Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks : 120

Important Instructions :

- 1. The test is of 1 hour duration and max. marks 120.
- 2. The test consists 30 questions, 4 marks each.
- 3. Only one choice is correct 1 mark will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 4. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.

1. The order and degree of the differential equation
(1) 4, 1
(2) 3, 3
(3) 4, 15
(4) 4, 3
(3) 4, 15
(4) 4, 3
(1) 3
(1) 3
(2) 4
(3) 0
(4) Not defined
(4) Not defined
(4) Not defined
(5) The order of differential equation whose general solution is given by
$$\frac{k_{12}x^{x+k_2}}{y_2} + \frac{\tan(\pi/4 + k_3x)}{\cot(\pi/4 - k_3x)} + 2$$
(1) 4
(2) 3
(3) 1
(4) 2
(4) Differential equation of the family of circle touching the line x = 1 at (1,0) is
(1) y^2 = 2 (x-1) + 2y(x-1)
(4) $\frac{dy}{dx}$
(2) y^2 = 2 (x-1)^2 + y(x-1)
(4) $\frac{dy}{dx}$
(3) y^2 = (x-1)^2 + 2y(x-1)
(4) $\frac{dy}{dx}$
(4) y^2 = 2 (x-1) + y(x-1)
(5) The differential equation of family of curve y = k(x+k)³ where k is parameter is
(1) y
(1) $\frac{dy}{dx}^4 = 3\left(3y - x\frac{dy}{dx}\right)$
(2) $\left(\frac{dy}{dx}^4 = 3\left(3y - x\frac{dy}{dx}\right)$
(3) $\left(\frac{dy}{dx}\right)^4 = 27y^2\left(3y - x\frac{dy}{dx}\right)$
(4) $\left(\frac{dy}{dx}\right)^4 = 3\left(3y - x\frac{dy}{dx}\right)$
(5) The differential equation of all parabolas whose axis are parallel to the y-axis and have latus rectum a is

(1)
$$a\frac{d^2y}{dx^2} = 2$$
 (2) $\frac{d^2y}{dx^2} + a\frac{dy}{dx} = 0$ (3) $\frac{d^2y}{dx^2} = \frac{a}{2}$ (4) $\frac{xd^2y}{dx^2} = \frac{a}{2}$

Max. Time : 1 Hr.

