Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks : 120

Important Instructions

- 1. The test is of **1 hour** duration.
- 2. The Test Booklet consists of **30** questions. The maximum marks are **120**.
- 3. Each question is allotted 4 (four) marks for correct response.
- 4. Candidates will be awarded marks as stated above in Instructions No. 3 for correct response of each question. ¼ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 5. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 4 above.
- For two gases, A and B with molecular weights M_A and M_B, it is observed that at a certain temperature, T, the mean velocity of A is equal to the root mean square velocity of B. Thus the mean velocity of A can be made equal to the mean velocity of B, if
 - (1) A is at temperature, T_1 and B at T_2 $T_1 > T_2$
 - (2) A is lowered to a temperature $T_2 < T$ while B is at T
 - (3) Both A and B are raised to a higher temperature
 - (4) Both A and B are lowered in temperature.
- 2.At what temperature, the average speed of gas molecules be double of that at temperature, 27°C?(1) 120°C(2) 108°C(3) 927°C(4) 300°C
- Two glass bulbs A and B at same temperature are connected by a very small tube having a stop-corck. Bulb A has a volume of 100 cm³ and contained the gas while bulb B was empty. On opening the stop-corck, the pressure fell down to 20%. The volume of the bulb B is :

 (1) 100 cm³
 (2) 200 cm³
 (3) 250 cm³
 (4) 400 cm³
- **4.** Match of following (where U_{ms} = root mean square speed, U_{av} = average speed, U_{mp} = most probable speed)

	List I		List II		
(a)	Urms / Uav	(i)	1.22		
(b)	Uav / Ump	(ii)	1.13		
(c)	Urms / Ump	(iii)	1.08		
(1) (a	$) \rightarrow$ (iii), (b) \rightarrow (ii), (c)	→ (i)	(2)	(a) ightarrow (i), (b) ightarrow (ii), (c) ightarrow (iii)
(3) (a	$) \rightarrow$ (iii), (b) \rightarrow (i), (c)	→ (ii)		(4) (a) $ ightarrow$ (ii), (b) $ ightarrow$ (iii), (c) $-$

5. 2 litres of moist hydrogen were collected over water at 26°C at a total pressure of one atmosphere. On analysis, it was found that the quantity of H₂ collected was 0.0788 mole. What is the mole fraction of H₂ in the moist gas

(1) 0.989(2) 0.897(3) 0.953(4) 0.967

Max. Time : 1 Hr.

