Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks : 120

Important Instructions :

- 1. The test is of **1 hour** duration and max. marks 120.
- 2. The test consists **30** questions, **4 marks** each.
- **3.** Only one choice is correct **1 mark** will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 4. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.
- 1. When two fair coins are tossed, probability of getting one head and one tail is p, probability that it shows

	<u>p</u>								
	a tail in 1st toss and a h	ead in 2nd is q then the v	alue of ^q is						
	1	1							
	(1) 2	(2) 3	(3) 2	(4) 3					
		4							
2.	If odds against an even	it is ¹¹ then the probabi	lity of occurence of that e	event is ?					
	4	11	11	4					
	(1) 11	(2) 12	(3) 15	(4) 15					
3.	A fair die is rolled . The	probability that it shows	either a perfect square of	or an even number is ?					
	1	2	5	1					
	(1) 3	(2) 3	(3) 6	(4) 2					
			1	1					
4.	Consider two independ	ent event A and B such	that $P(A) = \overline{4}$ and $P(B)$	$=$ ³ , then the value of P(A' \cap B')					
	is		_						
	<u> 1 </u>	<u>11</u>	5	1					
	(1) 12	(2) 12	(3) 12	(4) 2					
5.	Gargy speaks the truth percentage of cases the	n in 60% cases while A ey are likely to contradic	shmeet speaks the truth t each other in stating the	n in 90% of the cases. In what e same fact ?					
	(1) 60%	(2) 21%	(3) 42%	(4) 30%					
				1					
6.	The probability that pol	ice inspector Mark will ca 1	atch the thief in a day is	⁴ and the probability that he will 1					
	catch a robber in a day then the probability that	is $\overline{5}$ and the probability t He will catch at least 1	that he will catch both a mischief is ?	thief and robber in a day is $\overline{15}$					

Max. Time : 1 Hr.

	23	27	31	19
	(1) 60	(2) 60	(3) 60	(4) 60
7.	À fair die is thrown thei prime number	n probability of geting ar	n odd number if it is give	that the number obtained is a
	1	1	5	2
	(1) 2	(2) 3	(3) 6	(4) 3
8.	Two dice are thrown to is given that both the re	gether, then the probabi sults are prime numbers	lity that sum of these two	o number is a prime number if it
	4	1	2	5
	(1) 9	(2) 4	(3) 3	(4) 9
9.	Three students are sele given that Adom is alwa	ected from group of 10 ays one of the selected s	students. The probability tudents?	that Hayden is selected if it is
		<u></u>	2	5
	(1) ³⁶	(2) 36	(3) 9	(4) 9
10.	Mr. Thomas a famous blindfolded and asked	liar is known to speak t Fhomas the result who s	he truth 3 out of 4 times ays that "it is a six", the p	. His friend David throws a die robability that it is actually a six
	3	5	<u>1</u>	<u>1</u>
	(1) 8	(2) 8	(3) 4	(4) 8
11.	If two cards are drawn s cards king is	imultaneously from a we	ll shuffled pack of cards t	hen the probability of both being
	2	⁴ C ₂	4	² C ₂
	(1) 52	(2) $52C_2$	(3) 52	(4) $\overline{{}^{52}C_2}$
12.	If four cards drawn at ra face cards is	andom from a well shuffl	ed pack of cards then the	e probability that all of them are
	¹⁶ C ₄	${}^{4}C_{4}$	¹⁶ C ₂	¹² C ₄
	$(1)^{52}C_4$	$(2)^{52}C_4$	(3) $\overline{{}^{52}C_4}$	$(\Lambda)^{\overline{52}C_4}$
40	(I)		(J)	(+)
13.	together is	e sealed around a circu		
	(14!-8(7!))	7!×8!	$(7!)^{2}$	$(8!)^2$
	(1) (14!)	(2) 14!	(3) 14!	(4) 14!
14.	If two cards are drawn a card and the other is a	at random from a pack of queen is	cards the the probability	that one of them is a numbered
	³⁶ C ₂	${}^{40}C_{1}.{}^{4}C_{1}$	³⁶ C ₁ . ⁴ C ₁	⁴⁰ C ₂
	(1) $\overline{{}^{52}C_2}$	(2) $5^{2}C_{2}$	(3) $5^{2}C_{2}$	(4) $\overline{{}^{52}C_2}$
15.	A bag contains 25 ticket the probability that the	s, numbered from 1 to 25 2nd ticket is perfect squar	5 two tickets are drawn from $_{\rm re}$ if it is known that $1_{\rm st}$ tick	om the bag without replacement, ket was perfect square number
	is (1) 1/5	(2) 4/25	(3) 1/5	(4) 1/6
16	Δ die is thrown 5 times	the probability that a co	mosite number will app	ear exactly three times is?
10.	2 ⁶	2^2	10 2 ²	10.2 ³
	(1) $\frac{2}{6^6}$	$(2) \frac{2}{3^5}$	(2) $\frac{10.2}{3^5}$	$(4) \frac{10.2}{3^5}$
	(1) -	(<u></u>	(3) -	(+) -

