MATHEMATICS

Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks : 120

Important Instructions :

- 1. The test is of 1 hour duration and max. marks 120.
- 2. The test consists 30 questions, 4 marks each.
- **3.** Only one choice is correct **1 mark** will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 4. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.

1.	Which of the following (1) $A = \{x : x \in N, 3 < (3) C = \{x : x \text{ is an ev} \}$	x ≤ 4}	 (2) B = {x : x is prime , (4) D = {x : x ∈ Rational 	90 < x < 96} al numbers & 1 < x < 2}
2.	Which of the following (1) A = $\{1,2,3\}$ B = $\{3,3\}$ A = $\{-2, -1\}$ B = $\{1,2,3\}$		(2) $A = \{0\} B = \phi$	8} B = (x : x ∈ W , x < 3}
3.	(2) Set of all lines para(3) Set of all points on	is false ? In a plane is infinite set Illel to the y-axis is infinite the circumference of a ci ntegers greater than 100	ircle is finite set	
		1 1		
4.	The set of real number (1) x > 2	rs x satisfying $\frac{1}{x+1} > \frac{1}{x-1}$ (2) x < -1	² is (3) x > 2 and x < -1	(4) −1 < x < 2
5.	Number of digits in 6₅₀ (1) 38	is (2) 39	(3) 40	(4) 41
6.	Solution of equation lo $(1) x = 6$	$g_{(x-3)}$ (4x -15) = 2 is (2) x = 4	(3) x = 2	(4) $x = 6,4$
	(2)	x – 4)		
7.	Solution set of $\log_3 \frac{(2)}{(2)}$	$\frac{x+1}{x+1} > 0$ is		
	(1) $x \in \left(-\infty, \frac{1}{2}\right)$	(2) $x \in \left(-\infty, \frac{1}{2}\right]$	$x \in \left(-\infty, \frac{-1}{2}\right)$	(4) $x \in \left(-\infty, \frac{-1}{2}\right]$
8.	If $9^{\log_3 x} - 2x - 3 = 0$, th (1) -1, 3	en x is equal to (2) 1, 3	(3) 3	(4) –1
			. /	
9.	$\frac{1}{x} = 3$, then x ₄ +	x ⁴ is		
	(1) 41	(2) 47	(3) 49	(4) 55

Max. Time : 1 Hr.

MATHEMATICS

Least integer satisfying $\frac{(x-1)^{4} x^{2} (x-3)}{(x-4)^{3} (x+3)} > 0$ (1) x = -3 (2) x = -2 10. (3) x = 0(4) x = 5If $9x_2 + y_2 + 6x = 2y - 2$ then 3x + y is 11. (3) - 1(4) can't be determined (1) 0(2) 2 $7 \log_2 \left(\frac{16}{25}\right)_{+5} \log_2 \left(\frac{25}{24}\right)_{+3} \log_2 \left(\frac{81}{80}\right)$ is equal to 12. $(2) 7 \log_2\left(\frac{3}{5}\right)$ $\left(\frac{2}{3}\right)$ $\left(\frac{3}{5}\right)$ (4) 1+ 7 log₂ (1) 7 log₂ 3 (3) log₂ The equation $\log_3 x = (9 \log_3 x - 15) (\log_{3x} 3)$ has 13. (2) One irrational solution (1) Two integral solutions (4) Prime solutions (3) Two irrational solutions 14. If $\log_3 N = 4 + \beta_1$, $\log_5 N = 2 + \beta_2$ and $\beta_1 \ _1\beta_2 \in [0, 1)$ Number of Integral values of N : (1) 44 (2) 45 (3) 46 (4) 47 If the solution set of $1 < \log_2(3x) < 2$ is (a, b), then 15. (1) $\log_a b = \log_b a$ (3) b - 2a = 016. The remainder when $x_5 - 4x_4 + 3x_3 - 2x_2 + x + 2$ is divided by (3x + 2) is $(2) - \frac{332}{243}$ 341 363 243 243 (1) - 243(3)(4) 17. If x, y are integral solutions of $2x_2 + 3xy - 2y_2 = 7$ then value of xy is 117 (2) 25 (1) 3 (3) - 3(4) 7If $-6 \leq \log_{0.3} x \leq -4$, then 18. (2) maximum value of x is (1) maximum value of x is $\left(\frac{10}{3}\right)$ (3) maximum value of x is (4) maximum value of x is Least integer satisfying $\overline{(x+2)(3^{x}+4)}^{\geq}$ 19. is (1) - 2(4) 0 (3) - 1 $\sqrt{3x+1}-\sqrt{x+4}$ The equation 20. (1) Two real solutions (2) Two irrational solutions (3) One rational and one irrational solution (4) Only one real solution $|x^2 + 1 (x - 3) (x^3 + 2)|$ $\begin{vmatrix} 4 & -1 & (x+2) \\ 3 & 5 & 3x+2 \end{vmatrix} = ax^3 + bx^2 + cx + d$ If. 21. the value of d is