GASEOUS STATE

6.	When CO_2 under high pressure is released from a fire extinguisher, particles of solid CO_2 are formed, despite the low sublimation temperature (- 77°C) of CO_2 at 1.0 atm. It is (1) the gas does work pushing back the atmosphere using KE of molecules and thus lowering the temperature (2) volume of the gas is decreased rapidly hence, temperature is lowered (2) heth (1) and (2)						
	(4) None of the above						
7.	At what temperature w 400 K ?	ill the total KE of 0.3 mo	ol of He be the same as	the total KE of 0.40 mol of Ar at			
	(1) 533 K	(2) 400 K	(3) 346 K	(4) 300 K			
8.	When a gas is compres (1) the speeds of the m (3) the speeds of the m	ssed at constant tempera nolecules increase nolecules decrease	ature : (2) the collisions betwe (4) the collisions betwe	en the molecules increase en the molecules decrease			
9.	If a container contains	only gas $A_4(g)$ and the fo	llowing reaction takes pl	ace			
	- A₄(g) (1) The value of 'b' dec (3) The value of 'b' con	→ 4A(g) If A(g) is consid creases istant	dered to be a real gas the (2) The value of 'b' incr (4) Cannot be predicter	en : reases d.			
10.	A cylinder is filled with ratio is :	a gaseous mixture conta	aining equal masses of C	CO and N_2 . The partial pressure			
	(1) $P_{N_2} = P_{CO}$	(2) $P_{co} = 0.875 P_{N_2}$	(3) $P_{co} = 2^{P_{N_2}}$ (4)	$P_{\rm CO} = \frac{1}{2} P_{\rm N_2}$			
11.	Helium atom is two time	es heavier than a hydroge	en molecule at 298 k, the	average kinetic energy of helium			
	(1) two times that of hy(3) four times that of a	drogen molecule hydrogen molecule	(2) same as that of the (4) half that of a hydrog	hydrogen molecule gen molecule			
12.	Compressibility factor of methane gas at 300K and 1 atm is 0.8. The mass of methane gas presen						
	(1) 1.08 gm	(2) 0.75 gm	(3) 0.83 gm	(4) 0.93 gm			
13.	Two flasks A and B ha gas, B has an equal ma (1) 1 : 2	ve equal volumes. A is r ass of CO₂ gas. Find the (2) 11 : 1	naintained at 300 K and ratio of total K.E. of gase (3) 33 : 2	B at 600 K, while A contains H ₂ es in flask A to that of B. (4) 55 : 7			
14.	A quantity of gas is col and the level of mercu 750 torr. Hence, yolum	lected in a graduated tub ry in the tube is 100 mm e at STP is approximated	be over the mercury. The n above the outside merc	e volume of gas at 18ºC is 50 ml cury level. The barometer reads			
	(1) 22 ml	(2) 40 ml	(3) 20 ml	(4) 44 ml			
15.	3 moles of N ₂ gas at 27 pressure of H ₂ gas is	7°C and 3 atm pressure I	has same volume as 5 m	tole of H_2 gas at 127°C. then the			
	<u>10</u>	5		20			
	(1) ³ atm	(2) ³ atm	(3) 20 atm	(4) ³ atm			

16. If equal weights of oxygen and nitrogen are placed in separate containers of equal volume at the same temperature, which one of the following statements is true? (mol wt: $N_2 = 28$, $O_2 = 32$) (1) Both flasks contain the same number of molecules. (2) The pressure in the nitrogen flask is greater than the one in the oxygen flask. (3) More molecules are present in the oxygen flask. (4) Molecules in the oxygen flask are moving faster on the average than the ones in the nitrogen flask. 17. Which of the following is NOT a postulate of the kinetic molecular theory of gases? (1) The molecules possess a volume that is negligibly small compared to the of the container (2) The pressure and volume of a gas are inversely related (3) Gases consist of discrete particles that are in random motion (4) The average kinetic energy of the molecules is directly proportional to the temperature 18. At what temperature root mean square speed of N_2 gas is equal to that of propane gas at S.T.P. conditions. (2) 173.7 K (3) S.T.P. $(4) - 40^{\circ}C$ (1) 173.7°C 19. At STP the order of mean square velocity of molecules of H₂, N₂, O₂ and HBr is -(1) $H_2 > N_2 > O_2 > HBr$ (2) $HBr > O_2 > N_2 > H_2$ (3) $HBr > H_2 > O_2 > N_2$ (4) $N_2 > O_2 > H_2 > HBr$ 20. The critical density of the gas CO₂ is 0.44 g cm⁻³ at a certain temperature. If 'r' is the radius of the molecule, r³ in cm³ is approximately. (3) 6.25/πN (4) $\frac{25}{\pi}$ 25 100 (2) πN (1) πN 21. At STP, a container has 1 mole of Ar(argon), 3 moles of CO₂, 3 moles of O₂ and 4 moles of N₂. Without changing the total pressure, if 1 mole of O_2 is removed the partial pressure of O_2 . (1) decreases by 26% (2) decrease by 50% (3) is unchaged (4) decrease by 45% 22. For 10 minute each, at 0°C, from two identical holes nitrogen and an unknown gas are leaked into a common vessel of 4 litre capacity. The resulting pressure is 2.8 atm and the mixture contains 0.4 mole of nitrogen. What is the molar mass of unknown gas? (1) 448 g mol⁻¹ (2) 224 g mol⁻¹ (3) 226 g mol⁻¹ (4) None of these 23. At a low pressure of 0.25 atm, 2 mole of a real gas has Boyle's temperature 100 K. The approximate volume of gas at this temperature and pressure is : (3) 44.8 litre (1) 66 litre (4) none (2) 33 litre 24. Equal weight of three gases He, CH₄ and O₂ are mixed in a fixed volume container at room temperature then the fraction of total pressure exerted by CH4 molecules is : 2 8 16 1 (4) 11 (2) 11 (3) 11 (1) 11 25. A 4 : 1 molar mixture of He and CH₄ gases is contained in a vessel at 20 bar pressure. Due to a hole in the vessel, the gas mixture leaks out. The ratio of number of moles of He to CH₄ in the mixture effusing out initially will be : (1) 8 : 1 (2) 1 : 8 (3) 1 : 4 (4) 4 : 1

