Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks : 120

Important Instructions :

- 1. The test is of 1 hour duration and max. marks 120.
- 2. The test consists 30 questions, 4 marks each.
- 3. Only one choice is correct 1 mark will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 4. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.

			$\frac{x}{x} + \frac{y}{y}$	
1.	The area of the triangle	e formed by the lines x =	0, y = 0 and $a^{b} = 1$ is	3
	<u>1</u>			1
	(1) ² ab	(2) ab	(3) 2 ab	(4) ³ ab
2.	The area enclosed with	n the curve 2 x + 3 y = 1	is	
	1	<u>1</u>	1	<u> 1 </u>
	(1) 4	(2) 3	(3) 12	(4) 15
3.	If y-intercept of the line	4x - ay = 8 is thrice its x	c-intercept then the value	of a is equal to
	3	4	3	4
	(1) 4	(2) 3	(3) 4	(4) 3
4.	The distance between	the point (1,2) and the po	pint of intersection of the	lines $2x + y = 2$ and $x + 2y = 2$
	is			
	$\sqrt{17}$	$\sqrt{16}$	$\sqrt{17}$	<u>√19</u>
	(1) 3	(2) ³	(3) 5	(4) 3
			-2	
5.	If the slope of the line j	oining the point (3,4) and	I (–2,a) is equal to $\overline{5}$, the function of	nen the value of a is equal to.
	(1) 6	(2) 4	(3) 3	(4) 2
6.	If the co-ordinates of th	e vertices A, B, C of the	triangle ABC be (-4,2), (12, –2) and (8, 6) respectively,
	then ∠B =			
	6	6	7	7
	(1) $\tan_{-1}(-\overline{7})$	(2) $\tan_{-1}(\overline{7})$	(3) $\tan_{-1}(-\overline{6})$	(4) $\tan_{-1}(\overline{6})$
7.	The points lying on the	line $x + y = 4$ which are	at a unit distance from th	e line 4x + 3y = 10, are

Max. Time : 1 Hr.

	(1) (3, 1),(-7,11)	(2) (3, 1),(7,11)	(3) (-3, 1),(-7,11)	(4) (1, 3),(-7,11)
8.	The orthocentre of the (1) (1,2)	triangle formed by lines 4 (2) (1,–2)	4x − 7y + 10 = 0, x + y =5 (3) (−1, −2)	5 and 7x + 4y = 15 is (4) (–1,2)
9.	If equation of three side circumcentre of this tri	es of a triangle are x = 2, angle is	y + 1 = 0 and $x + 2y = 4$, then co-ordinates of
	(1) (4,0)	(2) (2,-1)	(3) (0, 4)	(4) (-1,2)
10.	The equation to the stra line x sec θ + y cosec θ	aight line passing througl ∂ = a, is	n the point (a cos₃θ, a sir	$h_3 \theta$) and perpendicular to the
	(1) x cos θ – y sin θ = a	cos2 θ	(2) x cos θ + y sin θ = a	cos2 θ
	(3) x sin θ + y cos θ = a	cos2 θ	(4) x sin θ – y cos θ = a	cos2 θ
11.	The distance between	4x + 3y = 11 and 8x + 6y	= 15, is	
	7		7	10
	(1) 2	(2) 4	(3) 10	(4) 3
12.	Number of points havin line $2x + 3y - 1 = 0$ is	ig distance $\sqrt{5}$ from the	straight line x – 2y + 1 =	0 and a distance $\sqrt{13}$ from the
	(1) 1	(2) 2	(3) 4	(4) 5
13.	Which of the following (1) $2x + 3y + 5 = 0$ (3) $7x + 9y + 3 = 0$	ine is concurrent with the	e lines 3x + 4y + 6 = 0 an (2) 3x + 3y + 5 = 0 (4) 9x + 7y + 11 = 0	d 6x + 5y + 9 = 0
14.	The least positive value	e of 't' so that the lines x	= t + α, y + 16 = 0 and y	$= \alpha x$ are concurrent is
	(1) 2	(2) 4	(3) 16	(4) 8
15.	The triangle formed by	$x_2 - 9y_2 = 0$ and $x = 4$ is		
	(1) isosceles	(2) equilateral	(3) right angled	(4) scalene
16.	(1) isosceles Given vertices A (1,1), dropped from C to the i	(2) equilateral B (4,-2) and C (5,5) of a Interior bisector of the an	(3) right angled triangle, then the equation gle A is	(4) scalene on of the perpendicular