MATHEMATICS (1) - 40(2) 40(3) 28 (4) 52 22. Solution of $3.5_{2x-1} - 2.5_{x-1} = 0.2$ is not a (1) Natural number (2) whole number (3) Integer (4) rational $\frac{\left(x-3\right)^{3}\left(x+1\right)}{\left(x-4\right)^{2}} > 0 \ is$ 23. Complete solution of (1) $x \in (-\infty, -1) \cup (3, 4)$ (2) $(-\infty, -1) \cup (3, \infty)$ (4) $(-\infty, 3) \cup (4, \infty)$ (3) $(-\infty, -1) \cup (3, 4) \cup (4, \infty)$ If maximum and minimum value of $log_x y$ is M and m where $x \in \{4, 5, 6, 7, 8\}$ and 24. y∈{16, 17, 18,.....128} then (2) $M - m = \frac{17}{6}$ (3) $Mm = \frac{14}{6}$ 11 29 (4) M + m = 6(1) M + m = 6 10 Number of values of x satisfying $\log_x 5 + \log_5 x = \frac{3}{3}$ is 25. (1) 1(2) 2 (4) 4(3) 326. $\log_2 x = \log 3 - \log 4$, $\log_3 y = \log 4 - \log 2$, $\log_4 z = \log 2 - \log 3$, then xyz is equal to $\log_2 x = \log 3 - \log 4$, $\log_3 y = \log 4 - \log 2$ (1) 24 (3) 1 (4) 36 (2) 18 The expression $\sqrt{2+\sqrt{5}-\sqrt{6-3\sqrt{5}+\sqrt{14-6\sqrt{5}}}}$ simplifies to 27. (1) 1(2)3(3) 4 (4) 2 A polynomial p(x) when divided by (x-1) and (x+1) the remainders are 2 and -2 respectively. If 28. polynomialdivided by (x_2-1) then find the remainder. (1) 4x + 3(3) 2x – 3 (4) x +1 (2) 2x Solution of $(\log 100x)_2 + (\log 10x)_2 = 14 + \log x$ is 29. (3) $x = 10, 10_{-9/2}$ (1) $x = 10, 10^{-10}$ (2) $x = 10, 10_{-9}$ (4) $x = 10, 10^{-11}$ The expression $\frac{1}{\log_{35} 7} + \frac{1}{\log_{14} 7} - \frac{1}{\log_{10} 7}$ simplifies to 30. (1) 1 (3) 3 (2) 2(4) 4

> Practice Test (JEE-Main Pattern) OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

MATHEMATICS

1.

2.

3.

4.

5.

6.

PART - II : PRACTICE QUESTIONS Marked questions may have for revision questions. If $\log_{50} 96 = \alpha$ and $\log_{50} (3) = \beta$ then $\log_{50} 2$ is equal to $\alpha + \beta$ (1) $\alpha + \beta - 5$ (2)(3)(4) α + 5_β Which of the following hold(s) good 7^{log11}3 (II) $3^{\log_{11}^{7}} = 1$ (III) $\log_3 11 + \log_2 7 > 6$ (I) $\log x_2 = 2 \log x$ (1) only I is correct (2) only II is correct (3) only III is correct (4) All are correct. If $x^{\log_3 4} = 27$, then the value of $x^{(\log_3 4)^2}$ is (1) 4(2) 16 (3) 64 (4) 81 If $A = \{1, \{2,3\}, 4\}$. Find which of the following statement is false ? (2) { $\{2,3\}\} \subseteq A$ (3) $\{1,4\} \subseteq A$ (1) {2,3} \in A (4) $\phi \in A$ Which of the following sets are pairs of disjoint sets ? (1) A = {1,2,3,4} B = {x : x is prime number, $x \le 11$ } (2) A = {x : $x \in N$, $x \le 8$ }, B {x : x is prime number, $x \ge 3$ } (3) $A = \{x : x \in N, x \text{ is even}\}, B = \{x : x \text{ is prime}, x \ge 4\}$ (4) $A = \{x : x \in N, x \text{ is odd}\} C = \{x : x \text{ is composite number}\}\$ If A and B are two sets containing 5 and 7 elements respectively, then maximum and minimum number of elements in A U B respectively are -(1) 7,5 (3) 7,0 (4) 12, 7 (2) 12,5

