### Additional Problems For Self Practice (APSP)

### **PART - I : PRACTICE TEST PAPER**

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

#### Max. Marks : 120

#### **Important Instructions**

- **1.** The test is of **1 hour** duration.
- 2. The Test Booklet consists of 30 questions. The maximum marks are 120.
- 3. Each question is allotted 4 (four) marks for correct response.
- 4. Candidates will be awarded marks as stated above in Instructions No. 3 for correct response of each question.

<sup>1</sup>/<sub>4</sub> (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.

- 5. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 4 above.
- 2.5 L of a sample of a gas at 27°C and 1 bar pressure is compressed to a volume of 500 mL keeping the temperature constant, the percentage increase in pressure is

   100 %
   400 %
   500%
   80%
- For two gases, A and B with molecular weights M<sub>A</sub> and M<sub>B</sub>, it is observed that at a certain temperature, T, the mean velocity of A is equal to the root mean square velocity of B. Thus the mean velocity of A can be made equal to the mean velocity of B, if
  - (1) A is at temperature,  $T_1$  and B at  $T_2$ ,  $T_1 > T_2$
  - (2) A is lowered to a temperature  $T_2 < T$  while B is at T
  - (3) Both A and B are raised to a higher temperature
  - (4) Both A and B are lowered in temperature.
- At what temperature, the average speed of gas molecules be double of that at temperature, 27°C?
   (1) 120°C
   (2) 108°C
   (3) 927°C
   (4) 300°C
- Two glass bulbs A and B at same temperature are connected by a very small tube having a stop-corck. Bulb A has a volume of 100 cm<sup>3</sup> and contained the gas while bulb B was empty. On opening the stop-corck, the pressure fell down to 20%. The volume of the bulb B is :

   (1) 100 cm<sup>3</sup>
   (2) 200 cm<sup>3</sup>
   (3) 250 cm<sup>3</sup>
   (4) 400 cm<sup>3</sup>
- 5. The product of PV is plotted against P at two temperatures  $T_1$  and  $T_2$  and the 'result is shown in figure. What is correct about  $T_1$  and  $T_2$ ?



Max. Time : 1 Hr.