16.	(1) isosceles Given vertices A (1,1), dropped from C to the i (1) $y-5 = 0$	(2) equilateral B (4,-2) and C (5,5) of a nterior bisector of the an (2) $x - 5 = 0$	 (3) right angled triangle, then the equation gle A is (3) y + 5 = 0 	 (4) scalene on of the perpendicular (4) x + 5 = 0
16. 17.	(1) isosceles Given vertices A (1,1), dropped from C to the i (1) $y-5 = 0$ The sides AB, BC, CD respectively. The angle (1) 45°	(2) equilateral B (4,-2) and C (5,5) of a interior bisector of the an (2) $x - 5 = 0$ and DA of a quadrilatera between diagonals AC	(3) right angled triangle, then the equation gle A is (3) $y + 5 = 0$ I are $x + 2y = 3$, $x = 1$, $x - 2$ and BD is (3) 30°	(4) scalene on of the perpendicular (4) $x + 5 = 0$ -3y = 4, $5x + y + 12 = 0(4) 90°$
16. 17.	(1) isosceles Given vertices A (1,1), dropped from C to the i (1) y–5 = 0 The sides AB, BC, CD respectively. The angle (1) 45°	(2) equilateral B (4,-2) and C (5,5) of a interior bisector of the an (2) $x - 5 = 0$ and DA of a quadrilatera between diagonals AC (2) 60°	(3) right angled triangle, then the equation gle A is (3) $y + 5 = 0$ I are $x + 2y = 3$, $x = 1$, $x - 2$ and BD is (3) 30°	(4) scalene on of the perpendicular (4) $x + 5 = 0$ - $3y = 4$, $5x + y + 12 = 0$ (4) 90°
16. 17. 18.	(1) isosceles Given vertices A (1,1), dropped from C to the i (1) $y-5 = 0$ The sides AB, BC, CD respectively. The angle (1) 45° A variable line passes (2,0), (0,2) and (1,1) or	(2) equilateral B (4,-2) and C (5,5) of a interior bisector of the an (2) $x - 5 = 0$ and DA of a quadrilatera between diagonals AC (2) 60° c through a fixed point the line is zero, then the	(3) right angled triangle, then the equation gle A is (3) $y + 5 = 0$ l are $x + 2y = 3$, $x = 1$, $x - 2$ and BD is (3) 30° P. The algebric sum of e co-ordinates of the P ar	(4) scalene on of the perpendicular (4) $x + 5 = 0$ - $3y = 4$, $5x + y + 12 = 0$ (4) 90° the perpendicular drawn from re
16. 17. 18.	(1) isosceles Given vertices A (1,1), dropped from C to the if (1) y–5 = 0 The sides AB, BC, CD respectively. The angle (1) 45° A variable line passes (2,0), (0,2) and (1,1) or (1) (1,-1)	(2) equilateral B (4,-2) and C (5,5) of a nterior bisector of the an (2) $x - 5 = 0$ and DA of a quadrilatera between diagonals AC (2) 60° s through a fixed point the line is zero, then the (2) (1,1)	(3) right angled triangle, then the equation gle A is (3) $y + 5 = 0$ I are $x + 2y = 3$, $x = 1$, $x - 2$ and BD is (3) 30° P. The algebric sum of e co-ordinates of the P ar (3) (2, 1)	(4) scalene on of the perpendicular (4) $x + 5 = 0$ - $3y = 4$, $5x + y + 12 = 0$ (4) 90° the perpendicular drawn from re (4) (2,2)
16. 17. 18. 19.	(1) isosceles Given vertices A (1,1), dropped from C to the i (1) $y-5 = 0$ The sides AB, BC, CD respectively. The angle (1) 45° A variable line passes (2,0), (0,2) and (1,1) or (1) (1,-1) The equation $x_3 - yx_2 +$ (1) A hyperbola and two (3) A parabola and two	(2) equilateral B (4,-2) and C (5,5) of a interior bisector of the and (2) $x - 5 = 0$ and DA of a quadrilateral between diagonals AC (2) 60° a through a fixed point the line is zero, then the (2) (1,1) x - y = 0 respresents o straight lines straight lines	(3) right angled triangle, then the equation gle A is (3) $y + 5 = 0$ I are $x + 2y = 3$, $x = 1$, $x - 2$ and BD is (3) 30° P. The algebric sum of e co-ordinates of the P ar (3) (2, 1) (2) A straight line (4) A straight line and a	(4) scalene on of the perpendicular (4) $x + 5 = 0$ (4) $y = 4$, $5x + y + 12 = 0$ (4) $y = 0^{\circ}$ the perpendicular drawn from re (4) (2,2)