MATHEMATICS

Probability

17.	17. A bag contains 3 red and 2 black balls. One ball is drawn 4 times (with replacement) then the pro that the result is 2 red and 2 black balls is ?								
	3 ² 2 ²	3 ³ 2 ³	3 ² 2 ³	3 ³ 2 ²					
	(1) 54	(2) 5 ⁴	(3) 54	(4) 54					
18.	If two dice are thrown	5 times then the probabili	ty that sum 10 will appea	r in exactly 3 times is					
	(1) ${}^{5}C_{3}\left(\frac{11}{12}\right)^{3}\left(\frac{1}{12}\right)^{2}$		(2) ${}^{5}C_{2}\left(\frac{11}{12}\right)^{2}\left(\frac{1}{12}\right)^{3}$						
	(3) ${}^{5}C_{2}\left(\frac{11}{12}\right)^{2}\left(\frac{1}{12}\right)^{2}$		(4) None of these						
19.	If three coins are tosse	ed simultaneously then the	e probability of getting tw	o heads and one tail is ?					
	(1) $\frac{1}{4}$	(2) ¹ / ₈	(3) $\frac{3}{8}$	$(4) \frac{5}{8}$					
20.	The probability that a le	eap year selected at rand	lom will have 53 friday is	?					
	2	<u>1</u>	7	8					
	(1) 7	(2) 7	(3) 52	(4) 52					
	<u>1</u> <u>2</u>								
21.	If $P(A) = {}^{8}$, $P(B) = {}^{5}$	and A & B are mutually e	exclusive events then the	value of P(A∪B) is					
	$\frac{23}{12}$	<u>19</u>	21	$\frac{17}{12}$					
	(1) 40	(2) 40	(3) 40	(4) 40					
	$\frac{2}{2}$	3							
22.	If $P(A/B) = {}^{3}, P(B) =$	⁵ then the value of P (A'	∩ B) is						
	$\frac{2}{r}$	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{3}{5}$					
	(1) 5	(2) 10	(3) 5	(4) 5					
23.	Urn A contains 6 red & from urn A & placed in urn A. If one ball is now	4 black balls and urn B co urn B. Then one ball of d v drawn at random from u	ontains 4 red & 6 black ba ifferent colour is drawn a urn A, then the probability	alls. One ball is drawn at random t random from urn B & placed in y of red ball is drawn is					
	32	73	9	28					
	(1) 55	(2) 275	(3) 55	(4) 275					
24.	In a single throw of three (4) $7/72$	ee dice, the probability of	the event 'a total of 7 is $(2) 5/72$	(4) 4/70					
05	(1) <i>1/12</i>			(4) 4/72					
25.	A car is parked by an owner in a parking lot of 24 cars in a row, including his car not at either end. On return he finds that exactly 12 placed are still occupied. The probability that both the neighboring placed are empty is								
	91	15	<u>15</u>	6					
	(1) 276	(2) 184	(3) 92	(4) 23					
26.	A number is chosen at	t random from the number	ers 10 to 99. A number w	hose product of digits is 15 will					
	be called a good numb	per. If he choose three nu	umbers with replacement	t then the probability that he will					
	(1) 0.0578	(2) 0.127	(3) 0.562	(4) 0.461					

MATHEMATICS

Probability

- 27. Mean and variance of a Binomial variate of 6 trials of the experiment are in the ratio of 3 : 2, then the correct options are 1 2
- (1) Probability of getting exactly 5 success is $\overline{81}$ (2) Probability of getting exactly 6 success is $\overline{81}$ 2 2 (3) Probability of getting exactly 5 success is $\overline{81}$ (4) Probability of getting exactly 4 success is $\overline{81}$ An unbiased coin is tossed n times. Let X denote the number of times head occurs. If 28. P(X = 4), P(X = 5) and P(X = 6) are in GP, then the value of n can be (1)7(2) - 1(3) 2 (4) there is no value of n 29. A and B throw alternately with a pair of dice. A wins if he throws 6 (sum of numbers in pair of dice) before B throws 7, B wins if he throws 7 before A throws 6. then the ratio of winning chances of A and B is (A makes the first throw) 30 30 31 (1) 31 (2) 61 (3) 61
- 30. The numbers 'a and b' are randomly selected from the set of natural numbers. Probability that the number

 $3_a + 2_b$ has a digit equal to 1 at the units place, is q then p + q is : (Where p & q are co-prime natural numbers)

