Exercise-1 Marked Questions can be used as Revision Questions. **PART - I : OBJECTIVE QUESTIONS** Section (A) : Definition of Capacitance **Sol.** (1) $Qt = Q1 + Q2 = 150\mu C$ A-1. $\underline{Q_1} \quad C_1$ 1 $\overline{Q_2} = \overline{C_2} = \overline{2}$ $Q1' = 50\mu C$ ⇒ $Q2' = 100 \mu C$ $25 \mu C$ charge will flow from smaller to bigger sphere . A-2. Sol. (2) Isolated capacitor ⇒ Q = constant sepration d increase C = decrease \Rightarrow Q = CVV = increase ⇒ $\mathrm{C}\mathrm{V}^2$

A-7. Sol.
$$W = \frac{2}{C}$$

 $V_2 = \frac{2U}{C} = \frac{2 \times 0.16}{2 \times 10^{-6}}$
 $V = 400$ Volt

Section (B): Circuits with capacitor and use of KCI and KVL

B-1. Sol. $W = Vf - Vi = \frac{1}{2}CV_f^2 - \frac{1}{2}CV_1^2 = \frac{1}{2}C(402 - 202)$ W = 600 C $W_1 = \frac{1}{2}C(502 - 402) = \frac{900}{2}C$ $W_1 = \frac{900}{2}\cdot\frac{W}{600} = \frac{3}{4}W$ Ans

B-2. Sol. As battery is disconnected, charge remains constant in the work process. Work done = final potential energy – initial potential energy

$$= \frac{Q^{2}}{2C'} - \frac{Q^{2}}{2C^{\circ}}$$

$$= \frac{Q^{2}}{2} \left\{ \frac{1}{C'} - \frac{1}{C^{\circ}} \right\}$$
Where, $Q = CV = \frac{A\varepsilon_{o}V}{d}$
 $C = \frac{A\varepsilon_{o}}{d}$
 $C' = \frac{A\varepsilon_{o}}{2d}$
Now, work done $= \frac{\varepsilon_{o}AV^{2}}{2d}$
Ans. is (4)

B-3. Sol.
$$V = \frac{\frac{V_1C_1 + V_2C_2}{C_1 + C_2}}{\frac{100 \times 10 + 0}{C_1 + C_2}}$$
$$400 = \frac{100 \times 10 + 0}{C_1 + C_2}$$
$$C1 + C2 = 25 \ \mu\text{F}$$
$$C2 = 25 - 10 = 15 \ \mu\text{F}$$

B-4. Sol.
$$C = \frac{\varepsilon_0 A}{d}$$
 $C_1 = \frac{\varepsilon_0 (2A)}{d/2} = 4 \left(\frac{\varepsilon_0 A}{d}\right) = 4C = 48 \,\mu\text{F}$

B-5. Sol.
$$V = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2} = \frac{(900 + 2500)\mu F \text{ volt}}{(3+5)\mu F}$$

 $= \frac{3400 \text{Volt}}{8}$ = 455 Volt

Section (C) : Combination of capacitors

C-1. Sol.

C-2. Sol.

C-3.ऄ

Sol. Equilent figure

C-4.

Section (D): Equation of charging and discharging

D-1. Sol. (i) (2) at t0 ;
$$q = q0 = 60 \ \mu C$$

(ii) (3) $q = q0e - t/RC = 60 \times 10 - 6 e^{-100 \times 10^{-6} / 10 \times 10^{-6} \times 10} = \frac{60}{e} \ \mu C = 22 \ \mu C.$

(3)

(iii) (1)
$$q = q0e-t/RC = 60 \times 10-6 e^{-1 \times 10^{-3} / 10 \times 10^{-6} \times 10} = \frac{60}{e^{10}} \mu C = 0.003 \mu C.$$

D-2.ゐ

Sol.

$$q = \frac{q_1}{2} = \frac{4 \times 10^{-6} \times 6}{2} \left(1 - e^{-\frac{0.2 \times 10^{-3}}{4 \times 10^{-6} \times 25}} \right)$$
$$q = 12(1 - e^{-2})\mu C$$
$$= 12 \frac{(e^2 - 1)}{e^2} \mu C = 10.37 \ \mu C.$$

D-4.

