. Mole of Aluminium = $\frac{54}{27}$ = 2 mole. Al and Mg have same number of atoms (given). Hence same moles also. ∴ Mass of magnesium = 2 × 24 = 48 g.

17. 558.5 g Fe =
$$\frac{558.5}{55.85}$$
 mole Fe = 10 mole Fe = 2×5 mole C = 2× $\frac{60}{12}$ mole C

18.
$$\frac{1}{2} \times 6.023 \times 10^{23} = 3.0125 \times 10^{23}$$

CHEMISTRY FOR NEET

20.	9.108 × 10 ⁻³¹ kg is the wt. of 1 e^- = moles of e^-	
	So 1 kg is the wt. of 1 e ⁻ = $\frac{1}{9.108 \times 10^{-31}} \times \frac{1}{N_{A}} = \frac{1}{9.108 \times 10^{-31} \times 6.023 \times 10^{23}}$	$=\frac{10^8}{9.108\times6.023}$.
21.	Statement of avogadro's hypothesis.	3.100 × 0.023
25.	Mol. wt. of gas is $=\frac{16 \times 22.4}{5.6} = 64 \text{ g}$	
	32 + 16x = 64 x = 2	
SECTI	on(C)	
3.	Number of electrons = $\frac{1.8 \times 10}{18} \times N_A$	
SECTI	on(E)	
2.	$2 \text{ AI} + \frac{3}{2} \text{ O}_2 \longrightarrow \text{Al}_2 \text{ O}_3 \implies \text{weight of AI required} = 2 \times 27 = 54 \text{ g}$	
3.	KCIO_3 $\text{KCI} + \frac{3}{2} \text{O}_2$	
	$\frac{3}{2}$ mole or 33.6 litre O ₂ from 1 mole KClO ₃	
	11.2 litre of O ₂ formed by $\frac{1}{3}$ mole KClO ₃	
SECTI	on(F)	
2.	By applying POAC for C atoms moles of ethylene x 2 = mole of polythene x n x 2 $\frac{100g}{28} \times 2 = \frac{\text{wt. of polethene}}{28 \times n} \times n \times 2 \text{wt. of polyethene} = 100 \text{ g}$	
3.	$\begin{aligned} & CaCl_2 + NaCl = 10 \text{ g} \\ & Let weight of CaCl_2 = x \text{ g} \\ & CaCl \to CaCO_3 \to CaO \\ & 1 \text{ mol} 1 \text{ mol} 1 \text{ mol} \\ & \frac{x}{111} \text{ mol} \frac{x}{111} \text{ mol} \frac{x}{111} \text{ mol} \Rightarrow \qquad \text{Mole of } CaO = \frac{1.62}{56} \therefore \frac{x}{111} = \frac{1.62}{56} \end{aligned}$	
	111 111 111 56 111 56 x = 3.21 g	
	% of CaCl ₂ = $\frac{3.21}{10}$ ×100 = 32.1 %	
SECTI	on(G)	
6.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
SECTI	on(H)	
1.	Molarity = $\frac{6.02 \times 10^{22}}{6.02 \times 10^{23}} \times \frac{1}{1/2} = 0.2$	
3.	Mole = $M \times V$ $100 \times 10^{-3} = 0.8 \times V$ V = 0.125	
SECTI		
1.	$ \begin{array}{rcl} M_1V_1 & + & M_2V_2 & = & M_R \left[V_1 + V_2\right] \\ 1 \times 500 & + & 3 \times 500 = & M_R \left[500 + 500\right] \\ & & M_R = 1 \end{array} $	
		Pag