16. 17. 18. 19. 20.	(1) isosceles Given vertices A (1,1), dropped from C to the i (1) $y-5 = 0$ The sides AB, BC, CD respectively. The angle (1) 45° A variable line passes (2,0), (0,2) and (1,1) or (1) (1,-1) The equation $x_3 - yx_2 +$ (1) A hyperbola and two (3) A parabola and two Two vertices of a triang third vertex are	(2) equilateral B (4,-2) and C (5,5) of a interior bisector of the and (2) $x - 5 = 0$ and DA of a quadrilateral between diagonals AC (2) 60° is through a fixed point in the line is zero, then the (2) (1,1) x - y = 0 respresents o straight lines straight lines gle are (5, -1) and (-2,3).	(3) right angled triangle, then the equation gle A is (3) $y + 5 = 0$ I are $x + 2y = 3$, $x = 1$, $x - 2$ and BD is (3) 30° P. The algebric sum of e co-ordinates of the P ar (3) (2, 1) (2) A straight line (4) A straight line and a If orthocentre is the orig	(4) scalene on of the perpendicular (4) $x + 5 = 0$ (4) $y = 4$, $5x + y + 12 = 0$ (4) $y = 0^{\circ}$ the perpendicular drawn from re (4) (2,2)

MATHEMATICS

21. Locus of points which are at equal distance from $3x + 4y - 11 = 0$ and $12x + 5y + 2 = 0$ and near to the origin is								
	(1) 21x - 77y + 153 =	: 0	(2) 99x + 77y – 133 = ((2) $99x + 77y - 133 = 0$				
	(3) $7x - 11y = 19$		(4) none of these					
22.	Choose the correct sta	atement which describes	the position of the point ((-6,2) relative to straight lines				
	2x + 3y - 4 = 0 and $6x$	x + 9y + 8 = 0						
	(1) below both lines	(2) above both lines	(3) between both lines	(4) none of these				
23.	If the equation of base	e of an equilateral triangle	e is 2x – y = 1 and the ver	rtex is (–1,2) then the length of				
	the side of the triangle	e is						
	20	2	8	15				
	(1) √ <u>3</u>	(2) √15	(3) ^{√15}	(4) $\sqrt{2}$				
24.	The equation of acute	angle bisector between	the lines $3x + 4y - 1 = 0$	and $12x - 5y - 2 = 0$ is				
	(1) 11x + 3y + 17 = 0		(2) 11x + 3y - 17 = 0					
	(3) $3x + 11y - 17 = 0$		(4) $99x + 27y = 23$					
25.	If the centroid and circ	cum centre of a triangle a	are (3,3) and (6,2) respect	ively then the orthocentre is				
	(1) (-3,5)	(2) (-3,1)	(3) (3, -1)	(4) (9,5)				
26.	The equations ax + by	v + c = 0 and $dx + ey + f$	= 0 represents the same s	straight line if and only if				
	a_b		a_b_c					
	$(1) \overrightarrow{d} = \overrightarrow{e}$	(2) c = f	(3) $\frac{d}{d} = \frac{d}{e} = \frac{d}{f}$	(4) a = d, b=e, c = f				
27.	The distance of the po	pint (2,3) from the line 3x	+ 2y = 17, measured para	allel to the line $x - y = 4$ is				
	(1) 4√2	(2) $5\sqrt{2}$	(3) √2	(4) none of these				
28.	The point $(1,\beta)$ lies on	or inside the triangle for	med by the lines $y = x, x$	- axis and $x + y = 8$, if				
	(1) 0< β < 1	(2) $0 \le \beta \le 1$	(3) 0< β < 8	(4) β∈R				
29.	The image of the poin	t (4,-13) in the line 5x +	y +6 =0 is					
	(1) (1,2)	(2) (-4,13)	(3) (-1,-14)	(4) (3,4)				
30.	The new co-ordinates	of a point (4,5) when th	e origin is shifted to the p	oint (1,–2) are				
	(1) (5,3)	(2) (3,5)	(3) (3,7)	(4) (-2,1)				
		Practice Test (JEE-Main Pattern					
		OBJECTIVE RESP	PONSE SHEET (ORS)					

	Que.	1	2	3	4	5	6	7	8	9	10	
	Ans.											