Sol.	(3)	t1 > t2	
		R1C1 > R2C2	for same qmax
		q01 = q01	= E1C1 = E2C2
	lf	R1 > R2 , C1 = C2 & E1 = E2 .	

$$\frac{q}{c} = \frac{CE(1 - e^{-t/RC})}{C}$$
= E (1 - e - t/RC)
9 = 12 (1 - e - t/RC)
9 = 12 - 12e - t/10
3 = 12e - t/10 ; e - t/10 = $\frac{1}{4}$
 $\frac{t}{10}$ = $\ell n 4 = 2\ell n 2 = 2 \times .693$
t = 2 × 6.93 = 13.86

Section (E) : Capacitor with dielectric

E-1. Sol. $C' = \frac{C}{d/2} = \frac{2 C}{d} = 2C.$ E-2. Sol.

Here, Potential difference on the capacitor will depend on emf of battery i.e., 4V (3)

E-3. Sol. Charge or battery = Q = CV = 4 CNow charge remains same, as battery is disconnected new capacitance = C' = KC = 8C

C'V' = Q V' =
$$\frac{Q}{C} = \frac{4C}{8C} = \frac{1}{2}V$$
 (1)
E-4.A Sol. $U0 = \frac{1}{2}CV^2$ Now energy $= U' = \frac{1}{2}C'V^2$
C' = CK
 $U' = \frac{1}{2}CV^2K = UoK$ Ans. is (1)

E-5.ゐ Sol. Now, charge remains same on the plates. Q^2 $U0 = \overline{2C}$ (given) Now energy = U' = $\frac{Q^2}{2C'} = \frac{Q^2}{2CK} = \frac{U_o}{K}$ (3)

Marked Questions may have for Revision Questions.

PART - I : OBJECTIVE QUESTIONS

Ans

1.🖎

Sol. Immediately after the key is closed, capacitor be have like a conductory wire, therefore.

 R_1 After a long time interval, capacitor be have like a open circuit. Therefore.

i =

Е

2._

Sol.

3. Sol. Csmall = $4\pi\epsilon 0r$ CBig = $4\pi\epsilon 0R$ $R = n^{1/3} r = 2r$ CBig = 2 Csmall

Sol. Charge on capacitor = CV = capacitance × (voltage across it) In steady state, there will be no current through capacitor.

Total potential energy =
$$\frac{Q_1^2}{2C_1} + \frac{Q_2^2}{2C_2} = \frac{C^2V^2}{2C} + \frac{4C^2V^2}{2\times 2C} = \frac{3CV^2}{2}$$

11.

Sol. Charge on each capacitor will be same. In steady state current through capacitor will be zero

current in steady state = i = 5 = 2 amp potential across AB = 4 V on each plate Q = C V = 3 × 4 = 12 μ C

12.

13.

Sol. If S1 is closed and S2 is open then, condenser C is fully charged at potential V.

14.🖎

 $V_{C_2} = V_{C_2} = V$ (A) Sol. C1 = C C2 = KC $q1 = {C_1 V_{C_1} = CV}$ $q2 = C2^{V_{C_2}} = KCV$ q1 < q2. 15. Sol. С R З Q^2 energy stored in capacitor = $\overline{2C}$ Rate at which energy is stored = $\frac{d}{dt} \frac{Q^2}{2C} = \frac{Q}{C} \frac{dQ}{dt} = \frac{Qi}{C}$ $Q = \varepsilon C \{1 - e^{-t/RC}\}$ $\epsilon e^{-t/RC}$ R i = ϵ^2 ϵ^2 Rate of energy storage = $\frac{e}{R}$ {1 - $e^{-t/RC}$ } {e^{-t/RC}} = $\frac{e}{R}$ {e^{-t/RC} - $e^{-2t/RC}$ }(1) It will be maximum when, $e^{-t/RC} - e^{-2tRC}$ will be maximum let y (t) = $e^{-t/RC} - e^{-2t/RC}$ for maximum, y'(t) = 0 $y'(t) = \frac{-e^{-t/RC}}{RC} + \frac{2e^{-2t/RC}}{RC}$ $e^{-t/RC} = \frac{1}{2}$

putting it back in eq. (1)

(i) maximum rate of energy storage
$$= \frac{\varepsilon^{2}}{R} \left\{ \frac{1}{2} - \left(\frac{1}{2}\right)^{2} \right\} = \frac{\varepsilon^{2}}{4R}$$
 Ans. is (1)
(ii) This will occur when, $e^{-t/RC} = \frac{1}{2}$
 $\frac{-t}{RC} = \ln \frac{1}{2}$
 $t = RC \ln 2$ Ans. is (3)

16. Sol.

All given charge of A1 goes to A2

Therefore $C = 4\pi \in_0 r_2$

17. Sol.
$$x = Vt$$
, \Rightarrow $d \propto t$ $C = \frac{\underset{0}{\leftarrow_{0}} A}{Vt} \frac{dc}{dt} = -\frac{\underset{0}{\leftarrow_{0}} A}{V} \frac{1}{t^{2}}$ $\frac{dc}{dt} \propto \frac{1}{d^{2}}$ Ans

18.

