Additional Problems For Self Practice (APSP)

PART-I: PRACTICE TEST PAPER

Max. Time : 1 Hr.

Max. Marks : 120 Important Instructions :

- The test is of **1 hour** duration and max. marks 120. 1.
- 2. The test consists 30 questions, 4 marks each.
- 3. Only one choice is correct 1 mark will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- There is only one correct response for each question. Filling up more than one response in any question will 4 be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.
- 1. A particle when projected in vertical plane moves along the fixed smooth surface with initial velocity 20 m/s at an angle of 60°, so that its normal reaction on the surface remains zero throughout the motion. Then the slope of the tangent to the surface at height 5 m from the point of projection A will be :

(4) $\tan^{-1} \sqrt{2}$ $(1) 30^{\circ}$ (2) 45° (3) tan⁻¹ 2

A particle at a height 'h' from the ground is projected with an angle 30° from the horizontal, it strikes the 2. ground making angle 45° with horizontal. It is again projected from the same point with the same speed but with an angle of 60° with horizontal. Find the angle it makes with the horizontal when it strikes the ground : (3) $\tan^{-1}(\sqrt{5})$ (4) $\tan^{-1}(\sqrt{3})$

(2) tan⁻¹ (5) $(1) \tan^{-1}(4)$

3. A particle is projected from a point (0, 1) on Y-axis (assume + Y direction vertically upwards) aiming towards a point (4, 9). It fell on ground which is along x axis in 1 sec.

Taking $q = 10 \text{ m/s}^2$ and all coordinate in metres. Find the X-coordinate where it fell.

(1)(3,0)(2)(4,0)(3)(2,0)

4. A stone is projected from a horizontal plane. It attains maximum height 'H' & strikes a stationary smooth wall & falls on the ground vertically below the maximum height. Assuming the collision to be elastic the height of the point on the wall where ball will strike is

Н	Н	
(1) 2	(2) 4	(3)

(1) 10 m

(4) None of these

(4) $(2\sqrt{5}, 0)$

The vertical height of the projectile at time t is given by $v = 4t - t^2$ and the horizontal distance covered is 5. given by x = 3t. What is the angle of projection with the horizontal? (1) $\tan^{-1} 3/5$ (2) tan-1 4/5 (4) tan-1 3/4 (3) $\tan^{-1} \frac{4}{3}$

3H 4

(3) 15 m

6. Ram can throw a ball on a horizontal surface upto a maximum distance of 50 m. The maximum height upto which he can throw the ball is (2) 25 m (1) 50 m (3) 12.5 m (4) 100 m

7. A stone is projected from ground and hits a smooth vertical wall after 1 sec. and again falls back on the ground. The time taken by stone to reach the ground after the collision is 3 secs. The maximum height reached by the same stone if the vertical wall were not to be present is. $(q = 10 \text{ m/s}^2)$