Differential Equation

7.	The general solution of the differential equation (1) $\cos x = c \csc y$ (2) $\sin x = c \sec y$	$\frac{dy}{dx} = \text{cotx.coty is}$ (3) sin x = c cos y	(4) cos x = c sin y
		.,	$(+) \cos x = c \sin y$
	The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x^2}$	$\frac{y^2 - y - 2}{y - 2}$	
8.	The solution of the differential equation $dx = x^2$	$x^{2} + 2x - 3$ is	
	(1) $\frac{1}{3} \ln \left \frac{y-2}{y+1} \right = \frac{1}{2} \ln \left \frac{x+3}{x-1} \right + c$	(2) $\frac{1}{3} \ln \left \frac{y+1}{y-2} \right = \frac{1}{4} \ln \left \frac{x}{x} \right $	
	(3) $2\ell n \left \frac{y+1}{y-2} \right = 3\ell n \left \frac{x+3}{x-1} \right + c$	(4) $4\ln\left \frac{y-2}{y+1}\right = 3\ln\left \frac{x-2}{x+1}\right $	$\left \frac{-1}{+3}\right $ + C
9.	The solution of differential equation $e^{dy/dx} = x+1$,	y(0) = 3 is	
	(1) $y = x \ell n x - x + 2$	(2) $y = (x+1)\ell n(x+1) - x - x - x - x - x - x - x - x - x - $	+3
	(3) $y = x \ell nx + x + 3$	(4) $y = -(x+1)\ell n x+1 +$	x+3
10	The general solution of the differential equation	$ln\left(\frac{dy}{dx}\right) = x + y$ is	
10.	(1) $e^{-x} + e^{-y} = c$ (2) $e^{x} + e^{-y} = c$	(3) $e^{x} + e^{y} = c$	(4) $e^{-x} + e^{y} = c$
	dv		
11.	The solution of the differential equation $\frac{dy}{dx} = (2)$	$(2x + y)^2$ is	
	-	$1 \frac{2x+y+\sqrt{2}}{2}$	
	(1) $\frac{1}{2\sqrt{2}} \ln \left \frac{2x + y - \sqrt{2}}{2x + y - \sqrt{2}} \right = x + c$	(2) $\frac{1}{2\sqrt{2}} \ln \left \frac{2x + y + \sqrt{2}}{2x + y - \sqrt{2}} \right $	$= \mathbf{x} + \mathbf{c}$
	(3) $\frac{1}{\sqrt{2}} \tan^{-1} \frac{(2x+y)}{\sqrt{2}} = x + c$	(4) $\tan^{-1}\frac{(2x+y)}{\sqrt{2}} = x + \frac{1}{\sqrt{2}}$	C
	(3) $\sqrt{2}$ tan $\sqrt{2}$ - x + c	(4) $\sqrt{2} = x + 1$	0
	The exclusion of the differential equation $\frac{dy}{dy}\sqrt{1+t}$	$\overline{\mathbf{x} + \mathbf{v}}$	
12.	The solution of the differential equation dy	= x+y –1 is 2t+k₁lr	$ t-1 +k_2 \ell n t+2 = x + c,$
	where t = $\sqrt{x + y + 1}$, then $ k_1 + k_2 =$		
	(1) 10/3 (2) 2	(3) 3	(4) 4/3
	$\frac{dy}{dt} = -$	$\frac{1}{y+1}$ is	
13.			
	(1) $x = ce^{y} - y - 2$ (2) $y = x + ce^{y} - 2$	(3) x + ce ^{-y} - y=2	(4) $x + ce^{y} = y + 2$
14.	The solution of the differential equation $(2\sqrt{xy} -$	-x) $dy + y dx = 0$ is	
	(1) $\ln y + \sqrt{x/y} = c$ (2) $e^y = \sqrt{x/y} + c$	(3) $\ln y = \sqrt{x/y} + c$	(4) $e^{y} + \sqrt{x/y} = c$
			、 ·/
45	The solution of differential equation $\left(x\sin\frac{y}{x}\right)dy$	$v = \left(y\sin\frac{y}{x} - 2x\right)dx$ is	
15.	•		(\mathbf{V})
	(1) $\sin\left(\frac{y}{x}\right) = 2\ln x + c$ $\cos\left(\frac{y}{x}\right) = \ln x + c$	(3) $\frac{\sin\left(\frac{1}{x}\right)}{\sin\left(\frac{1}{x}\right)} = \sqrt[4]{nx + c}$	$\frac{\cos\left(\frac{1}{x}\right)}{(4)} = 24nx + c$
	• •		