GASEOUS STATE

- 26. The rates of diffusion of two gases A and B are in the ratio 1 : 4. If the ratio of their masses present in the mixture is 2 : 3. The ratio of their mole fraction is :
 (1) 1/12
 (2) 5/24
 (3) 1/24
 (4) 1/6
- 27. If 'b' is van der Waal constant of argon then the molecular diameter of argon molecule can be represented by the expression :

$$(1)^{\left(\frac{3b}{2\pi N_{A}}\right)^{1/3}} (2)^{\left(\frac{3b}{16\pi N_{A}}\right)^{1/3}} (3)^{\left(\frac{3b}{2\pi N_{A}}\right)^{3/2}} (4)^{\left(\frac{3b}{2\pi N_{A}}\right)^{1/2}}$$

- **28.** If density of vapours of a substance of molar mass 18 g/mole at 1 atm pressure and 500 K is 0.36 kg m⁻ ³, then value of Z for the vapours is : (Take R = 0.082 L atm mole⁻¹ K⁻¹)
 - (1) $\frac{41}{50}$ (2) $\frac{50}{41}$ (3) 1.1 (4) 0.9
- **29.** The density of steam at 27°C and 8.314×10^4 pascal is 0.8 Kg m⁻³. The compressibility factor would be (1) 0.75 (2) 1 (3) 0.88 (4) 1.1
- **30.** The Vander waal's equation of state for a non-ideal gas can be rearranged to give $\frac{PV}{RT} = \frac{V}{V-b} = \frac{a}{VRT}$ for 1 mole of gas. The constants a & b are positive numbers. When applied to H₂ at 80K, the equation gives the curve as shown in the figure. Which one of the following statements is correct :

- (1) At 40 atm, the two terms V/(V b) & a/VRT are equal.
- (2) At 80 atm, the two terms V/(V b) & a/VRT are equal.
- (3) At a pressure greater than 80 atm, the term V/(V b) is greater than a/VRT.

(4) At 60 atm, the term V/(V – b) is greater than
$$1 + \frac{a}{VRT}$$

Practice Test (JEE-Main Pattern)

OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

PART - II : PRACTICE QUESTIONS

1.🖎 A gaseous mixture of three gases A, B and C has a pressure of 10 atm. The total number of moles of all the gases is 10. If the partial pressure of A and B are 3.0 and 1.0 atm respectively and if C has mol. wt. of 2.0, what is the weight of C in g present in the mixture ? (4) 3(1) 6(2) 8(3) 122. Two vessels connected by a valve of negligible volume. One container (I) has 2.8 of N₂ at temperature $T_1(K)$. The other container (II) is completely evacuated. The container (I) is heated to $T_2(K)$ while container (II) is maintained at T₂/3 (K). Volume of vessel (I) is half that of vessel (II). If the valve is opened then what is the weight ratio of N_2 in both vessel (W_1/W_1)? (1) 1 : 2(2)1:3(3)1:6(4) 3 : 13. Two glass bulbs A and B are connected by a very small tube having a stop cock. Bulb A has a volume of 100 cm³ and contained the gas, while bulb B was empty. On opening the stop cock, the pressure fell down to 40%. The volume of the bulb B must be : (1) 75 cm³ (2) 125 cm³ (3) 150 cm³ (4) 250 cm³ Two closed vessel A and B of equal volume containing air at pressure P1 and temperature T1 are 4. connected to each other through a narrow open tube. If the temperature of one is now maintained at T₁ and other at T_2 (where $T_1 > T_2$) then that what will be the final pressure ? $\frac{2P_{1}T_{2}}{(2)}\frac{T_{1}+T_{2}}{T_{1}+T_{2}}$ (4) $\frac{2P_1}{T_1 + T_2}$ (3) $\frac{2P_1T_1}{T_1 - T_2}$ (1) $\overline{^{2}P_{1}T_{2}}$ 5. Calculate the compressibility factor for CO₂, if one mole of it occupies 0.4 litre at 300 K and 40 atm. Comment on the result. (1) 0.40, CO₂ is more compressible than ideal gas (2) 0.65, CO₂ is more compressible than ideal gas (3) 0.55, CO₂ is more compressible than ideal gas (4) 0.62, CO₂ is more compressible than ideal gas The density of vapour of a substance (X) at 1 atm pressure and 500 K is 0.8 kg/m³. The vapour effuses 6. through a small hole at a rate of 4/5 times solwer than oxygen under the same condition. What is the compressibility factor (Z) of the vapour ? (1) 0.974(2) 1.35(3) 1.52(4) 1.22 $T_{c} = \frac{4 \times 10^{5}}{821} K$ For a real gas (mol. mass = 60) if density at critical point is 0.80 g/cm^3 and its then van 7. der Waal's constant a (in atm L² mol⁻²) is (2) 3.375 (4) 0.025 (1) 0.3375(3) 1.68 8.🖎 Which of the following relationship is false : (2) PV = $\frac{1}{3}$ mnC²_{rms} (1) Most probable velocity, $\propto = \sqrt{M}$ (4) Average kinetic energy of a gas = $\frac{1}{2}$ kT (3) Compresibility factor Z = \overline{nRT} 9.4 For every gas, there is a temperature called critical temperature (1) above which it is not possible to liquefy a gas with the application of pressure. (2) above which it is not possible to solidify a gas with the application of pressure. (3) below which it is not possible to liquefy a gas with the application of pressure.

GASEOUS STATE

(4) below which it is not possible to solidify a gas with the application of pressure.

- 10. If the four tubes of a car are filled to the same pressure with N_2 , O_2 , H_2 and Ne separately, then which one will be filled first?
 - $(1) N_2$ $(2) O_2$ (3) H₂ (4) Ne
- 11. At what temperature will the RMS of SO2 be the same as that of O2 at 303 K? (1) 273 K (2) 606 K (3) 303 K (4) 403 K

12. A 4.0 dm³ flask containing N₂ at 4.0 bar was connected to a 6.0 dm³ flask containing helium at 6.0 bar, and the gases were allowed to mix isothermally, then the total pressure of the resulting mixture will be

[Kerala PMT 2008]

7

- (1) 10.0 bar (2) 5.2 bar (3) 1.6 bar (4) 5.0
- 13. A vessel contains two gases A and B in the mass ratio 2 : 1 respectively. If the above gas mixture is allowed to diffuse through a hole, the molar composition of the mixture coming initially out of the hole is 1:4. Find the simplest whole number ratio of the moles of gases B and A present in the vessel in the beginning respectively. (2) 1.0(3) 1.5 (4) 2.0
 - (1) 0.5
- 14. For a real gas under low pressure conditions, which of the following graph is correct ?

