(4) 294.46

Additional Problems For Self Practice (APSP)

PART - I : PRACTICE PAPER

Max. Marks : 120

Important Instructions

(1) 420

- 1. The test is of 1 hour duration.
- 2. The Test Booklet consists of 30 questions. The maximum marks are 120.
- 3. Each question is allotted 4 (four) marks for correct response.

(2) 375

4. Candidates will be awarded marks as stated above in Instructions No. 3 for correct response of each question.

¹/₄ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.

- 5. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 4 above.
- 1. The sodium salt of methyl orange has 7% sodium. What is the minimum molecular weight of the compound ?

(3) 328.57

(4) 0.40 mL and 6.02 × 10²¹

112.0 mL of NO₂ at STP was liquefied, the density of the liquid being 1.15 g mL⁻¹. Calculate the volume and the number of molecules in the liquid NO₂.
(1) 0.10 mL and 3.01 x 10²²
(2) 0.20 mL and 3.01 x 10²¹

(3) 0.20 mL and 6.02 × 10²³

- Common salt obtained from sea water contains 96% NaCl by mass. The approximate number of molecules of NaCl present in 10.0 g of the common salt is : (At. wt. Na = 23)
 (1) 10²¹
 (2) 10²²
 (3) 10²³
 (4) 10²⁴
- 4. X and Y are two elements which form $X_2 Y_3$ and X_3Y_4 . If 0.20 mol of X_2Y_3 weighs 32.0 g and 0.4 mol of X_3Y_4 weighs 92.8 g, the atomic weights of X and Y are respectively (1) 16.0 and 56.0 (2) 8.0 and 28.0 (3) 56.0 and 16.0 (4) 28.0 and 8.0
- A 10.0 g sample of a mixture of calcium chloride and sodium chloride is treated with Na₂CO₃ solution. This calcium carbonate is heated to convert all the calcium to calcium oxide and the final mass of calcium oxide is 1.62 g. The percentage by mass of calcium chloride in the original mixture is :

 (1) 15.2%
 (2) 32.1%
 (3) 21.8%
 (4) 11.07%
- **7.** Minimum amount of Ag_2CO_3 (s) required to produce sufficient oxygen for the complete combustion of C_2H_2 which produces 11.2 ltr of CO_2 at S.T.P after combustion is: [Ag = 108]

Max. Time : 1 Hr.

8. Consider the following statements : 1. If all the reactants are not taken in their stoichiometric ratio, then at least one reactant will be left behind. **2.** 2 moles of $H_2(g)$ and 3 moles of $O_2(g)$ produce 2 moles of water. 3. equal wt. of carbon and oxygen are taken to produce CO₂ then O₂ is limiting reagent. The above statements 1, 2, 3 respectively are (T = True, F = False)(1) T T T (2) F T F (3) F F F (4) T F T In the reaction $4A + 2B + 3C \longrightarrow A_4 B_2 C_3$ what will be the number of moles of product formed. Starting 9. from 2 moles of A, 1.2 moles of B & 1.44 moles of C : (1) 0.5 (2) 0.6 (3) 0.48 (4) 4.6410. Which of the following equations is a balanced one : (1) $5BiO_{3^{-}} + 22H^{+} + Mn^{2+} \longrightarrow 5Bi^{3+} + 7H_{2}O + MnO_{4^{-}}$ (2) $5BiO_{3}^{-} + 14H^{+} + 2Mn^{2+} \longrightarrow 5Bi^{3+} + 7H_{2}O + 2MnO_{4}^{-}$ (3) $2BiO_{3^{-}} + 4H^{+} + Mn^{2+} \longrightarrow 2Bi^{3+} + 2H_2O + MnO_{4^{-}}$ (4) $6BiO_{3^{-}} + 12H^{+} + 3Mn^{2+} \longrightarrow 6Bi^{3+} + 6H_{2}O + 3MnO_{4^{-}}$ 11. During the disproportionation of lodine to iodide and iodate ions, the ratio of iodate and iodide ions formed in alkaline medium is : (1) 1 : 5(3) 3 : 1 (4) 1 : 3 (2) 5 : 1 12. How much NaNO₃ must be weighed out to make 50 ml of an aqueous solution containing 70 mg of Na+ per mL? (1) 12.394 g (2) 1.29 g (3) 10.934 g (4) 12.934 g 13. The strength of 10^{-2} M Na₂CO₃ solution in terms of molality will be (density of solution = 1.10 g mL⁻¹). (Molecular weight of $Na_2CO_3 = 106 \text{ g mol}^{-1}$) (2) 1.5 × 10⁻² (1) 9.00×10^{-3} (3) 5.1 × 10^{-3} (4) 11.2×10^{-3} 14. The temperature at which molarity of pure water is equal to its molality is : (1) 273 K (2) 298 K (3) 277 K (4) None 15. What is the molarity of H₂SO₄ solution that has a density 1.84 g/cc at 35°C and contains 98% by weight-(1) 4.18 M (2) 8.14 M (3) 18.4 M (4) 18 M 16. 5.85 g of NaCl is dissolved in 1 L of pure water. The number of ions in 1 mL of this solution is (1) 6.02×10^{19} (2) 1.2 × 10²² (3) 1.2×10^{20} (4) 6.02×10^{20} 17. Suppose you want an acidic solution to carry out a chemical reaction with 2 moles of NaOH. Which sample of acid is the best choice for you. (1) 1 M H₂SO₄ (50 Rs per lt.) (2) 1 M H₂SO₄ (56 Rs per lt.) (3) 1 M HCl (30 Rs per lt.) (4) 1 M HCl (27 Rs per lt.) 18. The correct expression relating molality (m), molarity (M), density of solution (d) and molar mass (M₂) of solute is : . .