- 5. Weight of NaOH = 20 gram Weight of solvent = 80 g $M = \frac{20 \times 1000}{40 \times 80} = 6.25 \text{ m}$ $M = \frac{10 \times 1.14 \times 20}{98}$ 7. M = 2.32 $M = \frac{\% \text{ by weight} \times 10 \times d}{Mw_2} = \frac{36.5 \times 10 \times 1.2}{36.5} = 12 \text{ M}$ 8. $m = \frac{36.5 \times 1000}{36.5 \times (100 - 36.5)} = \frac{1000}{63.5} = 15.7 \text{ m}$ 9. 1000 mL solution contain 2 mole of ethanol or 1000 × 1.025 g solution contain 2 mole of ethanol wt. of solvent = $1000 \times 1.025 - 2 \times 46$ $m = \frac{2}{1000 \times 1.025 - 2 \times 46} \times 1000$ $m = \frac{2}{033} \times 1000 = 2.143$ Molarity of HCI = $\frac{\text{Total moles of HCI}}{\text{Total volume}} = \frac{5 \times 2}{2 + 3} = 2 \text{ M}$ 10. SECTION(J)
- **1.** 2(+1) + 2 = 0 \therefore x = -1

2.
$$2(+2) + 2x + 7(-2) = 0$$
 \therefore $x = +5$

3. $SO_{3^{2-}} \Rightarrow 1(x) + 3(-2) = -2 \therefore x = +4$ $S_{2}O_{4^{2-}} \Rightarrow 2(x) + 4(-2) = -2 \therefore x = +3$ $S_{2}O_{6^{2-}} \Rightarrow 2(x) + 6(-2) = -2 \therefore x = +5$

4.
$$\operatorname{NaN}_{3} \Rightarrow 1(+1) + 3(x) = 0 \therefore x = -1/3$$

 $\operatorname{N}_{2}\operatorname{H}_{2} \Rightarrow 2(x) + 2(+1) = 0 \therefore x = -1$
 $\operatorname{NO} \Rightarrow 1(x) + 1(-2) = 0 \therefore x = +2$
 $\operatorname{N}_{2}\operatorname{O}_{5} \Rightarrow 2(x) + 5(-2) = 0 \therefore x = +5$
5. $x + 4(+1) = +1$
 $x = -3$

1. Valency factor ratio is inversely related to molar ratio.

$$(V.f.)HI : (V.f.)HNO_{3} = 1 : 3 = 2 : 6 \therefore Molar ratio = 6 : 2$$
2.2 $MnO_{4}^{-} + C_{2}O_{4}^{2-} + H^{+} \longrightarrow Mn^{2+} + CO_{2} + H_{2}O$
V.f. = 5 V.f. = 2
 \therefore Balanced equation : $2MnO_{4}^{-} + 5C_{2}O_{4}^{2-} + 16H^{+} \longrightarrow 2Mn^{2+} + 10CO_{2} + 8H_{2}O$
3. 1

$$xP_{4} + yHNO_{3} \longrightarrow 4H_{3}PO_{4} + NO_{2} + H_{2}O$$

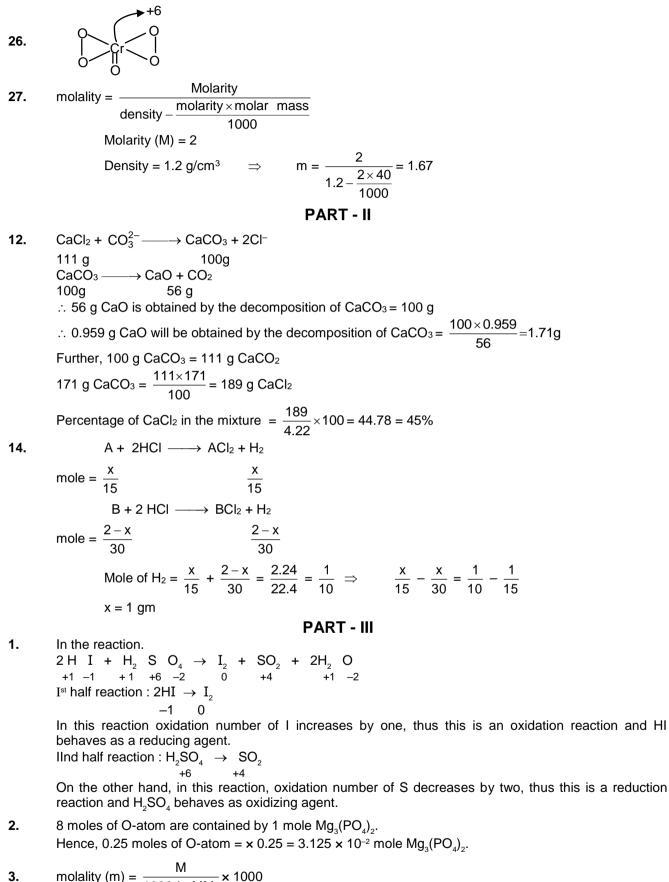
$$0 + 5 + 5 4 \therefore (V.f.)P_{4} : (V.f.) HNO_{3} = 20 : 1$$