15. Which of the following is correct order of temperature shown in the following Z Vs P graph for the same gas:

(1) $T_1 < T_2 < T_3 < T_4$	(2) T ₄ < T ₃ < T ₂ < T ₁
(3) T ₁ < T ₃ < T ₂ < T ₄	(4) T ₄ < T ₂ < T ₃ < T ₁

Z vs P graph is plotted for 1 mole of three different gases X, Y and Z at temperature T1. 16.🖎

Then, which of the following graph is incorrect if the above plot is made for 1 mole of each gas at T₂ temperature $(T_2 < T_1)$:

17. One litre gas at 400 K and 300 atm pressure is compressed to a pressure of 600 atm and 200 K. The compressibility factor is changed from 1.2 to 1.6 respectively. Calculate the final volume of the gas.

	APSP	Answ	vers						
				РА	RT - I				
1.	(2)	2.	(3)	3.	(4)	4.	(1)	5.	(4)
6.	(1)	7.	(1)	8.	(2)	9.	(1)	10.	(1)
11.	(2)	12.	(3)	13.	(2)	14.	(2)	15.	(4)
16.	(2)	17.	(2)	18.	(2)	19.	(1)	20.	(3)
21.	(1)	22.	(1)	23.	(1)	24.	(1)	25.	(1)
26.	(3)	27.	(1)	28.	(2)	29.	(1)	30.	(3)
				PA	RT - II				
1.	(3)	2.	(3)	3.	(3)	4.	(2)	5.	(2)
6.	(3)	7.	(2)	8.	(4)	9.	(1)	10.	(3)
11.	(2)	12.	(2)	13.	(4)	14.	(1)	15.	(2)
16.	(2)	17.	(3)						

GASEOUS STATE

APSP Solutions

PART-I

	8RT 3RT		
1.	Given $\sqrt[n]{\pi M_A} = \sqrt[n]{M_B}$	$\Rightarrow 8M_{B} = 3\pi M_{A}$	
	$3RT_A$ $3RT_B$	T _A T _B	
		$\Rightarrow M_A = M_B$	$\Rightarrow M_{\text{B}} \ . \ T_{\text{A}} = M_{\text{A}} \ . \ T_{\text{B}}$
	$\frac{3\pi}{8}$ M ₁ T ₂ - M ₂ T ₂	\rightarrow T ₂ $>$ T ₄	Hence (2)
	\rightarrow MA . TA = MA . TB		Tience (2)
_	$\sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8 \times R \times 300}{\pi M}} =$		
2.	$\gamma = 2 \gamma = 2 T = 2$	1200 K = 927°C	
3.	100 P = 0.2 P × 100 + 0.2 P × \ 1000	/	
	$\frac{1000}{2} = 100 + V$		
	V = 400 ml		
	2RT	3RT	
4.	$U_{MPS} = \bigvee M \qquad ;$	Urms = ∜ M	
	$\sqrt{\frac{8RT}{\pi M}}$		
	$U_{av} = \sqrt{-\pi i v}$		
_	$\frac{PV}{PT} = \frac{1 \times 2}{0.0821 \times 299}$		
5.	$n_{\text{Total}} = RT = 0.0021 \times 200 = 0.08$	31 moles	
	$x_{1} = \frac{n_{H_2}}{n_2} = \frac{0.0821}{2.000} \times 299$		
6	$^{\prime H_2} = ^{\Pi_{\text{total}}} = 2 = 0$ K E Temperature	.967	
0.			