(1) m =
$$\frac{M}{d + MM_2}$$
 × 1000 (2) m = $\frac{M}{1000 d - MM_2}$ × 1000

MOLE CONCEPT

	d	$+MM_{2}$	2		$\underline{1000d-MM_2}$					
	(3) m =	М	× 1000		(4) m =	M	× 1000		
19.	A compound	ind is c I is 162	omposed what is	d of 74% C, 8 its molecular fe	3.7% H ar ormula ?	nd 17.3%	N by mass	. If the molecular mass of the		
	(1) C₅H ₇ N		(2) C10H16N2	(3) C8H14N3		(4) C ₁₀ H ₁₄ N ₂		
20.	Calculate 1 (1) 1866.6	the volu 7 L O2.	ime of O (2	a needed for co) 3733.33 L O	ombustion 2. (3	of 1 kg of) 933.33 L	carbon at S . O2.	TP. C + O ₂ $\xrightarrow{\Delta}$ CO ₂ . (4) 4666.67 L O ₂ .		
21.	Li metal is for reaction	one of n is :	the few s	ubstances tha	t reacts di	ectly with	molecular n	itrogen. The balanced equation		
				6Li(s) +	N2(g)	→ 2Li₃N(s	.)			
	How many molecular	/ grams nitroge	of the pin?	oduct, lithium	nitride, ca	n be prepa	ared from 3.	5g of lithium metal and 8.4 g of		
	(1) 21.00 ູ	g of Li₃ l	N. (2) 2.91 g of Li₃	N. (3) 5.83 g of	f Li₃ N.	(4) 10.50 g of Li₃ N.		
22.	Potassium contains 0 be produce	i super .15 mol ed ?	oxide, K KO ₂ and	CO2, is used in I 0.10 mol H2C	n rebreath), what is tl	ing gas m ne limiting	asks to gei reactant? F	nerate O ₂ . If a reaction vessel low many moles of oxygen can		
			21	<o₂ +="" 2h₂o="" th="" −<=""><th>\rightarrow 2KOF</th><th>1 + H2O2 +</th><th>O2</th><th></th></o₂>	\rightarrow 2KOF	1 + H2O2 +	O2			
	(1) H ₂ O lin (3) H ₂ O lin	niting re niting re	eagent, 0 eagent, 0	.05 mol of O2. .075 mol of O2	(2) KO2 limit) KO2 limi	ing reagent, ting reagent	0.05 mol of O2. , 0.075 mol of O2.		
23.	A 1 g sam equation.	ple of k	(ClO₃ wa	s heated unde	er such cor	nditions that	at a part of i	t decomposed according to the		
	(i) 2KC and	CIO₃ — d the re	\rightarrow 2KC maining (l + 3O2 underwent cha	inge accor	ding to the	equation			
	(ii) 4K	CIO ₃ —	\rightarrow 3KC	SIO4 + KCI						
	If the amo	unt of (D ₂ evolve	ed was 146.8 r	mL at NTP	, calculate	the percen	tage by weight of KCIO₄ in the		
	(1) 29.3 %		(2) 49.8 %.	(3) 62.5 %.		(4) 87.1 %.		
24.	Equal weig	ghts of	mercury	and I_2 are all	owed to re	eact comp	letely to for	m a mixture of mercurous and		
	mercuric id	odide le	aving no	ne of the react	ants. Calc	ulate the ra	atio of the w	eights of Hg_2I_2 and HgI_2 formed.		
	(1) 1 :0.6	53	(2) 0.732 :1	(3) 1 : 0.52	3	(4) 0.523 :1		
25.	64 g of a n sulphates reactions a	nixture obtaine are,	of NaCl a ed was fo	and KCI were to bund to be 76	reated with 5 g. What	concentra are the m	ated sulphur lass percen	ic acid. The total mass of metal ts of NaCl in the mixture. The		
	2	NaCl +	H2SO4 —	\rightarrow Na ₂ SO ₄ + 2	2 HCI ;	2 KCl + ł	H₂SO₄ −→	K2SO4 + 2 HCl		
	(1) 42.89 9	% NaCl	(2) 84.9 % NaCl	(3) 31.5 % N	NaCl	(4) 63.1 % NaCl		
26.	A piece of by mass).	alumin After th	ium weig e metal is	hing 2.7 g is h s carefully diss	neated with solved the s	175.0 ml c solution is	of H₂SO₄ (sp diluted to 40	9. gr. 1.2 containing 25% H₂SO₄ 00ml. What is the molarity of the		
	free H₂SO (1) 1.056 N	₄ in the M	resulting (2	solution.) 0.560 M	(3) 0.312 M		(4) 0.198 M		