$$4 \times 5 = 20$$

∴ x = 1; y = 20

4. Br_2 undergoes disproportionation, i.e. it undergoes both oxidation & reduction.

EXERCISE # 2


					4				
2.	$\frac{F-32}{9} = \frac{C}{5}$				_				
	Let temperature be t, s	ame on two sca	ale ∴	t – 32	$=\frac{9t}{5}$ or	t = - 4	0		
4.	No. of atoms = mole >	: N _a			Ũ				
	$1 = \frac{x}{238} \times N_a \text{ (x is wt.)}$	of uranium)							
	$x = \frac{238}{6} \times 10^{-23}$ x = 3.95 × 10^{-22}								
5.	Let mole % of ²⁶ Mg be	x ∴	(21-	x) 25+2	x (26)	+79 (24	4) = 24.	31	⇒ x = 10%
11.	10 mole NH ₃ have mol 5 mole of H ₂ SO ₄ have Total mole of 'H' atom mole of H ₂ = 20 Hence : number of H ₂	mole of 'H' atom = 40	10 × 3 n = 10		100				
12.	2		A	В					
12.	Atomic mass given weight	A 40 x gram		ь 80 2x gra	m				
	No. of mole	x 40	$\frac{2x}{80}$						
	No. of Atom	$\frac{x}{40} \times N_A$	$\frac{x}{40}$ ×	N _A					
	But according to quest	ion = $\frac{x}{40} \times N_A$	= y						
13.			Ha	:	He	:	0,	:	0,
	Ratio of total no. of mo So ratio of total no. of a	lecules = atoms =	1 2	:	1 1	:	1 2	:	1 3
17.	1 litre Hg metal volume = 1000								
	$d = \frac{m}{v}$ mass	= d × V = 13.6 ×	: 1000						
	No of mole of Hg meta	$I = \frac{13.6 \times 1000}{200}$	= 68 mc	ole					
20.		с н	0						
	mass	24 8	32						
	moles	$\frac{24}{12}$ $\frac{8}{1}$	$\frac{32}{16}$						
	ratio	2 8	2						
	Simple integer ratio Hence empirical formu	1 4	1						
27.	$2\text{KCIO}_3 \longrightarrow 2\text{KCI} + 30$	D ₂							
	$n_{\rm KCIO3} = \frac{36.75}{122.5} = 0.3$		ole-mole	analysis	$\frac{n_{KCIO_3}}{2}$:	$=\frac{n_{O_2}}{3}$			
	or $n_{02} = \frac{3}{2} \times 0.3 =$	= 0.45 or	volum	e of O ₂	= 0.45	5 × 22.4	= 10.08	lit. = 10.	08 dm³