(2) 12.5 m

Projec	ctile Motion								
8.	A particle P is projected from a point on the surface of smooth inclined plane (see figure). Simultaneously another particle Q is released on the smooth inclined plane from the same position. P and Q collide after t = 4 second. The speed of projection of P is 60°								
	(1) 5 m/s	(2) 10 m/s	(3) 15 m/s	(4) 20 m/s					
9.	A stone is projected fro horizontal as shown. Th horizontal. The stone la to	m point A with speed u ne fixed inclined surface nds at B after time t. The	making an angle 60° wit makes an angle 30° wit n the distance AB is equa	h B $A^{60^{\circ}}$					
	<u>ut</u>	√3ut							
	(1) √3	(2) 2	(3) √3ut	(4) 2 ut					
10.	If R and h represent the	horizontal range and ma	ximum height respectively	y of an oblique projection whose $\frac{R^2}{2}$					
	start point (i.e. point of p (1) maximum horizontal (3) time of flight	projecteion) & end point a range	are in same horizontal le (2) maximum vertical ra (4) velocity of projectile	vel. Then ^{8h} + 2h represents nge at highest point					
11.	Velocity of a stone proje horizontal then the velo (1) 20 m/s	ected, 2 second before it city at highest point will b (2) 15 m/s	reaches the maximum h be (3) 25 m/s	eight, makes angle 53° with the (4) 80/3 m/s					
12.	A stone projected from 1 second after the proje (1) 5 m	the ground level falls on ection (Take g = 10 m/s²) (2) 10 m	the ground after 4 secor (3) 15 m	nd. Then the height of the stone (4) 20 m					
13.	A body is projected at	such an angle that the h	norizontal range is three	times the greatest height. The					
	(1) 25° 8'	(2) 33° 7'	(3) 42° 8'	(4) 53° 8'					
14.	Two bodies are projecte an angle of 60° to the h (1) 3 : 1	ed with the same velocity orizontal, the ratio of the (2) 1 : 3	y. If one is projected at a maximum heights reach (3) 1 : 2	in angle of 30° and the other at ed is (4) 2 : 1					
15.	At the uppermost point (1) 180°	of a projectile, its velocity (2) 90º	y and acceleration are at (3) 60°	an angle of (4) 45º					
16.	The maximum range of	a gun horizontal terrain i	s 10 km. If g = 10 m/s² w	hat must be the muzzle velocity					
	(1) 400 m/s	(2) 200 m/s	(3) 100 m/s	(4) 50 m/s					
17.	A projectile can have th the two cases, then the 1	e same range R for two product of the two time of	angles of projection. If t ₁ of flights is proportional to	and t₂ be the times of flights in o 1					
	(1) $\overline{R^2}$	(2) R ²	(3) R	(4) R					
18.	If two projectiles are fire	ed at the angles 30° and	60° respectively then the	e ratio of their horizontal ranges					
	(1) 2 : 1	(2) 4 : 1	(3) 1	(4) 1 : 2					
19.	If R and H represent the	e horizontal range and the	e maximum height achiev	ved by a projectile then which of					
	$\frac{H}{R} = 4\cot\theta$	(2) $\frac{R}{H} = 4\cot\theta$	(3) $\frac{H}{R} = 4 \tan \theta$	(4) $\frac{R}{H} = 4 \tan \theta$					

Projectile Motion

- 20. For a given angle of the projectile if the initial velocity is doubled the range of the projectile becomes (1) Half (2) One-fourth (3) Two times (4) Four times
- 21. If we can throw a ball upto a maximum height H, the maximum horizontal distance to which we can throw it is
 - (2) √2H (4) 2 (1) 2H (3) H
- 22. A projectile can have the same range for two angles of projection. If h_1 and h_2 are maximum heights when the range in the two cases is R, then the relation between R, h_1 and h_2 is :

(1)
$$R = 4\sqrt{h_1h_2}$$
 (2) $R = 2\sqrt{h_1h_2}$ (3) $R = \sqrt{h_1h_2}$ (4) None of these

23. A projectile thrown with velocity v making angle θ with vertical gains maximum height H in the time for which the projectile remains in air the time period is

(1)
$$\sqrt{\text{Hcos}\theta/\text{g}}$$
 (2) $\sqrt{2\text{Hcos}\theta/\text{g}}$ (3) $\sqrt{4\text{H/g}}$ (4) $\sqrt{8\text{H/g}}$

- 24. A bomb is released from a horizontal flying aeroplane. The trajectory of bomb is (2) a straight line (1) a parabola (3) a circle (4) a hyperbola
- 25. Two projectiles are fired from the same point with the same speed at angles of projection 60° and 30° respectively. Which one of the following is true?
 - (1) Their maximum height will be same
- (2) Their range will be same
- (4) Their time of flight will be same (3) Their landing velocity will be same
- 26. When a body is thrown with a velocity u making an angle θ with the horizontal plane, the maximum distance covered by it in horizontal direction is-