MOLE CONCEPT

- 27. 100 ml of 0.15 M solution of Al₂(SO₄)₃, the density of the solution is 1.5 g/ml. Report the no. of Al³⁺ ions in this weight. (1) 1.8×10^{25} ions (2) 6×10^{22} ions (3) 1.8×10^{23} ions (4) 1.8×10^{22} ions
- 28. 5 g sample of CuSO₄. 5H₂O was dissolved in water. BaCl₂ solution was mixed in excess to this solution. The precipitate (BaSO₄) obtained was washed and dried, it weighed 4.66 g. What is the % of SO₄²⁻ by weight in the sample.

(1) 76.8% (2) 38.4% (3) 51% (4) 19.2%

29. Calcium phosphide (Ca₃ P₂) formed by reacting calcium orthophosphate (Ca₃ (PO₄)₂) with magnesium was hydrolysed by water. The evolved phosphine (PH₃) was burnt in air to yield phosphorus pentoxide (P₂ O₅). How many grams of magnesium metaphosphate would be obtained, if 19.2 g of magnesium were used for reducing calcium phosphate.

30. At room temperature, the density of water is 1.0 g/ml and the density of ethanol is 0.789 g/ml. What volume of ethanol contains the same number of molecules as are present in 175 ml of water ?
(1) 418.95 ml.
(2) 736.33 ml.
(3) 566.82 ml.
(4) 911.84 ml.

Practice Test (JEE-Main Pattern)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

OBJECTIVE RESPONSE SHEET (ORS)

PART - II : PRACTICE QUESTIONS

- 1.The volume of a gas in discharge tube is 1.12×10^{-7} ml at STP then the number of molecule of gas in
the tube is :
(1) 3.01×10^4 (2) 3.01×10^{15} (3) 3.01×10^{12} (4) 3.01×10^{16} 2.A person adds 1.71 gram of sugar ($C_{12}H_{22}O_{11}$) in order to sweeten his tea. The number of carbon atoms
added are (mol. mass of sugar = 342)
(1) 3.6×10^{22} (2) 7.2×10^{21} (3) 0.05(4) 6.6×10^{22}
- **3.** A hydrocarbon contains 75% of carbon. Then its molecular formula is :