	Que.	11	12	13	14	15	16	17	18	19	20	
	Ans.											
	Que.	21	22	23	24	25	26	27	28	29	30	
	Ans.											
			PA	ART - I	I : PRA		E QUE	STIO	NS			
1.	If x_1 , x_2 , x_3 as well as y_1 , y_2 , y_3 are in G.P. with the same common ratio, then the points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) (1) lie on a straight line (3) lie on a circle (4) are vertices of a triangle											
2.	Let PQR be a right angled isosceles triangle, right angled at P(2, 1). If the equation of the line QR is 2x + y = 3, then the equation representing the pair of lines PQ and PR is (1) $3x_2 - 3y_2 + 8xy + 20x + 10y + 25 = 0$ (2) $3x_2 - 3y_2 + 8xy - 20x - 10y + 25 = 0$ (3) $3x_2 - 3y_2 + 8xy + 10x + 15y + 20 = 0$ (4) $3x_2 - 3y_2 - 8xy - 10x - 15y - 20 = 0$											R is
3.	Four points (x1, y1), (x2, y2), (x3, y3) and (x4, y4) are such that $\sum_{i=1}^{i=1} (x_i^2 + y_i^2) \le 2 (x_1x_3 + x_2x_4 + y_1y_2 + y_3y_4)$ Then these points are vertices of											/3y4)
_	(1) Pa	arallelogra	am	(2) Recta	ngle	(3)	Square		(4) Rho	(4) Rhombus		
4.	Let P passi (1) 2x	S be the ing throug (– 9y – 7	median of h (1, –1) a = 0	the triang and parall (2) 2x – 9	gle with ve lel to PS is by – 11 = 0	ertices P(: s 0 (3) :	2, 2), Q(6 2x + 9y –	, –1) and 11 = 0	R(7, 3). 1 (4) 2x +	「he equat · 9y + 7 =	ion of the	e line
F	The is	, 	f the trien		ortiona (1	$\sqrt{3}$	() and ()		()	,		
э.	(1)	$\left(\frac{\sqrt{3}}{2}\right)$	r the thang	(2) $\left(\frac{2}{3}, \frac{2}{3}\right)$	$\frac{1}{\sqrt{3}}$	(3)	$\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$., U) IS	$(4) \left(1, \frac{1}{\sqrt{3}}\right)$			
6.	Let a, b, c be real numbers with $a_2 + b_2 + c_2 = 1$. The equation $\begin{vmatrix} ax - by - c & bx + ay & cx + a \\ bx + ay & -ax + by - c & cy + b \\ cx + a & cy + b & -ax - by + c \end{vmatrix} = 0$ represents a											
_	(1) sti	raight line)	(2) Circle		(3)	Parabola		(4) Ellip	se		
7.	The r 3x + 4	number of 4y = 9 and	t integer v d y = mx +	/alues of ⊢ 1 is also	m, for wh an intege	ich the x- er is	-coordinat	te of the p	point of ir	ntersectior	n of the li	nes,
8	(1) Z	irea houn	ded by th		<i>u</i> – v -	، (3) – ۱ and v	4 _ v +1	is	(4) 1			
υ.	(1) 1			(2) 2	y — X —	(3)	and $y = - x + 1$ is (3) $2\sqrt{2}$ (4) 4					

Let $0 < \alpha < \frac{\pi}{2}$ be fixed angle. If P = (cos θ , sin	η θ) and Q = (cos($\alpha - \theta$), sin ($\alpha - \theta$)), then Q is obtained								
(1) clockwise rotation around origin through an angle g									
) anticlockwise rotation around origin through an angle o									
(2) reflection in the line through origin with slope tan a									
(4) reflection in the line through origin with slope tan α									
A straight line through the origin O mosts the pr	$\frac{1}{2} = \frac{1}{2} = \frac{1}$								
Q respectively. Then the point O divides the se (1) 1 \cdot 2 (2) 3 \cdot 4	error and $2x + y + 0 = 0$ at points F and $2x + y + 0 = 0$ at points F and 3 gement PQ in the ratio (3) 2 · 1 (4) 4 · 3								