ι	$1^2 \sin \theta$	$u^2 \sin 2\theta$	$u^2 \sin 2\theta$	$u^2 \cos 2\theta$
(1)	g	(2) 2g	(3) g	(4) g

- 27. An aeroplane is flying horizontal with a velocity of 600 km/h and at a height of 1960 m. When it is vertically at a point A on the ground, a bomb is released from it. The bomb strikes the ground at point B. The distance AB is-(1) 1200 m (2) 0.33 km (3) 3.33 km (4) 33 km
- The direction of motion of a projectile at the highest point of its trajectory becomes 28. (1) Horizontal (2) Vertical (3) Tangential (4) None of these
- 29. A bomb is dropped from an aeroplane moving horizontally at constant speed. When air resistance is taken into consideration, then the bomb-(1) Flies with the aeroplane (2) Fall on earth ahead of the aeroplane
 - (3) Falls on earth behind aeroplane

(4) Falls on earth exactly below the aeroplane

30. Two particles are projected with same initial velocity, one makes angle θ with vertical and another with horizontal. If their common range is R, then product of their time of flight is directly proportional to (1) R (2) R² (3) 1/R (4) R^o

Practice Test (JEE-Main Pattern) **OBJECTIVE RESPONSE SHEET (ORS)**

Projectile Motion

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

PART - II : PRACTICE QUESTIONS

- 1. Two projectiles of same mass and with same velocity are thrown at an angle 60° and 30° with the horizontal, then which will remain same-
 - (1) Time of flight
 - (3) Max height acquired

(2) Range of projectile

(4) K

(4) $\theta = 45^{\circ}$

- (4) All of them
- 2. If two bodies are projected at 30° and 60° respectively, with the same velocity, then
 - (1) Their ranges are same
 (2) Their heights are same
 (3) Their times of flight are same
 (4) All of these
- **3.** A particle is projected making angle 45° with horizontal having kinetic energy K. The kinetic energy at highest point will be
 - $(1) \frac{\mathsf{K}}{\sqrt{2}} \qquad (2) \frac{\mathsf{K}}{2}$

(3) 2 K

- A particle is dropped from a tower of height 10m and simultaneously another particle is projected horizontally from the top of a tower with speed 5 m/sec
 (1) Both particles reach ground simultaneously
 (2) A reaches earlier than B
 - (3) B reaches earlier than A (4) None
- **5.** If the horizontal range of a projectile is equal to the maximum height reached, then the corresponding angle of projection is

(1)
$$\tan^{-1}(1)$$
 (2) $\tan^{-1}(\sqrt{3})$ (3) $\tan^{-1}(4)$ (4) $\tan^{-1}(12)$

- 6. A missile is fired for maximum range with an initial velocity of 20 m/s. If $g = 10 \text{ m/s}^2$, the range of the missile is : (1) 40 m (2) 50 m (3) 60 m (4) 20 m
- 7. A projectile is fired at an angle of 45° with the horizontal. Elevation angle of the projectile at its highest point as seen from the point of projection is :

(1) 60° (2) $\tan^{-1}\left(\frac{1}{2}\right)$ (3) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (4)45°

- 8. The horizontal range and the maximum height of a projectile are equal. The angle of projection of the projectiles is :
 - (1) $\theta = \tan^{-1} \left(\frac{1}{4} \right)$ (2) $\theta = \tan^{-1} (4)$ (3) $\theta = \tan^{-1} (2)$
- 9. A particle has initial velocity $(2\vec{i}+3\vec{j})$ and acceleration $(0.3\vec{i}+0.2\vec{j})$. The magnitude of velocity after 10 seconds will be :
 - (1) $9\sqrt{2}$ units (2) $5\sqrt{2}$ units (3) 5 units (4) 9 units