CH	EMISTRY FOR JE	E		MOLE CONCEPT				
•	(1) CH4	(2) C ₂ H ₄	(3) C ₂ H ₆	(4) C ₂ H ₂				
4.	The percentage val (1) 46	ue of nitrogen in urea is (2) 85	about (3) 18	(4) 28				
5.	1.2 g of Mg (At mas (1) 0.05 mol	s 24) will produce MgO (2) 40 g	equal to : (3) 40 mg	(4) 4 g				
6.	4 g of hydrogen is (1) 2.5 g	ignited with 4 g of oxyge (2) 0.5 g	n, the amount of water f (3) 4.5 g	ormed is ? (4) 8 g				
7.	What volume of 0.1 which the molarity o (1) 400 mL	0 M H₂SO₄ must be adde of the H₂SO₄ is 0.050 M 3 (2) 50 mL	ed to 50 mL of a 0.10 M ? (3) 100 mL	NaOH solution to make a solution in (4) 150 mL				
8.	What volume of a 0 (1) 100 mL	.8 M solution contains 10 (2) 125 mL	00 millimoles of the solu (3) 500 mL	te? (4) 62.5 mL				
9.ൔ	Phosphorus has the (1) Phosphorous ac (3) Hypophosphoro	e oxidation state of +3 in tid us acid	(2) Orthophosphor (4) Metaphosphori	(2) Orthophosphoric acid(4) Metaphosphoric acid				
10.	Which of the followi (1) H₂SO₄	ng behaves as both oxic (2) SO ₂	lising and reducing ager (3) H₂S	nts ? (4) HNO₃				
11.	If 1/2 moles of oxyg reaction is (AI = 27)	en combine with alumini	um to form Al ₂ O ₃ then w	reight of Aluminium metal used in the				
	(1) 27 g	(2) 18 g	(3) 54 g	(4) 40.5 g				
12.	One mole of potassium chlorate (KCIO ₃) is thermally decomposed and excess of aluminium is burn							
	(1) 1	ct. How many mol of alur (2) 1.5	ninium oxide (Al2O3) are (3) 2	(4) 3				
		M						
13.	A solution of FeCl ₃	is $\frac{1}{30}$ its molarity for CI-	ion will be :					
	Μ	M	М	М				
	(1) 90	(2) 30	(3) 10	(4) 5				
14.	In the reaction xHI	+ yHNO ₃ \longrightarrow NO +	I ₂ + H ₂ O :					
	(1) x = 3, y = 2	(2) x= 2, y = 3	(3) x = 6, y = 2	(4) x = 6, y = 1				
15.	When SO ₂ is pass changes from :	ed through an acidified	solution of potassium of	dichromate, the oxidation state of S				
	(1) + 4 to 0	(2) + 4 to +2	(3) + 4 to +6	(4) + 6 to +4				
16.	Oxidation state of n Compound (1) [Co(NH ₃) ₅ Cl]Cl ₂ (2) NH ₂ OH (3) (N ₂ H ₅) ₂ SO ₄ (4) Mg ₃ N ₂	itrogen is correctly given Oxidation state 0 + 1 + 2 - 3	for					
17.	Which of the followi	ng reaction indicates the	e oxidising behaviour of	H2SO4:				
	(1) 2PCI ₅ + H ₂ SO ₄	→ 2POCl ₃ + 2HCl + SO ₂ (Cl ₂ (2) 2NaOH + H ₂ SC	$D_4 \rightarrow Na_2SO_4 + 2H_2O$				
	(3) NaCl + H ₂ SO ₄ –	→ NaHSO₄ + HCl	(4) 2HI + H₂SO₄ →	(4) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$				

MOLE CONCEPT

18.	10 mL of 0.5 N HCl, 30 mL of 0.1 N HNO $_3$ and 75 mL of 0.1 M H $_2$ SO $_4$ are mixed together. The normality of the resulting solution will be					
	(1) 0.2 N	(2) 0.1 N	(3) 0.4 N	(4) 0.5 N		
19.	100 mL of conc. H ₂ SO ₄	(d = 1.8 g/mL) is mixed w	vith 100 mL H ₂ O (d = 1.0	g/mL), mass per cent (by mass		
	of solution) of H_2SO_4 is	:				
	(1) 50	(2) 60.0	(3) 64.3	(4) 35.7		
20.	A sodium hydroxide solu volume of this solution v (1) 22.5 mL	ution containing 40% by will be required in the pre (2) 17.5 mL	weight of pure NaOH has eparation of 500 mL of a (3) 20.5 mL	s a specific gravity of 1.43. What 0.5 N NaOH solution? (4) 25.5 mL		
21.	What volume of HCI sol to react with zinc (Zn) in	ution of density 1.2 g/cm order to liberate 4.0 g o	³ and containing 36.5% f hydrogen ?	by weight HCl, must be allowed		
	(1) 333.33 ml	(2) 500 ml	(3) 614.66 ml	(4) None of these		
22.	A 0.250-g sample of (Nevolved was absorbed sample was	NH4)2 SO4 was boiled wi completely by 35 mL of	ith an excess of NaOH 0-1 H₂SO₄. The percen	solution and the ammonia gas tage purity of $(NH_4)_2 SO_4$ in the		
	(1) 84.8	(2) 87.8	(3) 98.6	(4) 92.4		
23.	When the hydrocarbon from (A) to (B) is 4.91.	(A) $C_n H_{2n-2}$ is reduced t What is the value of n?	o (B) $C_n H_{2n+2}$, the increa	ase in the % values of hydrogen		
	(1) 4	(2) 5	(3) 6	(4) 7		
24.	$X + Y \rightarrow X_2 Y$					
	$X_2Y + Z \rightarrow X_2Z_2 + YZ$					
	$VZ + V \rightarrow V_3Z$					
	If the above reaction are the number of moles of	e carried out by taking 2 y₃z formed. If reaction ta	moles each of x,y, and z kes in steps :	z in a closed container then find		
	1	1	1	2		
	(1) 2	(2) 3	(3) 4	(4) 3		
25.	If 0.5 mol of Ba Cl ₂ is that can be formed is :	mixed with 0.2 mol of 1	Na₃PO₄, the maximum	number of mol of Ba ₃ (PO ₄) ₂		
	(1) 0.7	(2) 0.5	(3) 0.30	(4) 0.10		
26.	Ca ₃ (PO ₄) ₂ (s) and H ₃ PO ₂ compounds respectively	s(s) contains same numb / is :	per of 'P' atom then the	ratio of oxygen atom in the two		
	8	2		<u>4</u>		
	(1) 3	(2) 3	(3) 3	(4) 3		
27.	The weight of quick lime	e obtained by strongly he	ating 25 gm of marble is	;		
	(1) 14 gm	(2) 28 gm	(3) 42 gm	(4) 56 gm		