Sol. Electric field in the capacitor is same at every where which is equal to V/d. so that force at C and B point is same.

Electric field out side the capacitor is zero so that force at A point is zero.

19.🖎

Sol. A long time after closing the switch, system comes in steady state and no current flow through capacitor. Circuit : -

 $\frac{E}{R_1 + R_2}$

<u>1</u>

energy stored in battery = 2 CV^2 =

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : ASSERTION/REASONING

1. Sol. If potential difference across an isolated charged capacitor is doubled by doubling separation $\frac{Q^2}{2Q}$

between plates, the energy stored is capacitor from $U = \overline{2C}$ becomes double of previous value. Hence statement 1 is false.

Sol. Let the electric field in region I and II be E1 and E2. The potential difference across left half capacitor and right half capacitor is same. Therefore E1d = E2d where d = inter planar gap.
 ∴ E1 = E2
 Hence statement 1 is false, statement 2 is correct by definition.

3. Sol. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-

Section (B) : Match the column

1.#

Ans. (1) p (2) r (3) q (4) p The initial charge on capacitor = $CV_i = 2 \times 1 \ \mu C = 2 \ \mu C$ The final charge on capacitor = $CV_f = 4 \times 1 \ \mu C = 4 \ \mu C$ \therefore Net charge crossing the cell of emf 4V is $q_f - q_i = 4 - 2 = 2 \ \mu C$ The magnitude of work done by cell of emf 4V is $W = (q_f - q_i) 4 = 8 \ \mu J$ The gain in potential energy of capacitor is $\Delta U = \frac{1}{2}C(V_f^2 - V_i^2) = \frac{1}{2} 1 \times [4_2 - 2_2] \ \mu J = 6 \ \mu J$ Net heat produced in circuit is $\Delta H = W - \Delta U = 8 - 6 = 2 \ \mu J$

Section (C) : One or More Than One Options Correct

1.

Sol. A long time after closing the switch, system comes in steady state and no current flow through capacitor. Circuit : -

2*. Sol. Magnitude of charge on the charged capacitor decreases and total charge is conserved. At $V_1 = V_2 \Rightarrow$ no further flow of charge occurs i.e. condition of steady state. In charge flow energy is consumed in heat.

3.

Ans. (A,C)

Sol. qmax = q01 = q02 = Both capacitors are charged up to the same magnitude of charge t2 > t1R2C2 > R1C1

 $\begin{array}{l} q01 = C1V1 = q02 = C2 \ V2 \\ C1 \neq C2 \\ \text{So blfy}, \qquad V1 \neq V2 \ . \end{array}$

4.* Sol. During decay of charge in RC circuit $I = I0e^{-t/RC}$

$$I_0 = \frac{q_0}{RC}$$

Since potential difference between the plates is same initially therefore I same in both the cases at t = 0 and is equal to

$$I = \frac{q_0}{RC} = \frac{V}{R}$$

Also $q = q0e^{-t/RC}$. When $q = \frac{q_0}{2}$ then $\frac{q_0}{2} = q0 e^{-t/RC}$ $\Rightarrow e^{+t/RC} = 2$. $\frac{t}{RC} = \ell n2$

- \Rightarrow t = RC loge 2
- ⇒ t \propto C. Therefore time taken for the first capacitor (1µF) for discharging 50% of Initial charge will be less.

(B), (D) are the correct options.

5*. Ans. (A,B,C)

V E = d Sol. remains constant 1 $U = \overline{2} KCV^2 =$ KU ⇒ Increase 6*. Ans. (A,C,D) Battery connected V = constantSol. 1 $U' = \overline{2} KCV^2 = KU \implies$ Increase by K-times V E = d = constant Q^2 C^2V^2 $K^2C^2V^2$ $F = \frac{2 \in A}{2 \in A}$ $\mathsf{F} = \overline{2 \in_0 \mathsf{A}}$ ⇒ \Rightarrow F' = $2 \in_0 A$ = K²F Increase by K²-times ⇒ $Q = CV \Rightarrow Q' = KCV = KQ \Rightarrow$ Increase by K-times.

Exercise-3

Marked Questions may have for Revision Questions.