Differential Equation

16.	The solution of the diffe	erential equation dx		$\frac{2y+3}{y+y+4} = \frac{y^2}{182} = \frac{x^2}{2}$ (3) 7	$-\lambda_1 y + \lambda_2 x + c$ (4) 1 then $ \lambda_1 + \lambda_2 =$
17.	The general solution of $\tan^{-1}\left(\frac{x}{y}\right) + \ln y + c$ (1)	$y^{2}dx+(x^{2}-xy+y^{2})dy$ $= 0$	<i>v</i> = 0	$\tan^{-1}\left(\frac{x}{y}\right) + \ln y + c$	
	$(3) \ln\left(y + \sqrt{x^2 + y^2}\right) + 4$	²ny = c	4	(4) $\sin^{-1}\left(\frac{x}{y}\right) + \ln y = c$	
18.	The solution of differen (1) 2xe ^{-y} =cx ² –1	tial equation $\frac{dy}{dx} + \frac{1}{2}$ (2) $2xe^y = x^2 + c$	$\frac{1}{x} = \frac{e^{y}}{x^2}$	is (3) 2xe ^{-y} =cx ² +1	(4) xe ^{-y} =cx ² +1
19.	The solution of the diffe (1) xy = y³ℓny+c	erential equation, ^d (2) xy = y²ℓny+c	$\frac{\mathrm{lx}}{\mathrm{ly}} = \frac{1}{2\mathrm{y}^2}$	$\frac{y}{(ny + y - x)}$ is (3) xy = y ⁵ lny+c	(4) xy = y⁴ℓny+c
20.	The solution of the diffe	erential equation dy (2) 1/3	x +yco	tx =sinx is ysinx = k (2x (3) 1/4	x –sin2x) +c then k is (4) 1/5
21.	The solution of the difference (1) xy+ $\frac{1}{2} \ln \left \frac{1-y}{1+y} \right = c$	ornial oquation		$\frac{y+y^3}{x+xy^2}$ is	
22.	The solution of the diffe	erential equation $\frac{dx}{dy}$	$\frac{x}{y} + \frac{x}{y} =$	(3) $y = x + \tan^{-1}y + c$ x^{3} is (3) $xy^{2} + cx^{2}y^{2} = 1$	
23.	The solution of the difference $\frac{x^2}{y} = \frac{1}{y} - 2\ell ny + c$	erential equation		2xy -1-2y (3)x²y=ℓny+c	$(4) \frac{x^2}{y} = 2\ell ny + c$
24.	The solution of the diffe		y ⁴ +y)dx		
25.	The solution of the difference of the differenc	erennal equation		$= x^{2} + 2y^{2} + \frac{y^{4}}{x^{2}}$ is (3) $\frac{2y}{x} = \frac{1}{x^{2} + y^{2}} + c$	(4) $2y = \frac{x^2 + y^2}{x} + c$

- **26.** Tangent to a curve intersect the y-axis at a point P. A line perpendicular to this tangent through point 'P' also passes through another point (1,0). The differential equation of the curve is
 - (1) $y \left(\frac{dy}{dx}\right)_{=x} \left(\frac{dy}{dx}\right)^2_{+1}$ (2) $x \left(\frac{dy}{dx}\right)^2_{=y+c}$ (3) $y \frac{dy}{dx}_{+x=1}$ (4) $x \frac{dy}{dx}_{+y=1}$
- 27. A normal at any point (x,y) to the curve y=f(x) cut a triangle of unit area with the coordinate axes. The differential equation of the curve is
 - (1) $y^2 x^2 \left(\frac{dy}{dx}\right)^2 = 4 \frac{dy}{dx}$ (2) $y^2 - x^2 \left(\frac{dy}{dx}\right)^2 = \frac{dy}{dx}$ (3) $x + y \frac{dy}{dx} = y$ (4) $y^2 \left(\frac{dy}{dx}\right)^2 + 2(xy - 1) \frac{dy}{dx} + x^2 = 0$

28. Spherical rain drop evaporates at a rate proportional to its surface area. The differential equation corresponding to the rate of change of the radius of the rain drop if the constant of proportionality is k > 0, is

$$\begin{array}{ccc} \frac{d\mathbf{r}}{dt} \\ (1) & \frac{d\mathbf{r}}{dt} \\ +\mathbf{k} = 0 \end{array} \qquad (2) & \frac{d\mathbf{r}}{dt} \\ -\mathbf{k} = 0 \qquad (3) & \frac{d\mathbf{r}}{dt} \\ =\mathbf{k}\mathbf{r} \qquad (4) & \frac{d\mathbf{r}}{dt} \\ =2\mathbf{k}\mathbf{r} \end{aligned}$$

29. Let I be the purchase value of an equipment and v(t) be the value after it has used for t years. The v(t)

depreciates at a rate given by differential quation $\frac{dv(t)}{dt} = -K(T - t^2)$, where k>0 is a constant and T is the total life in years of the equipment. Then the scrap value v(T) of the equipment is.