	APSP Answers												
	PART - I												
1.	(3)	2.	(2)	3.	(3)	4.	(3)	5.	(2)	6.	(1)	7.	(2)
8.	(1)	9.	(3)	10.	(2)	11.	(1)	12.	(4)	13.	(1)	14.	(3)
15.	(3)	16.	(3)	17.	(1)	18.	(2)	19.	(4)	20.	(1)	21.	(3)
22.	(1)	23.	(2)	24.	(4)	25.	(1)	26.	(4)	27.	(4)	28.	(2)
29.	(4)	30.	(3)										
	PART - II												
1.	(3)	2.	(1)	3.	(1)	4.	(1)	5.	(1)	6.	(3)	7.	(3)
8.	(2)	9.	(1)	10.	(2)	11.	(2)	12.	(1)	13.	(3)	14.	(3)
15.	(3)	16.	(4)	17.	(4)	18.	(1)	19.	(3)	20.	(2)	21.	(1)
22.	(4)	23.	(2)	24.	(1)	25.	(4)	26.	(4)	27.	(1)		
		SP S	olut	ions									
	•					ÞΔ							
		m	ass of s	sodium		17	2	2					
1.	% of	Na = m	olecula	r mass	× 100	⇒	7 = 1	. <u>.</u> M × 100)				
		23×100		-									
	M =	1	= 328.0	0									
2.	Mole	of NO ₂ =	22400	= 5 × 10)- ³								
									Ma	ass ().23		
	Mass Numl	of NO2 : per of mo	= 5 × 10 plecule =	^{–3} × 46 = = 5 × 10 [–]	= 0.23 gr ³ × 6.02	n ; 3 × 10 ²³	Volun = 3.1 ×	ne of NC 10 ²¹ .	$D_2 = Der$	nsity = 1	1.15 = 0	.2 ml	
3.	Mass	of NaCl	= 10 × 0	0.96 = 9	6 g								
	mole	s of NaC	9.6 1 - 58.5										
	110163		9	.6									
	no. of molecules = $\frac{58.5}{8.5} \times 6.023 \times 10^{23} \simeq 10^{23}$												

4.
$$\frac{32}{2x+3y} = 0.2$$
; $\frac{92.8}{3x+4y} = 0.4$

- Hence: x = 56 & y = 16.
- 5. $CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 + 2 NaCl$ $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$

Mole of CaCl₂ = mole of CaCO₃ = mole of CaO = $\begin{pmatrix} 1.62\\ 56 \end{pmatrix}$

Mass of CaCl₂ = $\begin{pmatrix} 1.62 \\ 56 \end{pmatrix}$ Molar mass of CaCl₂ = $\begin{pmatrix} 1.62 \\ 56 \end{pmatrix}$ × 111 g. <u>3.21</u>

% of CaCl₂ = $10 \times 100 = 32.1$ %.

- 6. KI is limiting reagent
 - \therefore 3 mole of KI will give 33 mole of NO₂ according to stoichiometry.

 $Ag_2CO_3 (s) \rightarrow 2Ag (s) + CO_2 (g) + \frac{1/2}{O_2 (g)}$ 7. $C_2H_2 + \frac{5/2}{O_2} \rightarrow 2CO_2 + H_2O$ By Stoichiometry of reaction Moles of CO₂ formed = $\frac{11.2}{22.4} = \frac{1}{2}$ Moles of O₂ required = $\frac{5}{4} \times \frac{1}{2} = \frac{5}{8}$ Moles of Ag₂CO₃ required = 2 x $\frac{5}{8} = \frac{5}{4}$ Mass of Ag₂CO₃ required = $\frac{1}{4}$ × 276 = 345 g 8. (1) It is a fact. (2) $2H_2 + O_2 \longrightarrow 2H_2O$ Initial mole 2 3 0 final mole 0 3-1 =2 2 + $O_2 \longrightarrow CO_2$ (3) C w w 32 12

Here C is limiting reagent.