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1. Energy stored by any system of capacitors is Sol. 1 = 2 Cnet V² where V is source voltage Thus, n capacitors are connected in parallel, Therefore, Cnet = nC1 \therefore Enet = $\frac{1}{2}$ nCV² 2. Sol. Capacitance of spherical conductor = 4π∈0a where a is radius of conductor Therefore , C = $\frac{1}{9 \times 10^9} = \frac{1}{9} \times 10^{-9}$ = 0.11 × 10⁻⁹ F = 1.1× 10⁻¹⁰ F Ans. $W = \frac{1}{2} \frac{1}{CV_2} = \frac{1}{2} \frac{q^2}{C}$ Sol. 3. $= \frac{1}{2} \times \frac{(8 \times 10^{-18})^2}{100 \times 10^{-6}} = \frac{1}{2} \times \frac{64 \times 10^{-36}}{100 \times 10^{-6}}$ = 32 × 10-32J $E = (1/2) CV^2$ 4. Sol. (i) The energy stored in capacitor is lost in form of heat energy. $H = ms \Delta T$ (ii) From Eq. (i) and (ii), we have $ms\Delta T = (1/2) CV^2$ 2ms∆T С <u>5.</u> Sol. Capacitance between any two adjacent plates is 'C' ╢ B

n Capacitor consists of n plates, then there are (n -1) combinations joined in parallel. CAB = (n - 1)C*:*.

Work done by battery = (CV) $V = CV^2$ 6.🖎 Sol.

Ā

Energy stored in capacitor = 2 CV^2

 $\frac{\text{Energy stored in capacitor}}{\text{Work done by battery}} = \frac{\frac{1}{2}\text{CV}^2}{\text{CV}^2} = \frac{1}{2}$ Correct choice is (4)

7. Sol. No change in the energy of the system. Hence, not net work done by the system is zero. Correct choice is (4)

8.A Sol.
$$C' = \frac{A_{c_0}}{3} + \frac{A_{c_0}}{6} = \frac{A_{c_0}}{9} + \frac{2d}{18} = \frac{18A_{c_0}}{4d}$$

 $C = 9 \text{ PF}$
 $C' = 40.5 \text{ PF}$
Correct choice is (3).
9.A Ans. (3)
9.A Ans. (3)
Sol. $U_0 = \frac{q_0^2}{2C}$ $U = \frac{q_0^2 e^{-2t_1/\tau}}{2C} = \frac{U_0}{2} = \frac{q_0^2}{4C} \Rightarrow e^{-2t_1/\tau} = \frac{1}{2}$
 $t_1 = \frac{\tau}{2} \ln 2$ (1)
and $O = q = q_0 e^{-t_2/\tau}$
 $\frac{q_0}{4} = q_0 e^{-t_2/\tau}$,
 $e^{-t_2/\tau} = \frac{1}{4}$
 $t_2 = 2\tau \ln 2$ (2)
 $\frac{t_1}{t_2} = \frac{1}{4}$
10.A Ans. (3)

Sol.

⇒
$$R = \frac{5}{(0.4) \times 2 \times 10^{-6}} = R = 2.7 \times 10^{6}$$
 Ans.

11. Sol. Time constant for parallel combination = 2RC

Time constant for series combination = 2In first case :

$$V = V_0 e^{-\frac{t_1}{2RC}} = \frac{V_0}{2}$$

In second case :

From (i) & (ii),
$$\frac{t_1}{2RC} = \frac{t_2}{(RC/2)} \Rightarrow t_2 = \frac{t_1}{4} = \frac{10}{4} = 2.5 \text{ sec.}$$

.....(i)

RC

12.🖎

(4) Ans. $Q = c \epsilon 0 e^{-t/cR}$ Sol. $4\epsilon = 4\epsilon 0 \ \epsilon^{-t/\tau}$ $\epsilon = \epsilon 0 \ \epsilon^{-t/\tau}$ When $t = 0 \implies \epsilon 0 = 25$ $\varepsilon = \varepsilon 0 = 25$ when tc t = $200 \Rightarrow$ $\epsilon = 5$ 200 5 = 25 ^e ^τ 200 $\ln 5 = \tau$ 200 200 $\tau = \overline{\ln 5} = \overline{\ln 10 - \ln 2}$ 200 _ {n10-0.693 Alternative : Time constant is the time in which 63% discharging is completed. So remaining charge = $0.37 \times 25 = 9.25 \text{ V}$ Which time in 100 < t < 150 sec. Alternative :

13. Sol.
$$q = CV (1 - e^{t/\tau})$$

at ij $t = 2\tau$
 $q = CV (1 - e^{-2})$
Ans (3)

14. Sol.

 \Rightarrow

For potential to be made zero, after connection

120C1 = 200 C2

3C1 = 5C2

Ans. (2)

 \therefore qb + qc = 0

when switch is closed, the circuit is as following

In steady state, the current in the resistances is 1 amp. Potential difference across $3\mu F$

= potential difference across $3\Omega = 3$ volt.