- 7. If A = {x : x is a prime number < 25} and B = {x : x is composite number < 20} then (1) $n(A \cup B) = 20$ (2) $n(A \cap B) = 1$ (3) $n(A \cup B) = 18$ (4) $n(A \cup B') = 9$
- 8. If P(A) denotes power set of A, then which of the following is correct (1) $n(P(P(P(\phi)))) = 2$ (2) $n(P(P(P(\phi)))) = 8$ (3) $n(P(P(\phi)) + n(P(P(P(\phi)))) = 18$ (4) $n(P(\phi)) + n (P(P(\phi))) = 4$
- 9. $A' \cup \{(A \cup B) \cap B'\} =$ (2) (A ∩ B)' (1) A' ∩ B' (3) A'∩ B (4) A ∪ B'
- 10. In a survey of 100 students, the number of student studying the various languages is found as, English only 18, English but not Hindi 23, English and Sanskrit 8, Sanskrit and Hindi 8, English 26, Sanskrit 48 and no language 24 then number of students studing Hindi are -(1) 18 (2) 15 (3) 13 (4) 10
- 11. The number of positive integers from 1 to 1000, which are not divisible by 2, 3 or 5 are (1) 266 (2) 265 (3) 267 (4) 734
- 12. There are three clubs A, B, C in a town with 40,50,60 members respectively. 10 people are members of all the three clubs, 80 members belong to only one club. Then the number of members which belongs to atleast two clubs are

MAT	THEMATICS								
	(1) 20	(2) 30	(3) 55	(4) 40					
13.	If n(A) = 12, n (B) = 15, (1) 12	, If x and y are minimum (2) 15	and maximum value of n (3) 18	(A'∩ B) then x + y = (4) 27					
14.	If X and Y are two sets (1) X	, then X ∩ (X [∪] Y)' equal (2) Y	s. (3) φ	(4) X ∪ Y					
15.	If $N_a = \{an : n \in N\}$, th (1) N_3	en N₃ ∩ N₅ = (2) N ₆	(3) N ₁₅	(4) N ₅					
16.	The number of element (1) 0	ts in the set {(x,y) : x ² + 4 (2) 4	y² = 45, x, y ∈ Z, where 2 (3) 8	Z is the set of all integers} is (4) 12					
17.	If a set contains m elen of both sets then (m,n) (1) 4,6		tains n elements. If 144 i (3) 7,4	(4) 8,2					
18.	Let $X = \{1,2,3,4\}$. The rand $Y \cap Z$ is empty is (1) 81	number of different order (2) 16	ed pairs (Y,Z) that can be (3) 243	e formed such that $Y \subseteq X, Z \subseteq X$ (4) 64					
19.	An investigator interviewed 100 students to determine their preferences for the three drink : milk coffee (C) and tea (T). He reported the following : 10 students had all the three drinks M, C and T; 20 M and C; 30 had C and T; 25 had M and T; 12 had M only; 5 had C only; and 8 had T only . Find many did not take any of the three drinks. (1) 20 (2) 16 (3) 25 (4) 80								
20.	Let X = {1, 2, 3, 4, 5, 6 elements is (1) 510	, 7, 8, 9}. then total num (2) 511	(3) 255	ng atleast one and atmost eight (4) 254					
21.⊾	Number of positive inte (1) 3	gral solutions of inequali (2) 4	$ty \frac{(x-6)^3(x-1)^4(3-x)}{(x+3)x^5} \ge (3) 5$: 0 is : (4) Infinite					
22.		equation, (log108)x2 – (l		. Which of the following quantity					
23.	All real numbers x which $\frac{1}{2}, 8$		$\log_2 \log_2 x + \log_{1/2} \log_2 (2)$ (3) 2, $\frac{1}{8}$						
24	a,b,c are three distinct			(4) 9, 1 $(c)^2$ is divisible by 7 then least					
	possible value of 2a + l (1) 12	b + 3c is (2) 15	(3) 14	(4) 10					
25			en it is divided by (x – 1) e number then f(0) is equa (3) 6	, (x – 2) and (x – 3) remainders al to (4) 4					