CHEMISTRY FOR NEET

31.	I	$I_2 + 2CI_2 \longrightarrow ICI + ICI_3$
•	Given mass 2	25.4 gram 14.2 gram 0 0 0.1 mole 0.2 mole 0 0
34.	2	$2 \operatorname{SO}_2 + \operatorname{O}_2 \longrightarrow 2 \operatorname{SO}_3$
	Initial mole 1 Final mole ($ \begin{array}{rcl} 10 & 15 & 0\\ (10-2x) & (15-x) & 2x\\ 2x = 8 \end{array} $
	N	x = 4 Mole of SO ₂ left = 10 - 2 × 4 = 2 Mole of O ₂ left = 15 - 4 = 11
35.	H	$H_2SO_4 + Ca(OH)_2 \longrightarrow CaSO_4 + 2H_2O_4$
	Initial mole C	0.5 0.2 0 0 0.5 - 0.2 0 0.2 0.4
41.	$X = \frac{20}{M_1 \times 50}$	
	$Y = \frac{15}{70 \times M_{\odot}}$	
	X = Y	
	$\frac{20}{M_1 \times 50} = \frac{15}{70 \times M_2}$	
	$\frac{28}{15} = \frac{M_1}{M_2}$	2
42.	•	te contains 0.4 g fluoride
	∴ 10 ⁶ g toothpast	te will contain $\frac{0.4}{500} \times 10^6 = 800$ g fluoride \therefore ppm of fluoride = 800
43.	$M_{final} = \frac{M_1V_1 + N_1}{V_1 + V_2 + V_2}$	$\frac{M_2V_2}{V_{water}} ; 0.25 = \frac{0.6 \times 250 + 0.2 \times 750}{250 + 750 + V_{water}} ; \qquad \text{So} \qquad V_{water} = 200 \text{ ml.}$
45.	Moles of HNO ₃ re	equired = $\frac{0.784}{108} = 0.0072 \times \frac{4}{3} = 0.00968.$
	Vol. of HNO ₃ = $\frac{0}{2}$	$\frac{0.00963}{1.15} \times 1000 = 8.41 \text{ ml.}$
46.	Molarity = $\frac{10 \times 1}{9}$	$\frac{1.8 \times 98}{98} = 18 \text{ M}$
48.2	N_2H_4	$\xrightarrow{-10e^-}$ 2N ^{x+}
	(− 2) ∴ 2x − 2 (−2	$2) = 10 \therefore \qquad 2x = 6 \therefore \qquad x = +3.$
49.	0 1	tten as FeO.Fe ₂ O ₃ . oxidation state + 2 , in Fe ₂ O ₃ has oxidation state + 3.
	resultant oxidatio	$\text{on number} = \frac{1 \times 2 + 2 \times 3}{3} = \frac{8}{3}.$
50.	For a completely -1 + 4 + x (-1) = x = +3	balanced equation, net charge on reactant side & product side must be equal. 0
51.×	X- + XO	+ $H^+ \longrightarrow X_1 + H_1O$

51.2 X^- + XO_3^- + $H^+ \longrightarrow X_2 + H_2O$

	V.f. = 1 V.f. = 5 ∴ Molar ratio = 5 : 1 EXERCISE # 3 PART - I
20.	For XY_2 $n = \frac{W}{M}$ $0.1 = \frac{10}{X + 2Y}$
	X + 2Y = 100(1) For $X_{3}Y_{2}$ n = $\frac{W}{M}$ 0.05 = $\frac{9}{3X + 2Y}$
	3X + 2Y 3X + 2Y = 180(2) Form (1) and (2) 2X = 80 X = 40 and $2Y = 100 - 40 = 60 = Y = 30$
21.	Molarity has volume term in its expression and volume is temperature dependent.
22.	(i) 10^{-3} mole water = 6.02×10^{20} molecule H ₂ O (ii) 18 ml H ₂ O = 18 gram = 1 mole = 6.02×10^{23} molecule (iii) At 1 atm & 273 K
	No. of mole of $H_2O = \frac{0.00224}{22.4} = \frac{22.4 \times 10^{-4}}{22.4} = 10^{-4}$ mole= 6.02 x 10 ¹⁹ molecule. (iv) 0.18 gram $H_2O = 0.1$ mole = 6.02 x 10 ²² molecule.
23.	HCOOH + H ₂ C ₂ O ₄ 2.3 gram 4.5 gram HCOOH + H ₂ SO ₄ (Conc.) \longrightarrow CO _(g) + H ₂ O _(ℓ)
	2.3 / 46 1/20 mole 1/20 mole Mass of CO = 1/20 x 28 = 1.4 gram $H_2C_2O_4 + H_2SO_4 (Conc.) \longrightarrow CO_{(g)} + H_2O_{(\ell)} + CO_2 (gas)$
	$4.5 / 90$ $1/20 \text{ mole}$ $1/20 \text{ mole}$ Mass of CO = $1/20 \times 28 = 1.4 \text{ gram}$ KOH absorb CO2 so remaing gas is only CO so total mass of remaing gas is $(1.4 + 1.4) = 2.8 \text{ garm}$.
24.	Formation of ammonia $N_2 + 3H_2 \longrightarrow 2NH_3$ 2 mole of NH_3 is formed by 3 mole of H_2 20 mole of NH_3 is formed by 30 mole of H_2
25.	 Disproportionation reaction : The reaction in which same element/ compound get oxidized and reduced simultaneously. (a) 2Cu⁺ ÷ Cu²⁺ + Cu⁰ (b) 3MnO₄²⁻ 4H⁺ ÷ 2MnO₄⁻ + MnO₂ + 2H₂O (d) option belongs to comproportionation reaction