Similarly p.d. across 6 μ F is 6 volt

 \therefore charge on plate b = - 9 μ C

and charge on plate $c = +36 \mu C$

: charge on plates b and c = +36 – 9 = +27 μ C.

The change in charges on plates b and c goes through wire from Y to X.

- 15. Ans. (1)
- **Sol.** Electric field inside dielectric $\frac{\sigma}{K\epsilon_0} = 3 \times 10^4$ $\Rightarrow \sigma = 2.2 \times 8.85 \times 10^{-12} \times 3 \times 10^4$ $= 6 \times 10^{-7} \text{ C/m}^2$

16.🖎

Ans. (2) Sol.

Ans. Sol. (4)

potential difference across $AB = Ir_2$ Er_2 $= r + r_2$ charge on capacitor = $Q = C(\Delta V)_{AB}$ CEr_2 $Q = r + r_2$

PART - II : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

* Marked Questions may have more than one correct option.

1. Ans. С Sol. ΔU = decrease in potential energy $= U_i - U_f$ $\left(V_{4}+V_{2}\right)^{2}$. 4

$$=\frac{1}{2}C(V_{12}+V_{22})-\frac{1}{2}(2C)\left(\frac{V_{1}+V_{2}}{2}\right)=\frac{1}{4}C(V_{1}-V_{2})_{2}$$

2.

 $logi = \frac{-t}{RC} + log \left(\frac{E}{R}\right); Compare with \quad y = mx + c$ Sol. $|\mathbf{m}| = \frac{\mathbf{I}}{\mathbf{RC}}; \mathbf{c} = \log\left(\frac{\mathbf{E}}{\mathbf{R}}\right)$ creases, $|\mathbf{m}| = 1$ ⇒

as R increases, |m| and C both decreases so (B) is the correct option.

3. 0-1

Sol. (B)
$$vC + vR = 12$$

 $vC + \frac{v_C}{3} = 1$

$$vC + \frac{v_{C}}{3} = 12 \implies vC = 9 \text{ volt}$$

$$vC = \frac{q}{C} = \frac{CE(1 - e^{-t/RC})}{C}$$

$$= E (1 - e^{-t/RC})$$

$$9 = 12 (1 - e^{-t/4x2.5)}$$

$$9 = 12 - 12e^{-t/10}$$

$$3 = 12e^{-t/10} ; e^{-t/10} = \frac{1}{4}$$

$$3 = 12e^{-t/10} ; e^{-t/10} = 4$$

$$\frac{t}{10} = \ell n 4 = 2\ell n 2 = 2 \times .693$$

$$t = 2 \times 6.93 = 13.86$$

Ans.

(C)

Sol. When switch is opened, the circuit is as following since the capacitors are in series plates b and c will have equal and opposite charges

 \therefore qb + qc = 0 ; also charge on each capacitor = 18μ C

when switch is closed, the circuit is as following

In steady state, the current in the resistances is 1 amp. Potential difference across 3μ F = potential difference across 3Ω = 3 volt.

Similarly p.d. across 6 μ F is 6 volt \therefore charge on plate b = -9 μ C and charge on plate c = + 36 μ C

∴ charge on plates b and c = +36 – 9 = +27 μ C.

The change in charges on plates b and c goes through wire from Y to X. and $\Delta q~$ = $27 \mu C$

5.№

Sol. Time constant $= \tau = RC$ Let thickness of dielectric filled is x at time t.

$$C = \frac{\frac{C_1 C_2}{C_1 + C_2}}{C_1 + C_2} = \frac{\frac{\left(\frac{A\varepsilon_0}{d - x}\right) \left(\frac{KA\varepsilon_0}{x}\right)}{\frac{A\varepsilon_0}{d - x} + \frac{A\varepsilon_0}{x}}$$

6.🖎

Ans. (D)

 $q3 = \frac{C_3}{C_2 + C_3} .Q$ $q3 = \frac{3}{3+2} \times 80 = \frac{3}{5} \times 80$ $= 48 \ \mu C$ Ans. Sol.