| <b>6.</b> Match of following (where U <sub>rms</sub> = root mean square speed, U <sub>av</sub> = average speed, U <sub>mp</sub> = speed) |                                                                                                                                  |                                                                                                                              |                                                       |                                               |                                                  |                                                         | most probable                     |                                               |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|---------------------------------------------------------|-----------------------------------|-----------------------------------------------|--|--|
|                                                                                                                                          | List I                                                                                                                           |                                                                                                                              |                                                       | List II                                       |                                                  |                                                         |                                   |                                               |  |  |
|                                                                                                                                          | (a) U <sub>rms</sub> /                                                                                                           | Uav                                                                                                                          | (i)                                                   | 1.22                                          |                                                  |                                                         |                                   |                                               |  |  |
|                                                                                                                                          | (b) U <sub>av</sub> / l                                                                                                          | Jmp                                                                                                                          | ()                                                    | (ii)                                          | 1.13                                             |                                                         |                                   |                                               |  |  |
|                                                                                                                                          |                                                                                                                                  |                                                                                                                              | (iii)                                                 | 1.08                                          |                                                  |                                                         |                                   |                                               |  |  |
|                                                                                                                                          | (0) $(1)$ $(2)$ $(1)$ $(2)$ $(1)$ $(2)$ $(1)$ $(2)$ $(2)$                                                                        |                                                                                                                              | (111)                                                 | (2) (2)                                       | (i) (b) (                                        | (ii) (a) (iii)                                          |                                   |                                               |  |  |
|                                                                                                                                          | (1) (a)- $(11), (b)$                                                                                                             | -(1), (0)-(1)                                                                                                                |                                                       | (2)(a)                                        | -(I), (D)-(                                      | $(11), (0)^{-}(11)$                                     |                                   |                                               |  |  |
|                                                                                                                                          | (3) (a)-(III), (b)                                                                                                               | -(1), (C)-(11)                                                                                                               |                                                       | (4) (a)                                       | -(11), (D)-                                      | ·(III), (C)-(I).                                        |                                   |                                               |  |  |
| 7.                                                                                                                                       | $N_2 + 3H_2 \longrightarrow 2NH_3$ . 1 mol $N_2$ and 4 mol $H_2$ are taken in 15 L flask at 27°C. After complete conversion      |                                                                                                                              |                                                       |                                               |                                                  |                                                         |                                   |                                               |  |  |
|                                                                                                                                          | UI IN2 INTO INF13, 5 L OT H2U IS Added. Pre<br>$3 \times 0.0821 \times 300$                                                      |                                                                                                                              | ressure s                                             | et up in                                      | the flask                                        | < IS :<br>∠300                                          |                                   |                                               |  |  |
|                                                                                                                                          | (1) $\frac{5 \times 0.03217}{15}$                                                                                                | otm                                                                                                                          |                                                       | (2)                                           | 10                                               | otm                                                     |                                   |                                               |  |  |
|                                                                                                                                          | (1)                                                                                                                              | aun                                                                                                                          |                                                       | (2)                                           | 0.0001                                           | aun                                                     |                                   |                                               |  |  |
|                                                                                                                                          | 1×0.0821×                                                                                                                        | 300                                                                                                                          |                                                       | 1×                                            | 0.0821×                                          | 300                                                     |                                   |                                               |  |  |
|                                                                                                                                          | (3) 15                                                                                                                           | atm                                                                                                                          |                                                       | (4)                                           | 10                                               | atm                                                     |                                   |                                               |  |  |
| 8.                                                                                                                                       | Which of the form                                                                                                                | ollowing is not the corre<br>?                                                                                               | ct set of pr                                          | ressure a                                     | and volu                                         | me at const                                             | tant temperatu                    | re and constant                               |  |  |
|                                                                                                                                          | P                                                                                                                                | V                                                                                                                            |                                                       |                                               | Р                                                | V                                                       |                                   |                                               |  |  |
|                                                                                                                                          | (1) 1 atm                                                                                                                        | 200 ml                                                                                                                       |                                                       | (2) 76                                        | 0 mm                                             | 0.2 L                                                   |                                   |                                               |  |  |
|                                                                                                                                          | (3) 0 5 atm                                                                                                                      | 100 I                                                                                                                        |                                                       | (4) 2 2                                       | tm                                               | 100 ml                                                  |                                   |                                               |  |  |
|                                                                                                                                          | (0) 010 0                                                                                                                        |                                                                                                                              |                                                       | ( !) = 0                                      |                                                  |                                                         |                                   |                                               |  |  |
|                                                                                                                                          | analysis, it wa<br>in the moist ga<br>(1) 0.989                                                                                  | is found that the quantit<br>as<br>(2) 0.897                                                                                 | ty of H <sub>2</sub> co                               | ollected v<br>(3) 0.9                         | was 0.07<br>953                                  | 788 mole. V<br>(                                        | Vhat is the mo<br>4) 0.967        | e fraction of H <sub>2</sub>                  |  |  |
| 10.                                                                                                                                      | When CO <sub>2</sub> un<br>despite the low<br>(1) the gas d<br>temperature<br>(2) volume of<br>(3) both (1) an<br>(4) None of th | nder high pressure is re<br>w sublimation temperate<br>loes work pushing bac<br>the gas is decreased ra<br>nd (2)<br>e above | eleased fro<br>ure (– 77%<br>k the atm<br>apidly heno | om a fire<br>C) of CC<br>losphere<br>ce, temp | e extingu<br>02 at 1.0<br>e using I<br>erature i | uisher, parti<br>atm. It is<br>KE of mole<br>is lowered | cles of solid C<br>ecules and thu | O <sub>2</sub> are formed,<br>is lowering the |  |  |
| 11.                                                                                                                                      | At what tempe                                                                                                                    | erature will the total KE                                                                                                    | of 0.3 mc                                             | ol of He                                      | be the s                                         | ame as the                                              | e total KE of 0.                  | 40 mol of Ar at                               |  |  |
|                                                                                                                                          | (1) 533 K                                                                                                                        | (2) 400 K                                                                                                                    |                                                       | (3) 34                                        | 6 K                                              | (                                                       | 4) 300 K                          |                                               |  |  |
| 12.                                                                                                                                      | Potassium hy                                                                                                                     | droxide solutions are u                                                                                                      | sed to abs                                            | sorb CO                                       | 2. How r                                         | many litres                                             | of CO <sub>2</sub> at 1.00        | ) atm and 22ºC                                |  |  |
|                                                                                                                                          | would be absorbed by an aqueous solution containing 15.0 g of KOH ? (Take R = $\frac{1}{12} \ell$ atm / K/mole)                  |                                                                                                                              |                                                       |                                               |                                                  |                                                         |                                   |                                               |  |  |
|                                                                                                                                          | 2KOF                                                                                                                             | $I + CO_2 \longrightarrow K_2CO_3 +$                                                                                         | ⊦ H₂O                                                 |                                               |                                                  |                                                         |                                   |                                               |  |  |
|                                                                                                                                          | (1) 3.24 L                                                                                                                       | (2) 1.62 L                                                                                                                   |                                                       | (3) 6.4                                       | 8 L                                              | (                                                       | 4) 0.324 L                        |                                               |  |  |
| 13.                                                                                                                                      | The volume of                                                                                                                    | f a gas increases by a f<br>moles is unaffected, th                                                                          | actor of 2<br>le factor by                            | while the                                     | e pressu<br>the temp                             | ure decreas<br>perature cha                             | es by a factor<br>anges is :      | of 3. Given that                              |  |  |
|                                                                                                                                          | 3                                                                                                                                |                                                                                                                              |                                                       | $\frac{2}{2}$                                 |                                                  |                                                         |                                   |                                               |  |  |
|                                                                                                                                          | (1) 2                                                                                                                            | (2) 3 × 2                                                                                                                    |                                                       | (3) 3                                         |                                                  | (                                                       | 4) <sup>2</sup> × 3               |                                               |  |  |