molality (m) = $\frac{100}{1000d - MM_1} \times 1000$

M = Molarity M_1 = Molecular mass of solute 2.05 $\frac{2.03}{(1000 \times 1.02) - (2.05 \times 60)} \times 1000 = 2.28 \text{ mol kg}^{-1}$ d = density = $2AI(s) + 6HCI(aq) \longrightarrow 2AI^{3+}(aq) + 6CI^{-}(aq) + 3H_{3}(q)$ 4. 3 mole H₂ from 6 mole HCl consumed. ... 1 mole H₂ from 2 mole HCl consumed. 1/2 mole(11.2 Lit) H₂ from 1 mole HCl consumed. 5. 3.6 M solution means 3.6 mole of H₂SO₄ is present in 1000 ml of solution \therefore Mass of 3.6 moles of H₂SO₄ is = 3.6 × 98 g = 352.8 g \therefore Mass of H₂SO₄ in 1000 ml of solution = 352.8 g Given, 29g of H₂ SO₄ is present in 100 g of solution \therefore 352.8 g of H₂SO₄ is present in $\frac{100}{20}$ × 352.8 = 1216 g of solution Now density = $\frac{Mass}{Volume}$ = $\frac{1216}{1000}$ = 1.216 g/mL = 1.22 g/mL $X_{\text{ethyl alcohol}} = \frac{5.2}{5.2 + \frac{1000}{1.5}} = 0.086$ 6. Molality = $\frac{0.01/60}{0.3} = \frac{0.01}{60 \times 0.3}$; d = 1 g/ml = 5.55 x 10⁻⁴ m. 7. Molarity = $\frac{\text{mols of solute}}{\text{volume of sol.}} = \frac{120 \times 1.15}{60 \times 1120} \times 1000 = 2.05 \text{ M}$ 8. $M_{f} = \frac{M_{1}V_{1} + M_{2}V_{2}}{V_{1} + V_{2}}$ 9. $=\frac{0.5\times\frac{3}{4}+2\times\frac{1}{4}}{1}=0.875 \text{ M}$ $\begin{array}{rcl} \mathsf{MnO}_4^- & + & \mathsf{C}_2\mathsf{O}_4^{\ 2-} + \mathsf{H}^+ \longrightarrow \mathsf{Mn}^2 + \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O} \\ \mathsf{vf} = \mathsf{1}(7 - 2) & \mathsf{vf} = \mathsf{2}(3 - 2) \\ & = \mathsf{5} & & = \mathsf{2} \end{array}$ 10. = 5 **Balanced Equation :** $2\text{MnO}_4^- + 5\text{C}_2\text{O}_4^{2-} + 16 \text{ H}^+ \longrightarrow 2\text{Mn}^{2+} + 10 \text{ CO}_2 + 8\text{H}_2\text{O}$ So, x = 2, y = 5 & z = 16. $\frac{n_{O_2}}{n_{N_2}} = \frac{\frac{(m_{O_2})}{(M_{O_2})}}{\frac{(m_{N_2})}{(M_{N_2})}} = \left(\frac{m_{O_2}}{m_{N_2}}\right)\frac{28}{32} = \frac{1}{4} \times \frac{28}{32} = \frac{7}{32}$ 11. 1 g of $C_{8}H_{7}SO_{3}Na = \frac{1}{206}$ mole 12. $\begin{array}{rccc} 2C_8H_7SO_3Na & + & Ca^{2+} & \longrightarrow \\ \hline \frac{1}{206} & \text{mole} & & \frac{1}{412} & \text{mole} \end{array}$ (C₈H₇SO₃)₂Ca + 2Na⁺