8.≧

Ans. (A), (D)
Sol.
$$C = \frac{\frac{K\epsilon_0 A}{3d} + \frac{2\epsilon_0 A}{3d}}{\frac{2}{3d}}$$

$$C_1 = \frac{\frac{K\epsilon_0 A}{3d}}{\frac{2}{3d}}$$

$$C_1 = \frac{2 + K}{3d}$$

$$C_1 = \frac{2 + K}{\frac{2}{3d}}$$

$$E_1 = E_2 = \frac{V}{d}$$

$$E_1 = E_2 = \frac{V}{d}$$

$$E_1 = E_2 = \frac{1}{2}$$
Ans. (D)

$$Q_1 = C_1 V = \frac{\frac{K\epsilon_0 A}{3d} V}{\frac{2\epsilon_0 A}{3d} V}$$

$$Q_2 = C_2 V = \frac{\frac{2\epsilon_0 A}{3d} V}{\frac{2}{3d}}$$

$$\frac{Q_1}{Q_2} = \frac{K}{2}$$

Additional Problems For Self Practice (APSP)

PART-I: PRACTICE TEST PAPER

1.

Sol. Just after switch closing

current through resistor PQ is zero just after closing the switch.

2.

Sol. Theoritical capacitance = ∞ , because d become zero

3.

4.

5.

Potential difference = V0 Capacitance = KC [K is the dielectric constant of Slab K > 1] New charge = KC V0

Ans

Q0 = CV0

Capacitance = C

Potential Energy =
$$\frac{1}{2}$$
 CV0₂ New potential energy = $\frac{1}{2}$ KC V0₂
Correct options are (4).

6.

Sol.
$$C = 2\mu F$$

 $C_{eq} = C + \frac{C}{2} + \frac{C}{4} + \frac{C}{8} + \frac{C}{16} +$
 $C_{eq} = C \left(\frac{1}{1-1/2}\right) = 2 \left(\frac{1}{1/2}\right)_{= 4\mu F}$
Charge on first row capacitor is $q_1 = 2 \times 10\mu C = 20\mu C$
Charge on second row capacitor is $q_2 = 1 \times 10\mu C = 5\mu C$
Therefore charge on the capacitor is $= \frac{1}{2} \times 10\mu C = 5\mu C$
Therefore charge on the capacitor is $= \frac{1}{2} C_{eq} V^2 = \frac{1}{2} \times 4 \times 10^{-6} \times (10)^2 = 0.2 \text{ mJ}$ Ans
 $C = 2\mu F$
 $C_{eq} = C + \frac{C}{2} + \frac{C}{4} + \frac{C}{8} + \frac{C}{16} +$
 $C_{eq} = C \left(\frac{1}{1-1/2}\right) = 2 \left(\frac{1}{1/2}\right)_{= 4\mu F}$ Ans
7. Sol. $C = \frac{c_0 A}{d}$, $C' = \frac{K}{d} = \frac{Q}{d}$ $Q = CV = \frac{c_0 KAV}{d}$
 $Q = CV = C_1V_1 \implies V_1 = \frac{V}{K} \qquad E_{e} = \frac{V_1}{d} = \frac{V}{Kd}$ Ans
 $W = U_1 - U_1 = \frac{1}{2}CV^2 - \frac{1}{2}C_1V_1^2 = \frac{1}{2} \frac{c_0 AV^2}{d^2} - \frac{1}{2}\frac{K}{c_0}A \left(\frac{V}{K}\right)^2 = \frac{c_0 AV^2}{2d} \left(1 - \frac{1}{K}\right)$
8.
Sol. $3\mu F = \frac{1}{120V} \frac{150V + 2\mu F}{150V + 2\mu F}$ $3\mu F = \frac{1.5\mu F}{4(360-q)} + \frac{(300-q)\mu C}{4}$

(360-q)

.....(i)

Å

360μC Å

VA +

 $\frac{(300-q)}{2} - \frac{q}{1.5} + \frac{360-q}{3}$

Charge on 1.5μ F capacitor is = 150μ C

by solve this equation we get \Rightarrow

Sol.
$$\frac{1}{C_{eq}} = \frac{1}{20} + \frac{1}{30} + \frac{1}{15} = \frac{3+2+4}{60}$$
 $C_{eq} = \frac{60}{9} = \frac{20}{3} \mu F$

Charge on 2μ F capacitor is = $300 - 180 = 120\mu$ C Therefore charge flows through A from left to right .

= VA

 $q = 180 \mu C$

9.