(1)
$$I - k(T^2 - T^3)$$
 (2) $I - k(T^2 - \frac{T^3}{3})$ (3) $I + k(T^2 - \frac{T^3}{3})$ (4) $I + \frac{T^3}{3}$
Solution of $y = x \frac{dy}{dx} + 3 \frac{dy}{dx} - 4 \left(\frac{dy}{dx}\right)^2$ is
(1) $y = cx + 3c - c^2$ (2) $y = cx - c^3$ (3) $y = cx + c^3$ (4) $y = cx + 3c - 4c^2$

Practice Test (JEE-Main Pattern)	
OBJECTIVE RESPONSE SHEET (ORS)	

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

PART - II : PRACTICE QUESTIONS

Marked questions may have for revision questions.

* Marked Questions may have more than one correct option.

1. Let f be a real-valued differentiable function on **R** (the set of all real numbers) such that f(1) = 1. If the y-intercept of the tangent at any point P(x, y) on the curve y = f(x) is equal to the cube of the abscissa of P, then the value of f(-3) is equal to

30.

2.*	Let f(x) be a function such that f''(x) = f'(x) + e ^x and f'(0) = 1, f(0) = 0, then (1) $ln \left(\frac{(f(2))^2}{4} \right)_{= 4}$ (2) Range of f(x) is $\left[-\frac{1}{e}, \infty \right]$ (3) for x > -2, tangent at any point of f(x) lies below the curve (4) for x < -1, f(x) is decreasing function. The function f(θ) = $\frac{d}{d\theta} \int_{0}^{\theta} \frac{dx}{(1 - \cos 2\theta)(1 + \cos 2x)}$ satisfies the differential equation									
3.*										
	(1) $\frac{df}{d\theta}$ + 4f(θ). cot2 θ =		df							
	(1) $d\theta + 4f(\theta)$. cot2 $\theta =$	= 0	(2) $\frac{d\theta}{d\theta} - 2f(\theta).tan2\theta =$	4cosec ³ 2θ						
	(3) $f(\theta) = \csc^2 2\theta$		(4) $f(\theta) = -(\csc 2\theta).(\alpha$	cot20)						
4.*	Consider the family of all circles whose centers lie on the straight line $y = x$. If this family of circles is represented by the differential equation $Py'' + Qy' + 1 = 0$, where P, Q are functions of x, y and y' (here y' $\frac{dy}{dx}, y'' = \frac{d^2y}{dx^2}$), then which of the following statements is (are) true? (1) P = y + x (2) P = y - x (3) P + Q = 1 - x + y + y' + (y')^2 (4) P - Q = x + y - y' - (y')^2									
5.	completely. If the rate	-	proportional to the surf	It is filled with a volatile liquid ace area of the liquid in contact d evaporates is. (4) 4H/k						
6*.	that $BP : AP = 3 : 1$, given that $BP : AP = 3$.	ven that f(1) = 1, then	cuts the x-axis and y-a	kis at A and B respectively such						
	(1) equation of curve is	x dx - 3y = 0	(2) normal at (1, 1) is 3	y - x = 2 dy						
	(3) curve passes throug	gh (2, 1/8)	(4) equation of curve is	a x dx + 3y = 0						
7.	The solution of $x^2 y_{1^2}$ +	xy y₁ – 6y² = 0 are								
	(1) $y = Cx^2$	(2) $x^3 y = C$	(3) $\frac{1}{2} \ell n y = C + \ell n x$	(4) All of these						
8.	The solution of the diffe (1) $y = c_1 e^x + c_2$	erential equation $\frac{d^2 y}{dx^2} =$ (2) y = c_1e^{-x} + c_2	$\frac{dy}{dx}_{is -}$ (3) $y = c_1 e^{2x} + c_2$	(4) $y = c_1 e^{-2x} + c_2$						
9.				$\frac{1}{8}, y_1(0) = 0 \text{ and } y_2(0) = 1 \text{ is } -$ (4) 56y = ($e^{8x} + 8x$) + 7						
10.		erential equation $y_1 y_3 = 3$ (2) $x = A_1 y + A_2$	•	(4) $y = A_1 x + A_2$						
◆										