14. If V<sub>0</sub> is the volume of a given mass of gas at 273 K at constant pressure , then according to Charle's law, the volume at 10°C will be : 10 283 2 (3)  $V_0 + \overline{273}$ (4)  $\overline{273}$  V<sub>0</sub> (2)  $273(V_0 + 10)$ (1) 10 V<sub>0</sub> 15. When a gas is compressed at constant temperature : (2) the collisions between the molecules increase (1) the speeds of the molecules increase (3) the speeds of the molecules decrease (4) the collisions between the molecules decrease 16. A cylinder is filled with a gaseous mixture containing equal masses of CO and N2. The partial pressure ratio is : (3)  $P_{CO} = 2^{P_{N_2}}$  (4)  $P_{CO} = \frac{1}{2} P_{N_2}$ (1)  $P_{N_2} = P_{CO}$  (2)  $P_{CO} = 0.875 P_{N_2}$ 17. Helium atom is two times heavier than a hydrogen molecule at 298 k, the average kinetic energy of helium is : (1) two times that of hydrogen molecule (2) same as that of the hydrogen molecule (3) four times that of a hydrogen molecule (4) half that of a hydrogen molecule 18. Two flasks A and B have equal volumes. A is maintained at 300 K and B at 600 K, while A contains H<sub>2</sub> gas, B has an equal mass of CO<sub>2</sub> gas. Find the ratio of total K.E. of gases in flask A to that of B. (2) 11 : 1(3) 33 : 2 (1) 1 : 2(4) 55 : 7 19. A quantity of gas is collected in a graduated tube over the mercury. The volume of gas at 18 °C is 50 ml and the level of mercury in the tube is 100 mm above the outside mercury level. The barometer reads 750 torr. Hence, volume at S.T.P. is approximately : (4) 44 ml (1) 22 ml (2) 40 ml (3) 20 ml 20. If equal weights of oxygen and nitrogen are placed in separate containers of equal volume at the same temperature, which one of the following statements is true? (mol wt:  $N_2 = 28$ ,  $O_2 = 32$ ) (1) Both flasks contain the same number of molecules. (2) The pressure in the nitrogen flask is greater than the one in the oxygen flask. (3) More molecules are present in the oxygen flask. (4) Molecules in the oxygen flask are moving faster on the average than the ones in the nitrogen flask. 21. Which of the following is NOT a postulate of the kinetic molecular theory of gases? (1) The molecules possess a volume that is negligibly small compared to the of the container (2) The pressure and volume of a gas are inversely related (3) Gases consist of discrete particles that are in random motion (4) The average kinetic energy of the molecules is directly proportional to the temperature 22. What is the total pressure exerted by the mixture of 7.0 g of  $N_2$ , 2g of hydrogen and 8.0 g of sulphur dioxide gases in a vessel of 6 L capacity that has been kept in a reservoir at 27°C? (2) 4.5 bar (3) 10 atm (1) 2.5 bar (4) 5.7 bar 23. At what temperature root mean square speed of  $N_2$  gas is equal to that of propane gas at S.T.P. conditions. (1) 173.7°C (2) 173.7 K (3) S.T.P.  $(4) - 40^{\circ}C$ 10 L of O<sub>2</sub> gas is reacted with 30 L of CO(g) at STP. The volume of each gas present at the end of the 24. reaction are : (2) CO = 10 L, CO<sub>2</sub> = 20 L (1)  $O_2 = 10 L$ ,  $CO_2 = 20 L$ (3) CO = 20 L,  $CO_2 = 10 L$ (4) CO = 15 L, CO<sub>2</sub> = 15 L Page | 42