(4) 1

(1) 13 (3) 5 (4) 20 (2) 19

Practice Test (JEE-Main Pattern)

OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

PART - II : PRACTICE QUESTIONS

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

A ship is fitted with three engines E₁, E₂ and E₃. The engines function independently of each other with 1*. 1 1 respective probabilities 2, 4 and 4 For the ship to be operational at least two of its engines must function. Let X denote the event that the ship is operational and let X1, X2 and X3 denotes respectively the events that the engines E1 E2 and E3 are functioning. Which of the following is (are) true ? $\mathsf{P}\left[\mathsf{X}_{1}^{c} \mid \mathsf{x}\right] = \frac{3}{16}$ (1) 7 (2) P[Exactly two engines of the ship are functioning |X] = 85 (3) $P[X | X_2] = \overline{16}$ (4) $P[X | X_1] = 16$ 2. An integer x is chosen from the first 100 positive integers. The probability that, 100 × > 50 is: X + 11 1 (2) 20 (3) 2 (1) 10 (4) none The sides of a rectangle are chosen at random, each less than 10 cm, all such lengths being equally 3. likely. The chance that the diagonal of the rectangle is less than 10 cm is (1) 1/10(2) 1/20(3) π/4 (4) π/8 4. Let p be the probability that a man aged x years will die in a year time. The probability that out of 'n' men A1, A2, A3,....., An each aged 'x' years. A1 will die & will be the first to die in a year time is: (3) $\frac{p (1-p)^{n-1}}{n}$ (4) $\frac{1-(1-p)^n}{n}$ $1-p^n$ (2) n n (1)5. A person has to go through three successive tests. Probability of his passing first exam is P. Probability of passing successive test is P or P/2 according as he passed the last test or not. He is selected if he passes atleast two tests. The probability of his selection is (1) $3P_2 - P_3$ (2) $2 P_2 - P_3$ (3) $P_2 - P_3$ (4) None of these 6. In a combat, A targets B, and both B and C target A, The probabilities of A, B, C hitting their targets are 2/3, 1/2 and 1/3 respectively. They shoot simultaneously and A is hit. The probability that B hits his target whereas C does not is 1 (3) 2 (2) 4 (1) 3 7. Let H_1 , H_2 ,, H_n be mutually exclusive and exhaustive events with $P(H_i) > 0$ i = 1, 2,, n. Let E be any other event with 0 < P(E) < 1. STATEMENT-1 : $P(H_i / E) > P(E / H_i) \cdot P(H_i)$ for i = 1, 2, ..., n. because

STATEMENT-2 : $\sum_{i=1}^{i=1} P(H_i) = 1$

(1) Statement-1 is True, Statement-2 is True ; Statement-2 is a correct explanation for Statement-1

(2) Statement-1 is True, Statement-2 is True ; Statement-2 is NOT a correct explanation for Statement-

- 1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True
- 8. Statement 1 : If p is chosen at random in the closed interval [0, 5], then the probability that the equation

 $x_2 + px + \frac{1}{4}(p+2) = 0$ has real root is $\frac{3}{5}$.

Statement 2 : If discriminant \ge 0 then roots of the quadratic equation of real coefficient are always real.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

9. Statement 1 : If A and B are independent events and P(C) is the probability of exactly one of A or B occurs, then P(A U B) P $(\overline{A} \cap \overline{B}) \leq P(C)$.

Statement 2 : $P(A \cup B) \le P(A) + P(B)$ and $P(A) \le 1$.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

Comprehension # 1

If A and B are two events, then probability that atleast one of them is selected is $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. For three events A, B, C the probability that atleast one of them is seleted is $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$.

10. Probability that none of the three events (A, B, C) occurs

(1) $P^{(\overline{A} \cup \overline{B} \cup \overline{C})} - P(A) - P(B) - P(C) + P(A \cap B) + P(B \cap C) + P(C \cap A)$ (2) $P(A \cup B \cup C) - P(A) - P(B) - P(C) + P(A \cap B) + P(B \cap C) + P(C \cap A) - P(A \cap B \cap C)$ (3) $P(\overline{A}) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$ (4) none of these

11. Probability that exactly two events occurs

(1) $P(A) + P(B) + P(C) - P(A \cup B) - P(B \cup C) - P(C \cup A)$ (2) $2(P(A) + P(B) + P(C)) - P(A \cup B) - P(B \cup C) - P(C \cup A)$ (3) $P(A \cap B) + P(B \cap C) + P(C \cap A) - 3 \times P(A \cap B \cap C)$ (4) $P(\overline{A} \cap \overline{B})_{+} P(\overline{B} \cap \overline{C})_{+} P(\overline{C} \cap \overline{A})$

12. Probability that atmost two events happen

- (1) $P(A \cap B) + P(B \cap C) + P(C \cap A) 3 \times P(A \cap B \cap C)$
- (2) $P(A) + P(B) + P(C) P(A \cap B) P(B \cap C) P(C \cap A)$
- (3) $P(\overline{A})_{+} P(\overline{B})_{+} P(\overline{C})$
- (4) $P(A) + P(B) + P(C) P(A \cap B) P(B \cap C) P(C \cap A) + P(A \cup B \cup C)c$

Comprehension # 2

Consider the experiment of distribution of balls among urns. Suppose we are given M urns, numbered 1 to M, among which we are to distribute n balls (n < M). Let P(A) denote the probability that each of the urns numbered 1 to n will contain exactly one ball. Then answer the following questions.