Total charge in this series combination is $=\frac{20}{3} \times 90$ $q = 600\mu C$ Potential difference between the plate of C_1 is $=\frac{q}{C_1}$ $\frac{600}{20} = 30V$ Potential difference between the plate of C_2 is $\frac{q}{C_2} = \frac{600}{30} \frac{20V}{20V}$ Potential difference between the plate of C_3 is $=\frac{q}{C_3} = \frac{600}{15} = 40V$

10.

Sol.

 $I = \frac{V_0}{R} e^{-t/RC}$ $\ln I = \ln \frac{V_0}{R} - \frac{t}{RC}$

In both cases log of initial current is same that means $\frac{V_0}{R}$ is constant. To keep $\frac{V_0}{R}$ constant, both V₀ and R have to be changed whereas it is stated that only one parameter out of V₀, R and C is changed. Therefore only C has been changed and to match the straight line in the graph, it is decreased.

11. Sol. τ is RC i.e. time constant. After one time constant, capacitor looses 0.67 part of its initial charge.

+Q __Q ___ q

- 12. Sol. Initially, $U = \frac{q^2}{2C} = \frac{q^2}{2KC_0}$ (i) When di-electric is pulled out, then $U + 3U = \frac{q^2}{2C_0}$ $4U = \frac{q^2}{2C_0}$ (ii) Then, (ii) & (i) \Rightarrow K = 4.
- 13.

:.

 $\frac{1}{2} = x$

Sol. The two plates acts as a dipole

Force on charge q ; F = Eq $= \left(\frac{2kQd}{\ell^3}\right) \cdot q = \frac{Qqd}{2\pi\epsilon_0 \ell^3}.$

14. Sol.

so E =
$$\frac{x}{2\epsilon_0 A} + \frac{x}{2\epsilon_0 A}$$

V = Ed = $\frac{3}{2} \frac{Qd}{\epsilon_0 A} = \frac{3Q}{2C}$

16.

Sol. $\frac{1}{C_{eff}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{d_1}{\varepsilon_0 A} + \frac{d_2}{\varepsilon_0 A} = \frac{(d_1 + d_2)}{\varepsilon_0 A}$ Since $(d_1 + d_2)$ does not change C_{eff} remains unchanged.

17. Sol. Energy = $\frac{(charge)^2}{2capacitance}$ Capacitance = $\frac{(charge)^2}{(2)$ Energy Dimensional formula = $\frac{Q^2}{m^1L^2T^{-2}}$ = m₋₁ L₋₂ T₂ Q₂

18.

19.

20.

Sol. The given circuit is :

21.

Sol. Ceff = $\frac{\frac{\varepsilon_0 A}{d}}{\frac{1}{2}}$ since effective capacitance between plates A and E is zero. $\therefore U = \frac{1}{2} \frac{\varepsilon_0 A}{CV_2} = \frac{\frac{\varepsilon_0 A}{2d}}{V_2}$

22.

Sol. P C ⊣⊢⊂ В A • B в ΗC в C A 11c Ceq = 5 Get **11 c**ε Charge flow = 5 Ceq ε = (3) V = $\frac{Q_1 + Q_2}{C_1 + C_2} = 0$ Sol. 23. 30µ –30μ В B –30µ 30μ Đ ĉ С Final potential difference = zero Final charge = Zero Charge flow 30 µc from A to D

24. Sol.

25.

Sol. (1)

 \therefore *Qthrough switch* dqath Is xqtjus okys = 12 μC

26.

Sol. $V_{i} = \frac{1}{2} \left(\frac{C}{2} \right)_{V_{2}} = \frac{CV^{2}}{4}$ $Q_{i} = \frac{CV}{2}$ $Q_{f} = \frac{2CV}{3}$ $WB = V(Qf - Qi) = \frac{CV^{2}}{6}$ $V_{f} = \frac{1}{2} \left(\frac{2C}{3} \right)_{V_{2}} = \frac{CV^{2}}{3}$ $V_{i} + \omega B = Vf + H \Rightarrow \frac{CV^{2}}{4} + \frac{CV^{2}}{6} - \frac{CV^{2}}{3} = \frac{CV^{2}}{12}$

27.

Sol. Since current is going out of the body,

$$i = \frac{dq}{dt}$$
Given fn;k gS
$$\frac{di}{dt} = q$$

$$q = \frac{-d^2q}{dt^2} \Rightarrow q + \frac{d^2q}{dt^2} = 0$$
This is differential equation of SHM with
$$r = \frac{2\pi}{\omega} = 2\pi \quad \text{sec}$$

The min. time for the charge to become zero = T/4 = $\frac{\pi}{2}$ sec. Let ekuk q = $Q\cos\omega t$

When tc q =
$$\frac{Q}{2}$$
; $\cos \omega t = \frac{1}{2}$; $\sin \omega t = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$
i = $Q\omega \frac{\sqrt{3}}{2} = \frac{Q\sqrt{3}}{2}$

PART - II : PRACTICE QUESTIONS

1.