9. 2B 3C - $\rightarrow A_4B_2C_3$ 4A + + 1.2 Initial mole 2 1.44 0 0.48 final mole 0 C is limiting reagent. \therefore moles of A₄B₂C₃ is 0.48. Reduction $BiO_3^- + Mn^{2+} \longrightarrow Bi^{3+} + MnO_4^-$ Oxidation 10. (i) $2e + 6H^+ + BiO_3^- \longrightarrow Bi^{3+} + 3H_2O$ (ii) $4H_2O + Mn^{2+} \longrightarrow MnO_4^- + 8H^+ + 5e$ (i) $\times 5 + (ii) \times 2$, we get 14 H⁺ + 5 BiO₃⁻ + 5Mn²⁺ $\longrightarrow 5Bi^{3+} + 2MnO_4^- + 7 H_2O_4^-$ Hence, (2) is the correct balanced reaction. 11. $3I_2 + OH^- \longrightarrow IO_3^- + 5I^-$ (balance reaction) So, ratio is 1:5. 12. (4) Explanation : M. wt. of $NaNO_3 = 85$ 70 mg of Na⁺ are present in 1 mL 50 ml of solution contains $50 \times 70 = 3500$ mg = 3.5 g Na⁺ ion 23 g of Na⁺ are present in 85 g of NaNO₃ 85 3.5 g of Na⁺ are present in $\overline{23} \times 3.5 = 12.934$ g of NaNO₃ $M \times 1000$ (1) Explanation : $m = \overline{(1000 \times d - M \times M.Wt.)}$ where 'm' is molality, M is molarity. 13. $10^{-2} \times 1000$ $(1000 \times 1.1 - 10^{-2} \times 106)$ $= \frac{10}{1100 - 1.6} = \frac{10}{1099.4} = 9.00 \times 10^{-3}$ [Take 1099.4 = 1100] 14. At 4°C i.e. 277 K density of water = 1 g/ml \therefore 1 kg water \Rightarrow 1000 ml water = 1 lit. : Molality & molarity remains same. (%w/w) × density ×10 98 × 1.84 × 10 Molarity = Molar mass of solute = 98 15. = 18.4 M 5.85 Mole of NaCl = 58.5 = 0.116. 0.1 Molarity = 1 = 0.1 MMoles in 1 ml of solution = $MV = 0.1 \times 10^{-3} = 10^{-4}$ mole.

Number of ions in 1 ml = $2 \times 10^{-4} \times 6.023 \times 10^{23} = 1.204 \times 10^{20}$.

- 17. For reaction with 2 moles NaOH
 1M H₂SO₄ 1 lit. volume required
 1M HCl 2 lit. volume required
 ∴ cheapest will be 1 M H₂SO₄ 1 lit.
- **18.** Molarity = M

Let volume of be 1 ltr.

 \therefore mass of solvent = 1000 d – M × M₂

M

Molality = m = $\frac{1000 \, \text{d} - \text{MM}_2}{1000 \, \text{d} - \text{MM}_2} \times 1000$

Element	Percent	r.a.m.	No. of atoms	atomic ratio
С	74	12	74/12 = 6.16	6.16/1.23 = 5
н	8.7	1	8.7/1 = 8.7	8.7/1.123 = 7
N	17.3	14	17.3/14 = 1.23	1.23/1.23 = 1

19.

The ratio of atoms = C : H : N = 5 : 7 : 1 Empirical formula = C₅H₇N

Empirical formula mass = $5 \text{ C} + 7\text{H} + \text{N} = 5 \times 12 + 7 \times 1 + 14 = 81$ Molecular mass = 162 (given)

No. of empirical units per molecule = $n = \frac{Molecular mass}{Empirical formula mass} = \frac{162}{81} = 2$ Molecular formula = (Empirical formula) × 2 = (C₅ H₇N) × 2 = C₁₀H₁₄N₂

20.	$C + O_2 \xrightarrow{\Delta}$	CO ₂					
	12g C	= 1 mol O ₂ = 22	.4 L O ₂				
		22.4					
	∴ 1000 g	$C = 12 \times 10$	00 or	1866.67 L O ₂ .			
21.		6Li +	$N_2 \longrightarrow$	2Li₃N			
		3.5 1	8.4				
	Initial mole	$\overline{7} = \overline{2}$	28 = 0.3	0			
			1	1 _1	<u> 1 </u>		
	final mole	0	0.3 - 12	2 × 3	3 = 6		
		1					
	mass of Li₃N	$= 6 \times 35 = 5.6$	83 g.				
22.		2KO2 +	$2H_2O \longrightarrow$	2KOH +	H_2O_2	+	O ₂
	Initial mole	0.15	0.1	0	0		0
	final mole	(0.15 – 0.1)	0	0.1	0.05		0.05