**25.** 1 mol of a gaseous aliphahatic compound C<sub>n</sub>H<sub>3n</sub>O<sub>m</sub> is completely burnt in an excess of oxygen. The contraction in volume is (assume water get condensed out)

(1) 
$$\left(1+\frac{1}{2}n-\frac{3}{4}m\right)$$
 (2)  $\left(1+\frac{3}{4}n-\frac{1}{4}m\right)$  (3)  $\left(1-\frac{1}{2}n-\frac{3}{4}m\right)$  (4)  $\left(1+\frac{3}{4}n-\frac{1}{2}m\right)$ 

- 26. One mole of a gas is defined as -
  - (1) The number of molecules in one litre of gas
  - (2) The number of molecules in one formula weight of gas
  - (3) The number of molecules contained in 12 grams of (12 C) isotope
  - (4) The number of molecules in 22.4 litres of a gas at S.T.P.
- 27.If two moles of an ideal gas at 546 K occupies a volume of 44.8 litres, the pressure must be -<br/>(1) 2 atm(2) 3 atm(3) 4 atm(4) 1 atm
- **28.** At STP the order of mean square velocity of molecules of  $H_2$ ,  $N_2$ ,  $O_2$  and HBr is -(1)  $H_2 > N_2 > O_2 > HBr$  (2)  $HBr > O_2 > N_2 > H_2$ (3)  $HBr > H_2 > O_2 > N_2$  (4)  $N_2 > O_2 > H_2 > HBr$
- **29.** If all the oxygen atoms present in 4 mole  $H_2SO_4$  2 mole  $P_4O_{10}$  & 2 mole  $NO_2$  are collected for the formation of  $O_2$  gas molecules then calculate volume of  $O_2$  gas formed at 2 atm pressure & 273 K temperature.

| (1) 224 L      | (2) 448 L | (3) 336 L | (4) 112 L |  |  |
|----------------|-----------|-----------|-----------|--|--|
| Partition<br>↓ |           |           |           |  |  |

30.

Η,

16.42 L

300 K 3 atm D<sub>2</sub> 16.42 L

300 K

6 atm

If the partition is removed the average molar mass of the sample will be (Assume ideal behaviour).

| 5                      | 10                     | 3           |             |
|------------------------|------------------------|-------------|-------------|
| (1) <sup>3</sup> g/mol | (2) <sup>3</sup> g/mol | (3) 2 g/mol | (4) 3 g/mol |

### Practice Test (JEE-Main Pattern) OBJECTIVE RESPONSE SHEET (ORS)

| Que. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|------|----|----|----|----|----|----|----|----|----|----|
| Ans. |    |    |    |    |    |    |    |    |    |    |
| Que. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Ans. |    |    |    |    |    |    |    |    |    |    |
| Que. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| Ans. |    |    |    |    |    |    |    |    |    |    |