¢

Differential Equation

		x dx-y	$dy = \sqrt{1 + x^2 - y^2}$				
11.	The solution of differen	ntial equation $\frac{x dx - y}{x dy - y}$	$\frac{dx}{dx} = \sqrt{\frac{x^2 - y^2}{x^2 - y^2}}$ is				
		$\overline{-y^2} = \frac{c(x+y)}{\sqrt{x^2 - y^2}}$		$\overline{-y^2} = \frac{c(x+y)}{x^2 + y^2}$			
12.		ons of all conics whose c		of order :			
12.	(1) 2	(2) 3	(3) 4	(4) 5			
		x	+ y + 1				
13.	If gradient of a curve a	It any point P(x, y) is $2y$	$^{+2x+1}$ and it passes th	rough origin, then curve is			
	3x	+ 3y + 2	3x	+ 3y + 2			
	(1) $6y + 3x = ln$ $\frac{3x}{3x}$	2	(2) $6y - 3x = ln$	2			
	3x	+ 3y + 2	3x	+ 3y + 2			
	(3) $5y - 3x = ln$	2	(4) $6y - 5x = ln$	2			
			d ² v				
14.	The dearee of the diffe	erential equation $e^{(d^3y/dx^3)}$	$\int_{1}^{2} + x \frac{d^{2}y}{dx^{2}} + y = 0$ is				
	(1) 1	(2) 2		ot defined			
15.	The equation of curve	passing through (3, 4) a	nd satisfying the differen	tial equation			
	$(dy)^2$ dy						
	$y \left(\frac{dy}{dx}\right)^2 + (x-y) \frac{dy}{dx}$	-x = 0 is					
	(1) $x - y + 1 = 0$	(2) $x + y + 1 = 0$	(3) $x + y - 1 = 0$	(4) $2x + y - 1 = 0$			
16.	The differential equation	on of all conics whose ax	tes coincide with the axe	s of coordinates is of order			
	(1) 2	(2) 3	(3) 4	(4) 1			
		d²v					
17.	The differential equation	$\frac{d^2y}{dx^2} + y + \cot^2 x = 0 r$	must be satisfied by				
		-		x)			
	(1) $y = 2 + c_1 \cos x + c_1$	$\sqrt{c_2}$ sin x	(2) y = cos x . ℓn	$\left(\frac{1}{2}\right)_{+2}$			
	(3) $y = sinx + cos x$		(4) all the above				
			$\frac{(x+1)^2 + (y-1)^2}{(x+1)}$	3)			
18.	A curve passes throug	h (2, 0) and slope at poin	nt P(x, y) is $(x+1)$. The area between curve and			
	x-axis in 4th quadrant	is					
	(1) 2 / 3	(2) 1 / 3	(3) 2	(4) 4 / 3			

	AP	SP /	Ansv	vers									
						ΡΑ	RT-I						
1.	(3)	2.	(4)	3.	(3)	4.	(3)	5.	(3)	6.	(1)	7.	(2)
8.	(4)	9.	(2)	10.	(2)	11.	(3)	12.	(2)	13.	(1)	14.	(1)
15.	(4)	16.	(3)	17.	(1)	18.	(3)	19.	(2)	20.	(3)	21.	(2)
22.	(2)	23.	(1)	24.	(2)	25.	(3)	26.	(1)	27.	(4)	28.	(1)
29.	(2)	30.	(4)										
						ΡΑ	RT-II						
1.	(1)	2.*	(1,2,3	8,4)	3.*	(2,4)	4.*	(2,3)	5.	(1)	6*.	(2,3,4	ł)
7.	(4)	8.	(1)		9.	(2)	10.	(1)	11.	(1)	12.	(2)	
13.	(2)	14.	(4)		15.	(1)	16.	(1)	17.	(2)	18.	(4)	