26. Value at log:
$$\binom{1+\frac{1}{4}}{(1+\frac{1}{4})} + \log_4 \binom{1+\frac{1}{5}}{(2)4} + \log_4 \binom{1+\frac{1}{6}}{(3)3} + \log_4 \binom{1+\frac{1}{63}}{(4)2}$$
 is equal to :
(1) 1 (1) (1) (2) (2) (- ∞ , ∞) (3) (-1, 5) (4) (-5, 1)
27. Solution of inequality $\frac{x^4 + x^2 + 1}{x^2 - 4x - 5} < 0$ is :
(1) (1, 5) (2) (- ∞ , ∞) (3) (-1, 5) (4) (-5, 1)
28. $\frac{x^4 + x^2 + 1}{x^2 - x + 1} + \frac{x^4 - x}{(x^2 + x + 1)}$ is equal to
(1) 2x (2) 2x² + 1 (3) $\frac{1}{x^2 - x + 1}$ (4) $\frac{x^4 + 1}{x^2 + x + 1}$
29. $x = \frac{2}{(\sqrt{3} + 1)(\sqrt[3]{3} + 1)(\sqrt[3]{3} + 1)}$ then (1 + x)⁶ is equal to
(1) 3 (2) 9 (3) 1 (4) $\sqrt[4]{3}$
30. If $a + b + c = 1$, $ab + bc + ca = -8$, $abc = -12$ then $-(a^3 + b^3 + c^3)$ is
(1) divisible by 3 (2) divisible by 7 (3) a prime number (4) divisible by 5
31.A If number of solutions of equation log: (1 + log: (2, -7)) = 1 is λ then 4λ is equal to :
(1) 0 (2) 12 (3) 8 (4) 4
32. Sum of all possible integral solutions of inequality $\frac{2x + 2}{x} \ge (3x + 1)$ is :
(1) 9 (2) 6 (3) 3 (4) 1
33.A If $3x = 4x - 1$, then $x = \frac{2 \log_3 2}{(1) 2 \log_3 2 - 1}$ (3) $\frac{1}{2 \log_3 2 - 1}$ (4) $\frac{\log_3 2}{\log_3 2 - 1}$
(1) $\sqrt[3]{5}$ (2) 5 (3) $\frac{1}{5}$ (4) 1
35.A Number of solutions of equation $\log_3(-2x) = 2 \log_3(x + 1)$ is :
(1) $\sqrt{5}$ (2) 5 (2) 5 (3) $\frac{1}{5}$ (4) 1
35.A Number of solutions of equation $\log_3(-2x) = 2 \log_3(x + 1)$ is :
(1) $\sqrt{5}$ (2) 5 (2) 5 (3) $\frac{1}{2}$ (4) 3
36. Sum of all integral solutions of inequality $\frac{(x - 1)^3(x + 2)^3}{(x + 7)(x^2 - 7x + 6)(x + 4)} \le 0$ is
(1) 2 (2) 14 (3) 1 (4) 5
37.A Value of expression $\log_4 \left(\frac{x^2}{4}\right) - 2 \log_2(4x)$ when $x = -2$ is :

	(1) –5	(2) –6	(3) –4	(4) 6
38.	Complete solution set (1) (0, 64)	(2) 0 of inequality $3_{72} \left(\frac{1}{3}\right)^{x} \left(\frac{1}{3}\right)^{x}$ (2) [0, 8]) ^{√x} > 1 is : (3) [0, 128]	(4) [0, 64)
39.		$\log_3\left(\frac{1+2x}{1+x}\right) < 1$ is $(-\infty, 1)$		
	(1) –4	(2) 4	(3) 2	(4) –2
40. è	$6 + \log_{\frac{3}{2}}$	$\left(\frac{1}{3\sqrt{2}}\sqrt{4-\frac{1}{3\sqrt{2}}}\sqrt{4-\frac{1}{3\sqrt{2}}}\right)$	$\overline{\left(\sqrt{4-\frac{1}{3\sqrt{2}}\cdots}\right)}$ is	
	(1) 3	(2) 2	(3) 4	(4) 6
41.¤	The equation $x^{\left[(\log_3 x)^2 - 1\right]}$ (1) exactly three real s (3) exactly two real solution	olutions	(2) exactly one real so (4) no real solution	lution