Consider three points									
$P = (-\sin(\beta - \alpha) - \cos\beta) O = (\cos(\beta - \alpha)) \sin\beta$	(β) and $\mathbf{R} = (\cos (\beta - \alpha + \beta) \sin (\beta - \beta))$ where $(\beta - \beta)$								
$r = (-\sin(p - \alpha), -\cos(p), \alpha = (\cos(p - \alpha), \sin(p - \alpha))$	p) and $R = (\cos (p - u + 0), \sin (p - 0)),$ where C								
$< \alpha, \beta, \theta < \frac{\pi}{4}$. Then,									
(1) P lies on the line segment RQ	(2) Q lies on the line segment PR								
(3) R lies on the line segment QP	(4) P, Q, R are non-collinear								
The locus of the orthocentre of the triangle form	ned by the lines								
(1 + p) x - py + p (1 + p) = 0, (1 + q) x - qy + qt	$(1 + q) = 0$ and $y = 0$, where $p \neq q$, is								
(1) a hyperbola (2) a parabola	(3) an ellipse (4) a straight line								
Equations to the straight lines passing through									
(i) The point (3, 2) and the point of interse	ection of the lines $2x + 3y = 1$ and $3x - 4y = 6$								
(ii) The intersection of the lines $x + 2y + 3$	a = 0 and $3x + 4y + 7 = 0$ and perpendicular to the straight								
line $y - x = 8$.									
(1) $43x - 29y + 71 = 0 \& x + y + 2 = 0$	(2) $43x - 29y = 71 \& x + y + 2 = 0$								
(3) 43x + 29y = 71 & x - y + 2 = 0	(4) $43x - 29y = 71 \& x + y = 2$								
$\begin{pmatrix} 1 & \mathbf{t} & 2 & \mathbf{t} \end{pmatrix}$									
$ 1 + \frac{1}{\sqrt{2}}, 2 + \frac{1}{\sqrt{2}} $									
If P $\sqrt{2}$ $\sqrt{2}$ be any point on a line, t	then the range of values of t for which the point P lies								
If P $\sqrt{2}$ $\sqrt{2}$ be any point on a line, t between the parallel lines x + 2y = 1 and 2x + 4	then the range of values of t for which the point P lies 4y = 15 is								
If P $\sqrt{2}$ $\sqrt{2}$ be any point on a line, t between the parallel lines x + 2y = 1 and 2x + 4 $=\frac{4\sqrt{2}}{5\sqrt{2}} < t < \frac{5\sqrt{2}}{5\sqrt{2}}$	then the range of values of t for which the point P lies $4y = 15$ is $-\frac{4\sqrt{2}}{\sqrt{2}} < t < 0$ $-\frac{4\sqrt{2}}{\sqrt{2}} < t < \frac{\sqrt{2}}{\sqrt{2}}$								
If P $\begin{pmatrix} \sqrt{2} & \sqrt{2} \end{pmatrix}$ be any point on a line, t between the parallel lines x + 2y = 1 and 2x + 4 (1) $-\frac{4\sqrt{2}}{3} < t < \frac{5\sqrt{2}}{6}$ (2) 0 < t < $\frac{5\sqrt{2}}{6}$	then the range of values of t for which the point P lies $4y = 15 \text{ is}$ $(3) -\frac{4\sqrt{2}}{5} < t < 0$ $(4) -\frac{4\sqrt{2}}{3} < t < \frac{\sqrt{2}}{6}$								
If P $\sqrt{2}$ $\sqrt{2}$ be any point on a line, t between the parallel lines x + 2y = 1 and 2x + 4 $(1) -\frac{4\sqrt{2}}{3} < t < \frac{5\sqrt{2}}{6}$ (2) 0 < t < $\frac{5\sqrt{2}}{6}$ The point A(4, 1) undergoes following transform	then the range of values of t for which the point P lies 4y = 15 is (3) $-\frac{4\sqrt{2}}{5} < t < 0$ (4) $-\frac{4\sqrt{2}}{3} < t < \frac{\sqrt{2}}{6}$ mations successively :								