 $\left[\frac{3}{2}nRT\right]_{He} = \frac{3}{2}nRT$ 7. $0.3 T = 0.4 \times 400$ T = 533 K (2) Frequency of collision will increase. 8. 9. Au(g) 4A(g)Take radius R $\frac{4}{3}\pi R^3$ $4.\frac{4}{3}\pi r^3$ vol. $\left(\frac{r}{R}\right)^3 - \frac{1}{4}$ $\frac{4}{3}\pi R^{3}$ 4. $\frac{4}{3}\pi r^{3}$ b for A₄(g) = 4.N_A. $\frac{4}{3}\pi R^3$ b' for A(g) = 4.N_A. $\overline{3} \pi r^{3}$ Hence b' decreased. $\frac{P_{N2}}{P_{CO}} = \frac{X_{N2}}{X_{CO}} = \frac{n_{N2}}{n_{co}} = \frac{x \times 28}{28 \times x} = 1$ $P_{N2} = P_{co}$ 10. Where x_{n2} , x_{∞} is mole fraction of N₂ & CO and x is wt. of N₂ & CO taken. 3 Average K.E. = $\overline{2}$ RT and T is constant 298 K 11. K.E. is same for all gases at same Temperature. $PV = Z \times \overline{M} \times RT$ 12. $1 \times 1 = 0.8 \times \frac{W}{16} \times 0.08 \times 300 \qquad \Rightarrow \qquad W = 0.83 \text{ gm}.$ $\frac{n_A T_A}{n_B T_B} = \frac{m}{2} \times \frac{44}{m} \times \frac{300}{600}$ 13. 14. Net pressure of gas = P_{gas} $P_{gas} = 650 \text{ mm}.$ $\frac{P_1V_1}{T_1} = \left(\frac{P_2V_2}{T_2}\right)_{\text{STP}} .$ $\frac{650 \times 50}{291} = \frac{760 \times V_2}{273}$ $P_1 = 9 \text{ atm}$ $P_2 = 6 \text{ atm}$ V₂ = 40.11 ml $V_2 = 10 l$ $V_1 = 5l$ $\frac{n_1 T_1}{P_1} = \frac{n_2 T_2}{P_2} \implies \frac{3 \times 300}{3} = \frac{5 \times 400}{P_2}$ 20 $P_2 = 3$ atm 15. $P_{N_2} > P_{O_2}$ ${}^{n}\!{}_{N_2}\!>\,{}^{n}\!{}_{O_2}$ where 'n' is no of moles of gases. \Rightarrow 16. because P_{gas}α n. 18. Let Temp (T) where V_{rms} of $N_2 = V_{rms}$ of C_3H_8 at STP $\sqrt{\frac{3RT_1}{M_{N2}}} = \sqrt{\frac{3RT_2}{M_{C_3H_8}}} = \sqrt{\frac{3 \times 8.314 \times 273}{44 \times 10^{-3}}} = \sqrt{\frac{3RT_1}{M_{N2}}} = 393.38$ T₁ = 173.72 K

1 \sqrt{M} 'M' is Molecular wt. 19. Vrms order of M.wt. = $H_2 < N_2 < O_2 < HBr$ *.*.. order of $V_{rms} = H_2 > N_2 > O_2 > HBr$. 20. $V_c = 3b$ $\frac{44}{3 \times 4 \times N \times \frac{4}{3} \pi r^3} = 0.44$ 44 6.25 $d_c = 3b$ $r^3 = \pi N$ Initially $P_{O_2} = \frac{3}{11} P$ (total pressure) 21. after removal of one mole $P'_{O_2} = \frac{2}{10}_{P} = \frac{P}{5}$ $\frac{\frac{3}{11}\mathsf{P} - \frac{\mathsf{P}}{5}}{\frac{3}{11}} \times 100$ % decreases = $\overline{11}$ = 26.66 % $\frac{n_{N_2}}{n_x} = \sqrt{\frac{m_x}{M_{N_2}}} \quad \dots \dots \dots \dots (i)$ 22. $P_T V_T = n_T RT$ (ii) 2.8×4 $n_{T} = 0.0821 \times 273 = 0.5$ $n_x + n_{N_2} = 0.5$ n_x = 0.1 From (1) $\frac{0.4}{0.1} = \sqrt{\frac{M_x}{28}}.$ $M_{x} = 448$. 23. At Boyle's temperature a gas behave like an ideal gas at low pressure region. PV = nR T_B V = 66 litre $P_{CH_4} = X_{CH_4}$. P_{total} 24. $X_{CH_{4}} = \frac{P_{CH_{4}}}{P_{total}} \implies X_{CH_{4}} = \frac{\frac{x/16}{x} + \frac{x}{16} + \frac{x}{32}}{16} = \frac{1}{4+1+\frac{1}{2}} = \frac{2}{11}$ 25. Molar ratio of He & $CH_4 = 4$: 1 partial pressures $P_{He} = \frac{1}{5} \times 20 = 16$ bar :. partial pressures $p_{CH_4} = \frac{5}{5} \times 20 = 4$ р_{не} : ^р_{СН₄} = 16 : 4 *:*.. time of diffusion is same hence $\frac{r_{He}}{r_{CH_4}} = \frac{n_{He}}{n_{CH_4}} = \frac{p_{He}}{p_{CH_4}} \times \sqrt{\frac{M_{CH_4}}{M_{He}}} = \frac{16}{4} \times \sqrt{\frac{16}{4}} = 4 \times 2 = 8 : 1$