		SD /	Anev	vers										
		JF /	113	WCI 3)									
1.	(2)	2.	(1)	3.	(3)	4.	(4)	5.	(2)	6.	(1)	7.	(3)	
8.	(3)	9.	(2)	10.	(2)	11.	(1)	12.	(4)	13.	(1)	14.	(1)	
15.	(3)	16.	(2)	17.	(3)	18.	(3)	19.	(3)	20.	(4)	21.	(2)	
22.	(1)	23.	(3)	24.	(4)	25.	(2)	26.	(3)	27.	(4)	28.	(2)	
29.	(3)	30.	(2)											
						PA	RT- II							
1.	(3)	2.	(2)	3.	(3)	4.	(4)	5.	(3)	6.	(4)	7.	(4)	
8.	(3)	9.	(2)	10.	(1)	11.	(1)	12.	(2)	13.	(3)	14.	(3)	
15.	(3)	16.	(2)	17.	(3)	18.	(1)	19.	(1)	20.	(1)	21.	(3)	
22.	(3)	23.	(2)	24.	(2)	25.	(3)	26.	(4)	27.	(3)	28.	(2)	
29.	(1)	30.	(3)	31.	(4)	32.	(4)	33.	(1)	34.	(3)	35.	(2)	
36.	(3)	37.	(2)	38.	(4)	39.	(1)	40.	(3)	41.	(1)			

					L	OGAF	RITHM	TABL	. <u>E</u>	s			
	0	1	2	3	4	5	6	7	8	9	123	456	789
	0000	0043	0086	0128	0170			ſ	•	3	5913	17 21 26	30 34 38
10						0212	0253	0294	0334	0374	4812	16 20 24	28 32 36
	0414	0453	0492	0531	0569	0212	0200	0201	0001	0011	4812	16 20 23	27 31 35
11						0607	0645	0682	0719	0755	4711	15 18 22	26 29 33
40	0792	0828	0864	0899	0934						3711	14 18 21	25 28 32
12						0969	1004	1038	1072	1106	3710	14 17 20	24 27 31
13	1139	1173	1206	1239	1271						36 10	13 16 19	23 26 29
13						1303	1335	1367	1399	1430	37 10	13 16 19	22 25 29
14	1461	1492	1523	1553	1584						36 9	12 15 19	22 25 28
						1614	1644	1673	1703	1732	36.9	12 14 17	22 25 26
15	1761	1790	1818	1847	1875						369	11 14 17	20 23 26
						1903	1931	1959	1987	2014	368	11 14 17	19 22 25
16	2041	2068	2095	2122	2148						368	11 14 16	19 22 24
	000.4	0000	00.55	22.00	0.405	2175	2201	2227	2253	2279	358	10 13 16	18 21 23
17	2304	2330	2355	2380	2405	0.400	0455	0.400	0504	0500	358 358	10 13 15 10 12 15	18 20 23 17 20 22
	2553	2577	2601	2625	2648	2430	2455	2480	2504	2529	257	9 12 13	17 20 22
18	2000	2011	2001	2025	2040	2672	2605	2718	2742	076E	247	9 12 14 9 11 14	16 18 21
	2788	2810	2833	2856	2878	2672	2695	2710	2742	2765	247	9 11 13	16 18 20
19	2100	2010	2000	2000	2010	2900	2923	2945	2967	2989	246	8 11 13	15 17 19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	246	8 11 13	15 17 19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	246	8 10 12	14 16 18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	246	8 10 12	14 15 17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	246	7911	13 15 17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	245	7911	12 14 16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	235	7910	12 14 15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	235	7810	12 14 15
20	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	235	689	11 13 13
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	235	689	11 12 14
20	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	134	679	10 12 14
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	134	679	10 12 13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	134	678	10 11 12
32	5051	5065	5079	4900 5092	5105	5119	5132	5145	5159	5172	134	578	9 11 12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	134	568	9 10 12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	134	568	9 10 12
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	124	567	9 10 11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	124	567	8 10 11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	123	567	8910
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	123	567	8910
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	123	457	8910
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	123	456	8910
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	123	456	789
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	123	456	789
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	123	456	789
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	123	456	789
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	123	456	789
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	123	456	778
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	123	455	678
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	123	445	678
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	123	445	678