If P $\sqrt{2}$ $\sqrt{2}$ be any point on a line, t between the parallel lines x + 2y = 1 and 2x + 4 $(1) -\frac{4\sqrt{2}}{3} < t < \frac{5\sqrt{2}}{6}$ (2) 0 < t < $\frac{5\sqrt{2}}{6}$ The point A(4, 1) undergoes following transform (i) reflection about line y = x	then the range of values of t for which the point P lies 4y = 15 is (3) $-\frac{4\sqrt{2}}{5} < t < 0$ (4) $-\frac{4\sqrt{2}}{3} < t < \frac{\sqrt{2}}{6}$ mations successively :								
If $P(-\sqrt{2}, \sqrt{2})$ be any point on a line, t between the parallel lines $x + 2y = 1$ and $2x + 4$ $(1) -\frac{4\sqrt{2}}{3} < t < \frac{5\sqrt{2}}{6}$ (2) $0 < t < \frac{5\sqrt{2}}{6}$ The point A(4, 1) undergoes following transform (i) reflection about line $y = x$ (ii) translation through a distance of 3 units	then the range of values of t for which the point P lies 4y = 15 is (3) $-\frac{4\sqrt{2}}{5} < t < 0$ (4) $-\frac{4\sqrt{2}}{3} < t < \frac{\sqrt{2}}{6}$ mations successively : s in the positive direction of x-axis								
If $P(-\sqrt{2}, \sqrt{2})$ be any point on a line, t between the parallel lines $x + 2y = 1$ and $2x + 4$ $(1) -\frac{4\sqrt{2}}{3} < t < \frac{5\sqrt{2}}{6}$ (2) $0 < t < \frac{5\sqrt{2}}{6}$ The point A(4, 1) undergoes following transform (i) reflection about line $y = x$ (ii) translation through a distance of 3 units (iii) rotation through an angle 105° in anti-c	then the range of values of t for which the point P lies 4y = 15 is (3) $-\frac{4\sqrt{2}}{5} < t < 0$ (4) $-\frac{4\sqrt{2}}{3} < t < \frac{\sqrt{2}}{6}$ mations successively : s in the positive direction of x-axis clockwise direction about origin O.								
	(1) clockwise rotation around origin through an (2) anticlockwise rotation around origin through (3) reflection in the line through origin with slop (4) reflection in the line through origin with slop A straight line through the origin O meets the p Q respectively. Then the point O divides the set (1) 1 : 2 (2) 3 : 4 Consider three points P = (- sin ($\beta - \alpha$), - cos β), Q = (cos($\beta - \alpha$), sin < α , β , $\theta < \frac{\pi}{4}$. Then, (1) P lies on the line segment RQ (3) R lies on the line segment QP The locus of the orthocentre of the triangle form (1 + p) x - py + p (1 + p) = 0, (1 + q) x - qy + q (1) a hyperbola (2) a parabola Equations to the straight lines passing through (i) The point (3, 2) and the point of interset (ii) The intersection of the lines x + 2y + 3 line y - x = 8. (1) 43x - 29y + 71 = 0 & x + y + 2 = 0 (3) 43x + 29y = 71 & x - y + 2 = 0								

	$(1)\left(\frac{1}{\sqrt{2}},\frac{7}{\sqrt{2}}\right)$	(2) (−2, 7√2)	$(3)\left(-\frac{1}{\sqrt{2}},\frac{7}{\sqrt{2}}\right)$	(4) $(-2\sqrt{6}, 2\sqrt{2})$						
16.	Point P(2, 3) lies on the	line 4x + 3y = 17. Then f	ind the co-ordinates of po	pints farthest from the line which						
	are at 5 units distance f	rom the P.								