2.

Sol. Potential in conductor is constant Potential in dielectric decreases at slower rate.

3.

Sol. Potential difference across 'C1' $V_{1} = \frac{C_{2}V}{C_{1}+C_{2}} = \frac{V}{1+C_{1}/C_{2}}$ When dielectric is inserted C2 will increase.

4.

Sol.

5.

Sol. In steady state no current flows through capacitor. The potential difference across capacitor and resistor of resistance R2 is same.

charge on capacitor = CV = C ×
$$\frac{R_2}{r+R_2}$$
 × 3 = 1µF × $\frac{1}{5+1}$ × 3 = 2µC.

6.

:.

Sol. Energy_{Released} in xy joint = (C.V).V - $\frac{1}{2}CV^2 = \frac{1}{2}CV^2$ Energy_{Released} in xz joint = (2C.V).V - $\frac{1}{2}CV^2 = \frac{3}{2}CV^2$

Total heat_{Released} = $2CV^2$ which is 4 times energy store.

8.

Sol. Let the capacitance before insertion of dielectric be C and the resistance be R.

 $\begin{array}{l} \therefore \ q = q_0 \ e^{-\frac{t}{RC}} & \text{and} & i = \frac{q/C}{R} = \frac{q}{RC} \\ \hline & \therefore \ \text{Just after insertion of dielectric the capacitance increases.} \\ \hline & \therefore \ \text{The charge just after insertion of dielectric remains same, but the current decreases.} \\ \Rightarrow \ (1) \ \text{and} \ (2) \ \text{are false} \\ \hline & \frac{q^2}{2C} \\ \hline & \text{The energy stored in capacitor is } \ \frac{q^2}{2C} \\ \hline & \text{The time constant is RC and hence increases.} \\ \Rightarrow \ (4) \ \text{is true} \end{array}$

9.

Sol. During the charging process, charge does not jump or cross the area between the plates.

10.

Sol.
$$U = \frac{\frac{1}{2}C_{eq}V^{2}}{C1 = \frac{\frac{k\epsilon_{0}A}{d/2}}{d/2}} = \frac{\frac{2\epsilon_{0}A}{(d/2)}}{\frac{2}{(d/2)}}$$
$$Ceq = \frac{\frac{C_{1}C_{2}}{C_{1}+C_{2}}}{C2 = \frac{\epsilon_{0}A}{d/2}}; Ceq = \frac{\frac{2}{\alpha_{0}A}}{\frac{2}{\alpha_{0}A}} = \frac{\frac{4}{3}\frac{\epsilon_{0}A}{d}}{\frac{2}{\alpha_{0}A}}$$
$$U = \frac{\frac{1}{2}\left(\frac{4}{3}\frac{\epsilon_{0}A}{d}\right)V^{2}}{\frac{2}{3}\left(\frac{\epsilon_{0}A}{d}\right)V^{2}}$$

11.

Sol. (2) Method I Force between plates ε₀Α 0 $\epsilon_0 AV^2$ 2Aε₀ $2A\epsilon_0$ $2x^2$ F = = where x is separation between plates dW = F dx $\underline{\epsilon_0} AV^2$ 2d AV^2 CV^2 2x 4 = 200 μJ W = d4x Method II $U_{\ell} + WB + Wext = Uf + loss$ Process is slow so energy loss is zero work done by battery = WB = QE Q = Qf - Qi = 20 - 40 = -20 $WB = -20 \times 20$ 1 1 $\overline{2}$ 2 x 20₂ - 20 x 20 + Wext = $\overline{2}$ 1 x 20₂ + 0 Wext = $200 \mu J$

12.

Sol. Force on metal plate S due to electrostatic attraction by plate T is F = Force exerted on plate S by spring is = mg

In equilibrium
$$\Rightarrow \frac{Q^2}{2A \in_0} = mg \text{ or } Q = \sqrt{2mgA \in_0}$$

Comprehension #1

In the arrangement of the capacitors shown in the figure, each C_1 capacitor has capacitance of $3\mu F$ and each C_2 capacitor has capacitance of $2\mu F$ then,

Ans

Comprehension : 2

A capacitor of capacitance C, a resistor of resistance R and a battery of emf ε are connected in series at t = 0. What is the maximum value of