 $\frac{r_1}{r_2} = \frac{1}{4} \ \frac{w_1}{w_2} = \frac{2}{3}$ 26. $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$ $|M_2|$ $\frac{M_2}{M_1} = \frac{1}{16}$ $\frac{W_1}{W_2} \times \frac{M_2}{M_1} = \frac{2}{3} \times \frac{1}{16} = \frac{1}{24}$ mole ratio $n_2 =$ 18 Volume of one mole of given vapour = 0.36 L = 50 L 28. RT 0.082×500 volume of one mole of an ideal gas = P = 1 = 41 LV_m,real 50 so value of Z = $\frac{V_m, \text{ideal}}{V_m, \text{ideal}} = \frac{30}{41}$ $Z = \frac{PV}{RRT} = \frac{\frac{PV}{M}}{M} RT = \frac{\frac{PM}{d}}{RT} = \frac{\frac{8.314 \times 10^4 \times 18 \times 10^{-3}}{0.8 \times 8.314 \times 300} = \frac{18 \times 10}{300 \times 0.8} = \frac{3}{4} = 0.75$ 29. ΡV Clearly, from the graph at 80 K = \overline{RT} = 1 and at 60K, Z < 1 30.

PART - II

1. Pressure of Total mixture = 10 atm $P_{A} + P_{B} + P_{C} = 10$ \Rightarrow $3 + 1 + P_c = 10$ $P_c = 6 atm$ Total moles of mixture = 10 $n_{\rm A} + n_{\rm B} + n_{\rm C} = 10$ $\frac{P_B}{P_C} = \frac{n_B}{n_C} = \frac{1}{6}$ $\frac{P_A}{P_B} = \frac{n_A}{n_B} = \frac{3}{1} \implies$ $1 \Rightarrow K \Rightarrow n_{B} = \frac{K}{3}$ $n_c = \overline{6}$ n_в = 2К K n_c 3 = 6 $K + \overline{3} + 2K = 10 \implies$ \Rightarrow $n_c = 2K$ $K\left(\frac{10}{3}\right)$ K =3, ⇒ = 10 n_A = 3 n_в = 1 nc = 6weight of 'C' in mixture = $2 \times 6 = 12$. II I 0.1 mol N₂ T₂/3 T_2 VL 2VL 2. Let x moe of N₂ present into vessel II and P is final pressure of N₂ $P(2V) = xR(T_2/3)$ and $P(V) = (0.1 - x)RT_2$ х $2 = \frac{3(0.1 - x)}{3(0.1 - x)}$ ⇒ x = 0.6/7 mole, ⇒