13. 75 kg person contain 10% hydrogen i.e. 7.5 kg Hydrogen.
 If all H atom are replaced by ²H, the weight of Hydrogen become twice i.e. it increases by 7.5 kg.

 $M_2CO_3 + 2HCI \longrightarrow MCl_2 + H_2O + CO_2$ 14. $\frac{1}{M_0}$ Mole 0.01186 mol. $M_0 = Molar mass of M_2CO_3$ $\frac{1}{M_0} = 0.01186$ $M_0 = 84.3 \text{ g/mol}$ 1, 2, 3 are non redox. In 4, O₂F₂ is oxidising agent & XeF₄ is reducing agent. 15. 16. Element C : н 6 : Mass ratio 1 6/12 : 1 \Rightarrow = 1 : 2 Mole Ratio So C_XH_Y have empirical formula : CH₂ for Burning a CH₂ unit ; oxygen required is $\frac{3}{2}$ mol $CH_2 + \frac{3}{2}O_2 \longrightarrow CO_2 + H_2O$ Empirical formula is 2 × (CH₂O_{3/2}) \Rightarrow C₂H₄O₃ Ans. (2) 17. $2C_{57}H_{110}O_6(s) + 163O_2(g) \longrightarrow 114CO_2(g) + 110H_2O(\ell)$ 445 g = $\frac{1}{2}$ mole $\Rightarrow \frac{110}{2} \times \frac{1}{2}$ mole = $\frac{110 \times 18}{4}$ g = 495 g. $m = \frac{92}{22} = 4$ 18. Moles of sucrose required = $2 \times 0.1 = 0.2$ wt. = 0.2×342 g = 68.4 g 19. 20. Ca(OH)₂ Na₂SO₄ CaSO₄ 2 OH-+ + \rightarrow 2000 100 mmol 142 = 13.986 ≈ 14 milimol 14 mmol 28 mmol mass of CaSO₄= $\frac{14 \times 136}{1000}$ = 1.9 g $[OH^{-}] = \frac{28}{100} = 0.28 \text{ M}$ 21. Combustion by Dumas method $C_x H_y N_z$ -1 mole on applying POAC we get the formula C₆H₈N₂ 22. $2\text{NaHCO}_3 + \text{H}_2\text{C}_2\text{O}_4 \rightarrow \text{Na}_2\text{C}_2\text{O}_4 + 2\text{CO}_2 + 2\text{H}_2\text{O}_2$ Let mass of NaHCO₃ be x mg $n = \frac{0.25}{25000} = 10^{-5} \qquad \Rightarrow \qquad w = 84 \times 10^{-5} \text{ g} \Rightarrow \qquad \% = \frac{84 \times 10^{-5}}{10^{-2}} \times 100 = 8.4\%$ $n_1 = \frac{8}{40} = 0.2$ 23. $n_2 = \frac{18}{18} = 1$ \Rightarrow mole fraction of NaOH = $\frac{0.2}{1.2} = 0.167$ \Rightarrow molality = $\frac{8}{40} \times \frac{1000}{18} = 11.11$