	(1) (6, 6)	(2) (6, -6)	(3) (2, 0)	(4) (-2, 0)						
17.	Find the equation of 2 units between the line	the line passing thro as $y + 2x = 3 & y + 2x = 5$	ugh the point (2, 3) 5.	& making intercept of length						
	(1) $3x - 4y = 18$	(2) x = 2	(3) $3x + 4y = 18$	(4) $x + 2 = 0$						
18.	Find the equation of straight line passing through the point (4, 5) and equally inclined to the lines $3x = 4y + 7$ and $5y = 12x + 6$ is									
	(1) 9 x - 7 y = 1	(2) 9 x + 7 y = 71	(3) 7 x + 9 y = 73	(4) 7 x - 9 y + 17 = 0						
19.	Let D(x ₄ , y ₄) be a point s respectively, then	such that ABCD is a squ	are & M & P are the mid	points of the sides BC & CD						
	(1) Ratio of the areas of	f ΔAMP and the square i	s 3 : 8							
	(2) Ratio of the areas of	f ΔMCP & ΔAMD is 1 : 1								
	(3) Ratio of the areas of	f ΔΑΒΜ & ΔΑDP is 1 : 1								
	(4) Ratio of the areas of	f the quandrilateral AMC	P and the square is 1 : 3							
20.	The sides of a triangle a	are the straight line x + y	= 1, 7y = x and $\sqrt{3}$ y + x	= 0. Then which of the following						
	(1) circumcentre	(2) centroid	(3) incentre	(4) orthocentre						
21.	Given a ∆ABC with une	qual sides. P is the set o	of all points which is equi	distant from B & C and Q is the						
	set of all point which is	equidistant from sides A	B and AC. Then $n(P \cup Q)$) equals :						
	(1) 1	(2) 2	(3) 3	(4) Infinite						
22.	A line segment AB is div	vided internally and exte	rnally in the same ratio (:	> 1) at P and Q respectively and						
	M is mid point of AB.									
	Statement-1: MP, ME	B, MQ are in G.P.								
	Statement-2 AP, AB	and AQ are in HP.								
	(1) STATEMENT-1 is STATEMENT-1	true, STATEMENT-2 is	s true and STATEMEN	IT-2 is correct explanation for						
	(2) STATEMENT-1 is to STATEMENT-1Pro	rue, STATEMENT-2 is tr	ue and STATEMENT-2 i	s not correct explanation for						
	(3) STATEMENT-1 is t	rue, STATEMENT-2 is fa	alse							
	(4) STATEMENT-1 is fa	alse, STATEMENT-2 is t	true							

(5) Both STATEMENTS are false

	AP	SP /	Ansv	vers									
	·				J	PA	RT - I						
1.	(1)	2.	(2)	3.	(4)	4.	(1)	5.	(1)	6.	(4)	7.	(1)
8.	(1)	9.	(1)	10.	(1)	11.	(3)	12.	(3)	13.	(2)	14.	(4)
15.	(1)	16.	(2)	17.	(4)	18.	(2)	19.	(2)	20.	(4)	21.	(2)
22.	(1)	23.	(1)	24.	(4)	25.	(1)	26.	(3)	27.	(3)	28.	(2)
29.	(3)	30.	(3)										
						PA	RT - II						
1.	(1)	2.	(2)	3.	(2)	4.	(4)	5.	(4)	6.	(1)	7.	(1)
8.	(2)	9.	(4)	10.	(2)	11.	(4)	12.	(4)	13.	(2)	14.	(1)
15.	(4)	16.	(1, 4)	17.	(2, 3)	18.	(1, 3)	19.	(1, 3)	20.	(2, 3)	21.	(2)
22.	(1)												