13.	If the balls are diffe	erent and any number	· of balls can go to any ι	urns, then P(A) is equal to

(1)
$$\frac{M!}{n^M}$$
 (2) $\frac{n!}{M^n}$ (3) $\frac{n!}{MP_n}$ (4) $\frac{1}{M^n}$

14. If the balls are identical and any number of balls can go to any urns, then P(A) equals

15. If the balls are identical but atmost one ball can be put in any box, then P(A) is equal to

$$\frac{1}{(1)} \frac{1}{MP_n} \qquad \qquad \frac{n!}{nC_M} \qquad \qquad \frac{n!}{(3)} \frac{n!}{MC_n} \qquad \qquad \frac{1}{(4)} \frac{1}{MC_n}$$

Comprehension # 3

Let U₁ and U₂ be two urns such that U₁ contains 3 white and 2 red balls, and U₂ contains only 1 white ball. A fair coin is tossed. If head appears then 1 ball is drawn at random from U₁ and put into U₂. However, if tail appears then 2 balls are drawn at random from U₁ and put into U₂. Now 1 ball is drawn at random from U₂.

16.	The probability	v of the drawn	ball from	U ₂ being wh	nite is
10.	The probability		ball from	02 boing wi	110 13

13	23	19	11
(1) 30	(2) 30	(3) 30	(4) 30

17. Given that the drawn ball from U₂ is white, the probability that head appeared on the coin is

17	11	15	12
(1) 23	(2) 23	(3) 23	(4) 23

18. Consider the system of equations ax + by = 0; cx + dy = 0, where a, b, c, $d \in \{0, 1\}$

STATEMENT-1 : The probability that the system of equations has a unique solution is 8 . and

STATEMENT-2: The probability that the system of equations has a solution is 1.

(1) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is a correct explanation for STATEMENT-1

3

- (2) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is NOT a correct explanation for
 - STATEMENT-1
- (3) STATEMENT-1 is True, STATEMENT-2 is False
- (4) STATEMENT-1 is False, STATEMENT-2 is True
- **19.** Of the three independent events E₁, E₂ and E₃, the probability that only E₁ occurs is α ,only E₂ occurs is β and only E₃ occurs is γ . Let the probability p that none of events E₁, E₂ or E₃ occurs satisfy the equations $(\alpha 2\beta) p = \alpha\beta$ and $(\beta 3\gamma) p = 2\beta\gamma$. All the given probabilities are assumed to lie in the interval (0, 1). Probability of occurrence of E₁ Then (1) 4 (2) 5 (3) 6 (4) 7
- **20.** A Sudoku matrix is defined as a 9 × 9 arrary with entries from {1, 2, 3 9} and with the constraint that each row, each column and each of the nine 3 × 3 boxes that tile the array contains each digit from 1 to 9 exactly once. A Sudoku matrix is chosen at random (so that every Sudoku matrix has equal

probability of being chosen). We know two of square in this matrix as shown. Then the probability that the square marked by ? contains the digit 3 is

	> >		
$\frac{1}{(1)} \frac{1}{21}$	2 (2) 21	(3) 4/21	(4) ⁸ / ₂₁

	AP	SP /	Ansv	wers	; 								
						PA	RT - I						
1. 8. 15. 22. 29	(3) (1) (4) (3) (1)	2. 9. 16. 23. 30	(3) (3) (3) (2) (2)	3. 10. 17. 24.	(2) (1) (2) (3)	4. 11. 18. 25.	(4) (2) (2) (4)	5. 12. 19. 26.	(3) (4) (3) (1)	6. 13. 20. 27.	(1) (1) (1) (3)	7. 14. 21. 28.	(4) (2) (3) (4)
23.	(')	50.	(2)			PA	RT - II						
1. 8. 15.	(2,4) (1) (4)	2. 9. 16.	(2) (2) (2)	3. 10. 17.	(3) (1) (4)	4. 11. 18.	(4) (3) (2)	5. 12. 19.	(2) (4) (3)	6. 13. 20.	(3) (2) (2)	7. 14.	(4) (2)