## **PART - II : PRACTICE QUESTIONS**

| 1.          | The density of gas A is twice that of B at the same temperature the molecular weight of gas B is twice that of A.The ratio of pressure of gas A and B will be :                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|             | (1) 1 : 6                                                                                                                                                                                                           | (2) 1 : 1                                                                                     | (3) 4 : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4) 1 : 4                                                                                                         |  |  |  |  |
| 2.          | An open flask containin<br>atmosphere, if pressure                                                                                                                                                                  | g air is heated from 300<br>is keeping constant?                                              | K to 500 K. What percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | age of air will be escaped to the                                                                                 |  |  |  |  |
| •           |                                                                                                                                                                                                                     | (2) 40                                                                                        | (3) 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4) 20                                                                                                            |  |  |  |  |
| 3.          | <ul><li>(1) are above inversion</li><li>(3) do work equal to the</li></ul>                                                                                                                                          | ergoes unrestrained exp<br>n temperature<br>e loss in K.E.                                    | <ul> <li>(2) exert no attractive for</li> <li>(4) collide without loss of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | because the molecule –<br>ore on the other<br>of energy                                                           |  |  |  |  |
| 4.          | The volume of a gas me<br>pressure the temperatu                                                                                                                                                                    | easured at 27°C and 1 a<br>re required is :                                                   | tm pressure is 10 L. To re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | educe the volume to 5 L at 1atm                                                                                   |  |  |  |  |
|             | (1) 75 K                                                                                                                                                                                                            | (2) 150 K                                                                                     | (3) 225 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4) 300 K                                                                                                         |  |  |  |  |
| 5. <b>¤</b> | A gaseous mixture of the the gases is 10. If the p of 2.0, what is the weigh (1) 6                                                                                                                                  | nree gases A, B and C ha<br>partial pressure of A and<br>ht of C in g present in the<br>(2) 8 | as a pressure of 10 atm.<br>B are 3.0 and 1.0 atm re<br>e mixture ?<br>(3) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The total number of moles of all espectively and if C has mol. wt.                                                |  |  |  |  |
| <b>^</b>    |                                                                                                                                                                                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (I) has 2.0 of N at temperature                                                                                   |  |  |  |  |
| 0.          | $T_1(K)$ . The other container (II) is maintain then what is the weight                                                                                                                                             | ainer (II) is completely a<br>ned at $T_2/3$ (K). Volume c<br>ratio of $N_2$ in both vesse    | evacuated. The container of vessel (I) is half that of vessel (I) is half that of vessel $(W_{II}/W_{II})$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (I) has 2.8 of $N_2$ at temperature<br>er (I) is heated to $T_2$ (K) while<br>vessel (II). If the valve is opened |  |  |  |  |
|             | (1) 1 : 2                                                                                                                                                                                                           | (2) 1 : 3                                                                                     | (3) 1 : 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4) 3 : 1                                                                                                         |  |  |  |  |
| 7.          | Two glass bulbs A and of 100 cm <sup>3</sup> and contain down to 40%. The volu                                                                                                                                      | B are connected by a v<br>ed the gas, while bulb B<br>me of the bulb B must be                | rery small tube having a<br>was empty. On opening<br>e :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | stop cock. Bulb A has a volume the stop cock, the pressure fell                                                   |  |  |  |  |
|             | (1) 75 cm <sup>3</sup>                                                                                                                                                                                              | (2) 125 cm <sup>3</sup>                                                                       | (3) 150 cm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (4) 250 cm <sup>3</sup>                                                                                           |  |  |  |  |
| 8.          | There are $6.02 \times 10^{22}$ n<br>The mass of the mixture                                                                                                                                                        | nolecules each of N <sub>2</sub> , O <sub>2</sub><br>e in grams is                            | and H <sub>2</sub> which are mixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | together at 760 mm and 273 K.                                                                                     |  |  |  |  |
|             | (1) 6.2                                                                                                                                                                                                             | (2) 4.12                                                                                      | (3) 3.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4) 7                                                                                                             |  |  |  |  |
| 9.          | At 27°C, the ratio of $rm$ .<br>(1) $\sqrt{3/5}$                                                                                                                                                                    | s velocities of ozone to c<br>(2) $\sqrt{4/3}$                                                | xygen is<br>(3) <sup>√2/3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (4) 0.25                                                                                                          |  |  |  |  |
| 10.         | Calculate the compress<br>Comment on the result.                                                                                                                                                                    | sibility factor for CO <sub>2</sub> , if                                                      | one mole of it occupies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4 litre at 300 K and 40 atm.                                                                                    |  |  |  |  |
|             | (1) 0.40, $CO_2$ is more compressible than ideal gas (2) 0.65, $CO_2$ is more compressible than ideal gas (3) 0.55, $CO_2$ is more compressible than ideal gas (4) 0.62, $CO_2$ is more compressible than ideal gas |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   |  |  |  |  |
| 11.         | The density of vapour of through a small hole a                                                                                                                                                                     | of a substance (X) at 1 a<br>t a rate of 4/5 times solv<br>Z) of the vapour 2                 | tm pressure and 500 K is ver than oxygen under the time of the second seco | s 0.8 kg/m <sup>3</sup> . The vapour effuses he same condition. What is the                                       |  |  |  |  |
|             | (1) 0.974                                                                                                                                                                                                           | (2) 1.35                                                                                      | (3) 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4)1.22                                                                                                           |  |  |  |  |
| 12.         | For a real gas (mol. ma                                                                                                                                                                                             | ass = 60) if density at cr                                                                    | itical point is 0.80 g/cm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and its $T_c = \frac{4 \times 10^5}{821} K$ , then van                                                            |  |  |  |  |
|             | der Waal's constant a (<br>(1) 0.3375                                                                                                                                                                               | in atm L² mol⁻²) is<br>(2) 3.375                                                              | (3) 1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4) 0.025                                                                                                         |  |  |  |  |