Projectile Motion

- The velocity of a projectile at the initial point A is $(2\hat{i}+3\hat{j})$ m/s. It's velocity 10. (in m/s) at point B is :
 - (1) $-2\hat{i} + 3\hat{j}$ (2) $2\hat{i} - 3\hat{j}$ (3) $2\hat{i} + 3\hat{j}$ (4) $-2\hat{i} - 3\hat{j}$
- 11. A projectile is fired from the surface of the earth with a velocity of $5ms^{-1}$ and angle θ with the horizontal. Another projectile fired from another planet with a velocity of 3ms⁻¹ at the same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth. The value of the acceleration due to gravity on the planet is : (given = 9.8 ms^{-2}) (2) 5.9(3)16.3 (4)110.8(1) 3.5
- 12. Two particles separated at a horizontal distance x as shown in fig. they projected at the same line as shown in fig. with different initial speeds. The time after which the horizontal distance between them become zero :-

A particle is projected at an angle of 45° from 8 m before the foot of a wall, just touches the top of wall 13. and falls on the ground on the opposite side at a distance 4 m from it. The height of wall is :-

$$\frac{2}{3}$$
m $\frac{4}{3}$ m $\frac{3}{3}$ m $\frac{3}{3}$ m $\frac{3}{4}$

14. In case of a projectile fired at an angle equally indined to the horizontal and vertical with velocity (u). The horizontal range is :-

u ²	u ²	2u ²	u ²
(1) g	(2) ² g	(3) g	(4) g ²

- 15. A student is able to throw a ball vertically to maximum height of 40 m. The maximum distance to which the student can throw the ball in the horizontal direction :-(1) 40 (2)^{1/2}m (2) 20 (2)^{1/2}m (3) 20 m (4) 80 m
- 16. Three projectile A, B and C are thrown from the same point in the same plane. Their trajectories are shown in the figure. Then which of the following statement is true :-
 - (1) The time of flight is the same for all the three
 - (2) The launch speed is greatest for particle C
 - (3) The horizontal velocity component is greatest for particle C
 - (4) All of the above

Х

A projectile is thrown with an initial velocity of $\vec{v} = a\vec{i} + b\vec{j}$, if the range of projectile is double of maximum 17. height reached by it then : -

(1)
$$a = 2 b$$
 (2) $b = a$ (3) $b = 2a$ (4) $b = 4a$

of projectile is
$$y=16x-\frac{x^2}{4}$$
 then the horizontal range is : -

18. The equation

m

Proj	ectile Motion			
	(1) 16 m	(2) 8 m	(3) 64 m	(4) 12.8 m
19.	If a projectile is fired a by :-	t an angle θ with the verti	cal with velocity u, then r	naximum height attained is given
	$u^2 \cos \theta$	$u^2 sin^2 \theta$	$u^2 sin^2 \theta$	$u^2 \cos^2 \theta$
	(1) 2g	(2) 2g	(3) g	(4) 2g
20.	If R is the maximum h	orizontal range of a partie	cle, then the greatest hei	ght attained by it is : -
	(1) R	(2) 2R	(3) ^R / ₂	$(4) \frac{R}{4}$

	Answers												
						P	ART-I						
1.	(4)	2.	(3)	3.	(3)	4.	(3)	5.	(3)	6.	(2)	7.	(4)
8.	(2)	9.	(1)	10.	(1)	11.	(2)	12.	(3)	13.	(4)	14.	(2)
15.	(2)	16.	(1)	17.	(3)	18.	(3)	19.	(2)	20.	(2)	21.	(1)
22.	(1)	23.	(4)	24.	(1)	25.	(2)	26.	(3)	27.	(3)	28.	(1)
29.	(3)	30.	(1)										
						PA	ART-II						
1.	(2)	2.	(1)	3.	(2)	4.	(1)	5.	(3)	6.	(1)	7.	(2)
8.	(2)	9.	(2)	10.	(2)	11.	(1)	12.	(1)	13.	(2)	14.	(1)
15.	(4)	16.	(4)	17.	(3)	18.	(3)	19.	(4)	20.	(4)		