0.6 7 × 28 g \Rightarrow 2.4 g N₂ II has 2.4 g N_2 and I has 0.4 g of N_2 ; W_I 0.4 $\overline{W_{II}} = \overline{2.4} \Rightarrow 1:6$ 3. $V_{A} = 100$ $V_B = V mI$ ml $P_A V_A = P_A' V'$ Where $V' = V_A + V_B = (V_A + V) mI$ 2 $P_A \times 40$ 2 $P_{A} = 100 = 5 P_{A}$ $P_{A} 100 = {}^{5} P_{A} \times V'$ 250 = V' ⇒V_A+ V = 250 ml V = 150 ml Let $T_1 > T_2$; final pressure will be same, Let x mole transfer from to A to B vessel. 4. $P_AV = (n - x) RT$ and $P_AV = (n + x) RT_2$ *:*.. $x = \frac{n(T_1 - T_2)}{T_1 + T_2}$ *.*.. $V = \frac{nRT}{P_1}$ finally $P_1 \times 2V = 2nRT_1$; $\mathsf{P}_{\mathsf{A}} \times \frac{\mathsf{n}\mathsf{R}\mathsf{T}_1}{\mathsf{P}_1} = \left(\mathsf{n} - \frac{\mathsf{n}(\mathsf{T}_1 - \mathsf{T}_2)}{(\mathsf{T}_1 + \mathsf{T}_2)}\right) \mathsf{R}\mathsf{T}_1$ *:*.. $Z = \frac{(PV)_{real}}{(PV)_{ideal}}$ 5. $\frac{r_x}{r_{O_2}} = \sqrt{\frac{M_{O_2}}{M_x}} = \left(\frac{4}{5}\right)^2 = \frac{32}{M_x} = 50$ 6. $d_x = 0.80 \text{ kg/m}^3$. $V_m = \frac{1000}{800} \times 50 = 62.5$ L $Z = \frac{PV_m}{RT} = \frac{1 \times 62.5}{0.0821 \times 500} = 1.52$ $V_{c} = \frac{60}{0.80}$ = 75 cm³ mol⁻¹; $b = \frac{V_{c}}{3}$ = 25 cm³ mol⁻¹ = 0.025 L mol⁻¹ 7. $T_c = \frac{8a}{27 Rb}$:. $\frac{4 \times 10^5}{821} = \frac{8 \times a}{27 \times 0.0821 \times 0.025}$ ⇒ a = 3.375

8. Average kinetic energy of a gas/ molecule = 2 KT.

- **9.** Critical temperature is a temperature above which it is not possible to liquefy a gas with the application of pressure.
- **10.** Lower the density of the gas, faster it will be filled. As H₂ has lowest density, it will be filled first.

11.
$$u = \sqrt{\frac{3RT}{M}}$$

When $\frac{u_{SO_2}}{G_2} = \frac{u_{O_2}}{G_2}$, then $\frac{T_{SO_2}}{M_{SO_2}} = \frac{T_{O_2}}{M_{O_2}}$ or $\frac{T_{SO_2}}{64} = \frac{303}{32}$ $T_{SO_2} = 606$ K.

12. At constant temperature, $P_1 V_1 + P_2 V_2 = P_3 (V_1 + V_2)$ (4.0 bar) (4.0 dm³) + (6.0 bar) (6.0 dm³) = P_3 (4.0 + 6.0 dm³) or $P_3 = \frac{16 + 36}{10} = \frac{52}{10} = 5.2$ bar. 13. $\frac{r_A}{r_B} = \frac{n_A}{n_B} \times \sqrt{\frac{M_B}{M_A}}$

							(2x)	
							M _A	
	(Moles	of	А	coming	out	initially)/∆t	1 <u>x</u>	M _B
Ŀ.	(Moles	of	В	coming	out	initially)/ Δt	MB	× ^{√M} A

14. At low pressure vander waal's equation for a real gas is given as

```
Z = 1 - \frac{a}{RTV}
intercept = 1
slop = -ve
```

16. $T_4 < T_3 < T_2 < T_1$

17.
$$Z_{1} = \frac{\frac{P_{1}V_{1}}{RT_{1}}}{Z_{2}}$$
$$\frac{\frac{P_{2}V_{2}}{RT_{2}}}{\frac{Z_{1}}{Z_{2}} = \frac{\frac{P_{1}}{P_{2}}}{\frac{P_{1}}{R} - \frac{T_{2}}{R} - \frac{V_{1}}{R}} \frac{V_{1}}{V_{2}}}{V_{2}}$$
$$\frac{\frac{1}{3}}{V_{2}}$$