	LOGARITHM TABLE													
	0	1	2	3	4	5	6	7	8	9	123	456	789	
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	123	345	678	
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	123	345	678	
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	122	345	677	
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	122	345	667	
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	122	345	667	
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	122	345	567	
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	122	345	567	
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	122	345	567	
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	112	344	567	
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	112	344	567	
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	112	344	566	
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	112	344	566	
62	7924	7931	7938	7945	7952	7959	9766	7973	7980	7987	112	334	566	
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	112	334	556	
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	112	334	556	
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	112	334	556	
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	112	334	556	
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	112	334	556	
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	112	334	456	
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	112	234	456	
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	112	234	456	
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	112	234	455	
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	112	234	455	
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	112	234	455	
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	112	234	455	
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	112	233	455	
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	112	233	455	
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	112	233	445	
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	112	233	445	
79	8976	9882	8987	8993	8998	9004	9009	9015	9020	9025	112	233	445	
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	112	233	445	
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	112	233	445	
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	112	233	445	
83	9191	9196	9201	9206	9212		9222	9227	9232	9238	112	233	445	
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	112	233	445	
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	112	233	445	
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	112	233	445	
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	011	223	344	
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	011	223	344	
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	011	223	344	
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	011	223	344	
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	011	223	344	
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	011	223	344	
93	9685	9689	9694	8699	9703	9708	9713	9717	9722	9727	011	223	344	
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	011	223	344	
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	011	223	344	
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	011	223	344	
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	011	223	344	
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	011	223	344	
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	011	223	344	

					ANTI	LOGA	RITH	М ТАЕ	BLE				
	0	1	2	3	4	5	6	7	8	9	123	456	789
.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	001	111	222
.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	001	111	222
.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	001	111	222
.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	001	111	222
.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	011	112	222
.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	011	112	222
.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	011	112	222
.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	011	112	222
.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	011	112	223
.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	011	112	223
.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	011	112	223
.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	011	122	223
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	011	122	223
.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	011	122	233
.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	011	122	233
.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	011	122	233
.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	011	122	233
.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	011	122	233
.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	011	122	233
.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	011	122	333
.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	011	122	333
.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	011	222	333
.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	011	222	333
.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	011	222	334
.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	011	222	334
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	011	222	334
.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	011	223	334
.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	011	223	334
.28	1905	1910	1914	1919	1923	1928	1932	1936	1841	1845	011	223	344
.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	011	223	344
.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	011	223	344
.31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	011	223	344
.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	011	223	344
.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	011	223	344
.34	2188	2193	2198	2203	2208	2213	2218	2223	2328	2234	112	233	445
.35	2239	2244	2249	2254	2259	2265	2270	2275			112	233	445
.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	112	233	445
.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	112	233	445
.38	2399	2404	2410	2415	2421	2432	2427	2432	2443	2449	112	233	445
.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	112	233	455
.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	112	234	455
.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	112	234	455
.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	112	234	456
.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	112	334	456
.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	112	334	456
.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	112	334	556
.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	112	334	556
.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	112	334	556
.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	112	344	566
.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	112	344	566

					ANTI	LOGA	RITH		LE				
	0	1	2	3	4	5	6	7	8	9	123	456	789
.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	112	344	567
.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	122	345	567
.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	122	345	567
.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	122	345	667
.54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	122	345	667
.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	122	345	667
.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	123	345	678
.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	123	345	678
.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	123	445	678
.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	123	455	678
.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	123	456	678
.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4156	123	456	789
.62	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	123	456	789
.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	123	456	789
.64	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	123	456	789
.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	123	456	789
.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	123	456	7910
.67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	123	457	8910
.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	123	467	8910
.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	123	567	8910
.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	124	567	8911
.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	124	567	8 10 11
.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	124	567	9 10 11
.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	134	568	9 10 11
.74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	134	568	9 10 12
.75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	134	578	9 10 12
.76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	134	578	9 11 12
.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	134	578	10 11 12
.78	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	134	678	10 11 13
.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	134	679	10 11 13
.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	134	679	10 12 13
.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	235	689	11 12 14
.82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	235	689	11 12 14
.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	235	689	11 13 14
.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	235	6810	11 13 15
.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	235	7810	12 13 15
.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	235	7810	12 13 15
.87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	235	7910	12 14 16
.88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	245	7911	12 14 16
.89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	245	7911	13 14 16
.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	246	7911	13 15 17
.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	246	8911	13 15 17
.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	246	8 10 12	14 15 17
.93	8511	8531	8551	8570	8590 8700	8610	8630	8650	8670	8690	246	8 10 12	14 16 18
.94	8710	8730	8750	8770	8790 8005	8810 0016	8831 0026	8851	8872	8892	246	8 10 12	14 16 18
.95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	246	8 10 12	15 17 19
.96	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	246	8 11 13	15 17 19
.97	9333	9354	9376	9397	9419	9441 0661	9462	9484	9506	9528	247	9 11 13	15 17 20
.98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	247	9 11 13	16 18 20
.99	9772	9795	9817	9849	9863	9886	9908	9931	9954	9977	257	9 11 14	16 18 20