 \therefore moles of O₂ = 0.05 23. $KCIO_3 \rightarrow KCI + O_2$ Applying POAC for O atoms in the eqn.(i), moles of O in $KCIO_3$ = moles of O in O_2 $3 \times \text{moles of KCIO}_3 = 2 \times \text{moles of O}_2$ wt.of KCIO₃ volumeatNTP(mL) $3 \times \frac{\text{mol.wt.ofKCIO}_3}{2} = 2 \times 10^{-3}$ 22400 2×146.8×122.5 3×22400 Wt. of $KCIO_3 =$ = 0.5358 g. In the second reaction : The amount of KCIO₃ left = 1 - 0.5358 = 0.4642 g. $KCIO_3 \rightarrow KCIO_4 + KCI$ We have, 0.4642 g. Applying POAC for O atoms, moles of O in KCIO₃ = moles of KCIO₄ $3 \times \text{moles of KCIO}_3 = 4 \times \text{moles of KCIO}_4$ wt.of KCIO₃ wt.of KCIO₄ $3 \times \frac{\text{wl.of KCIO}_3}{\text{mol. wt.of KCIO}_3} = 4 \times \frac{\text{wl.of KCIO}_4}{\text{mol. wt.of KCIO}_4}$ $3 \times 0.4642 \times 138.5$ 122.5×4 Wt. of KCIO₄ = = 0.3937 g.(ii) Wt. of residue = 1 - wt. of Oxygen 146.8 $= 1 - \frac{24400}{24400} \times 32 \text{ g} = 0.7902 \text{ g}.$ 0.3937 \therefore % of KCIO₄ in the residue = $0.7902 \times 100 = 49.8$ %. 24. Let mass of Hg is w g + $I_2 \longrightarrow Hg_2I_2$ 2Hq Initial mole 2a а fianl mole 0 0 а Hg + $I_2 \longrightarrow Hg_2I_2$ Initial mole b b fianl mole 0 0 b W \therefore mole of Hg = 2a + b = 200.6 (1) w \therefore mole of I₂ = a + b = 254 (2) eqution (1) - (2)w W $a = \frac{1}{200.6} - \frac{1}{254}$

w w w w w $\left(\frac{1}{200.6} - \frac{1}{254} \right) = \frac{1}{127} - \frac{1}{200.6}$ $b = \frac{254}{254}$. w w 655.2 200.6 254 Mass of Hg_2I_2 a×655.2 w w 0.523 454.6 Mass of HgI₂ $_$ $b \times 454.6$ $_$ 127 200.6 • Consider that mass of NaCl = xg 25. 64 - xХ Moles of NaCl will be = 58.5 and Moles of KCl will be = 74.5:. By using POAC for Na and K ÷ Moles of NaCl \times 1 = Moles of Na₂SO₄ \times 2 Moles of Na_2SO_4 = Moles of $NaCl \times 2$ or Moles of KCI \times 1 = Moles of K₂SO₄ \times 2 ÷ Moles of K_2SO_4 = Moles of KCl × 2 or Total weight of Na₂SO₄ and K₂SO₄ is 76 g 64 – x 1 х 1 Hence $\overline{2} \times \overline{58.5} \times 142 + \overline{2} \times \overline{74.5} \times 174 = 76$ $1.2137 \times 74.74 - 1.1678 \times = 76$ ⇒ 0.0459 x = 1.26⇒ x = 27.45 g⇒ 27.45 % mass of NaCl = $64 \times 100 = 42.89\%$ % mass of KCI = 100 - 42.89 = 57.11%. sp.gravity \times % w/w \times 10 Molecular mass 26. Molarity of $H_2SO_4 =$ $1.2 \times 25 \times 10$ 12×25 **_** 98 98 = 3.06 M $3H_2SO_4 + 2AI \longrightarrow Al_2(SO_4)_3 + 3H_2$ 2.7 27 = 0.1 3 Mole of H_2SO_4 used = $2 \times 0.1 = 0.15$ Initial mole of $H_2SO_4 = 0.75 \times 3.06 = 0.2295$ Mole of H_2SO_4 remaining = 0.2295 - 0.15 0.0795 Molarity of final $H_2SO_4 = 0.4 = 0.198$ M. 27. Moles of $Al_2(SO_4)_3 = M \times V = 0.15 \times 0.1 = 0.015$ Mass of $Al_2(SO_4)_3$ = Mole × Molar mass = 0.015 × 342 = 5.13 g. Moles of $AI^{3+} = 2 \times moles$ of $AI_2(SO_4)_3 = 2 \times 0.015 = 0.03$.

No. of Al³⁺ ions = $0.03 \times 6.023 \times 10^{23} = 1.81 \times 10^{22}$ ions. $CuSO_{4.5H_2}O(aq) + BaCl_2(aq) -$ 28. \rightarrow BaSO₄(s) + CaCl₂ (aq) 4.66 g Mass of $BaSO_4 = 4.66 g$ 4.66 2 Mole of BaSO₄ = $\overline{233} = \overline{100}$ 2 \therefore Mole of SO₄²⁻ = 100 2 Mass of SO_{4²⁻} = $\overline{100}$ (ionic mass of SO_{4²⁻}) = 1.92 g <u>1.92</u>×100 $\% SO_{4^{2-}} = 5$ = 38.4%. 29. Balance chemical equations are : $Ca_3(PO_4)_2 + 8Mg \longrightarrow Ca_3P_2 + 8MgO$ $Ca_3 P_2 + 6H_2O \longrightarrow 3Ca(OH)_2 + 2PH_3$ $2\mathsf{P}\mathsf{H}_3 + 4\mathsf{O}_2 \longrightarrow \mathsf{P}_2\mathsf{O}_5 + 3\mathsf{H}_2\mathsf{O}$ $MgO + P_2O_5 \longrightarrow Mg(PO_3)_2$ moles of magnesium used = 0.8 moles moles of MgO formed = 0.8 moles moles of Ca₃ P₂ formed 0.1 moles moles of PH₃ formed = 0.2 moles moles of P_2O_5 formed = 0.1 mole (limiting reagent) moles of $Mg(PO_3)_2 = 0.1$ moles

30. Let the volume of ethanol containing the same number of molecules as are present in 175 ml of H₂O be V ml. As given ,

moles of C₂H₅OH in V ml = moles of H₂O in 175 ml

mass of $Mg(PO_3)_2 = 18.2$ gram

Ans. 18 gram

Now, $\frac{\text{wt.of C}_{2}\text{H}_{5}\text{OH}}{\text{mol.wt.of C}_{2}\text{H}_{5}\text{OH}} = \frac{\text{wt.of H}_{2}\text{O}}{\text{mol.wt.of H}_{2}\text{O}}$ or, $\frac{0.789 \times \text{V}}{46} = \frac{1.0 \times 175}{18}$ $\therefore \qquad \text{V} = 566.82 \text{ ml.}$ PART - II $\text{mole} = \frac{1.12 \times 10^{-7}}{22400}$

No. of molecule = $\frac{1.12 \times 10^{-7}}{22400} \times 6.02 \times 10^{23} = 3.01 \times 10^{12}$

2. No. of carbon atom in glucose =
$$\frac{1.71}{342} \times 12 \text{ N}_{a}$$

= 3.6 × 10²²

1.

				Simplest ratio	Ratio				
	С	75	75/12 = 6.25	6.25/6.25=1	1				
3.	Н	25	25/1=25	25/6.25=4	4				
	Hence E.F i = 1 × CH₄=	is CH4 & M. CH4.	$F is = n \times E.F$ ((n =1, 2, 3)					
4.	Urea (NH ₂ CONH ₂) M.wt of Urea = 60 % of N = $\frac{28}{60}$ × 100 = 46 %.								
5.	$Mg + \frac{2}{2}O_{2}$ $mole = \frac{1.2}{24}$ (Since we have from mole-from mole-	$- \rightarrow MgO$ = 0.05 have no idea mole analys (here n = .05 mole.	a about O₂ so v sis mole)	ve have taken it i	n excess)				
6.	mole $\frac{4/2}{2}$ From mole $\frac{1}{\frac{8}{1}}$	$2H_{2} + \frac{4}{2}$ $\frac{2}{2} \frac{1/8}{1}$ -mole analy $= \frac{n_{H_{2}O}}{2}$ $e^{O} = \frac{1}{4}$	$O_2 \rightarrow 2H_2$ $\frac{4}{32} = \frac{1}{8}$ (O ₂ is L.R.) rsis	Mass _{H₂O = $\frac{1}{4}$}	× 18 = 4.5 g.				
7.	0.050 × 2 =	$\frac{0.10\times2\times\sqrt{10}}{\sqrt{10}}$	<mark>∕ − 50 × 0.10 × ′</mark> ⁄ + 50	<u>1</u> →	V = 100 ml				
8.	$M = \frac{n_{solute}}{V_{solution}}$ $\frac{0.8}{1000} = \frac{1}{V00}$ vol. of solut (Here n _{solute})	$\frac{100 \times 10^{-3}}{100 \times 10^{-3}}$ i. of solution ion = 125 m = mole of s	n nl solute, V _{solution} =	vol. of solution).					
9.险	Phosphorou	HU us acid	H oxid	lation state of P =	= + 3				

- 24. $2x + y \rightarrow x_2y$ 2 2 1 $x_2y + 3z \rightarrow x_2Z_2 + yZ$ 1 2 2/3 2/3 $yZ + 2y \rightarrow y_3Z$ 2/3 1 1/2
- **26.** Let $Ca_3(PO_4)_2$ is x-mole

 $H_{3}PO_{3} \text{ is y-mole} \Rightarrow 2x = y \Rightarrow \frac{x}{y} = \frac{1}{2}$ $\frac{\text{moles of 'O' Ca_{3}(PO_{4})_{2}}}{\text{moles of 'O' in } H_{3}PO_{3}} = \frac{8x}{3y} = \frac{4}{3}$