| 13.🛤           | Which of the following r                                                                                                                | relationship is false :                                                                                                                              |                                                                                                                                       |                                                                                                                                 |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                | (1) Most probable veloc                                                                                                                 | bity, $\propto = \sqrt{\frac{2RT}{M}}$                                                                                                               | (2) PV = $\frac{1}{3}$ mnC <sup>2</sup> <sub>rms</sub>                                                                                | 1                                                                                                                               |
|                | (3) Compresibility facto                                                                                                                | $r Z = \frac{1}{nRT}$                                                                                                                                | (4) Average kinetic ene                                                                                                               | ergy of a gas = $\frac{1}{2}$ kT                                                                                                |
| 14. <i>¤</i> à | For every gas, there is<br>(1) above which it is no<br>(2) above which it is no<br>(3) below which it is no<br>(4) below which it is no | a temperature called crit<br>t possible to liquefy a ga<br>t possible to solidify a ga<br>t possible to liquefy a gas<br>t possible to solidify a ga | ical temperature<br>s with the application of<br>as with the application of<br>s with the application of<br>s with the application of | pressure.<br>pressure.<br>pressure.<br>pressure.                                                                                |
| 15.            | If the four tubes of a ca<br>one will be filled first ?<br>(1) N <sub>2</sub>                                                           | (2) O <sub>2</sub>                                                                                                                                   | pressure with N <sub>2</sub> , O <sub>2</sub> , H <sub>2</sub>                                                                        | <ul> <li>and Ne separately, then which</li> <li>(4) Ne</li> </ul>                                                               |
| 16.            | At what temperature wi                                                                                                                  | Il the RMS of SO <sub>2</sub> be the                                                                                                                 | e same as that of $O_2$ at 3                                                                                                          | 03 K ?                                                                                                                          |
| 17.            | <ul> <li>(1) 273 K</li> <li>A 4.0 dm<sup>3</sup> flask contain and the gases were allo</li> <li>(1) 10.0 bar</li> </ul>                 | (2) 606 K<br>hing N <sub>2</sub> at 4.0 bar was co<br>bwed to mix isothermally<br>(2) 5.2 bar                                                        | <ul> <li>(3) 303 K</li> <li>onnected to a 6.0 dm<sup>3</sup> flat</li> <li>, then the total pressure</li> <li>(3) 1.6 bar</li> </ul>  | (4) 403 K<br>isk containing helium at 6.0 bar,<br>of the resulting mixture will be :<br>(4) 5.0                                 |
| 18.🗚           | A 4 : 1 mixture of heliu<br>vessel, the gas mixture<br>(1) 8 : 1                                                                        | m and methane is conta<br>leaks out. The composit<br>(2) 8 : 3                                                                                       | ined in a vessel at 10 ba<br>tion of the mixture effusir<br>(3) 4 : 1                                                                 | ar pressure. Due to a hole in the<br>ng out initially is :<br>(4) 1 : 1                                                         |
| 19.            | A vessel contains two<br>allowed to diffuse throu<br>1 : 4. Find the simplest<br>beginning respectively.<br>(1) 0.5                     | gases A and B in the m<br>igh a hole, the molar cor<br>t whole number ratio of t<br>(2) 1.0                                                          | ass ratio 2 : 1 respectiv<br>nposition of the mixture<br>the moles of gases B an<br>(3) 1.5                                           | rely. If the above gas mixture is<br>coming initially out of the hole is<br>d A present in the vessel in the<br>(4) 2.0 (5) 2.5 |
| 20.            | For a real gas under low $z \downarrow_{1}^{1}$<br>(1) $1/V_{m}$                                                                        | w pressure conditions, w<br>$z \int_{1}^{1} \frac{1}{1/V_m}$                                                                                         | which of the following grap<br>$z = \frac{1}{1/V_m}$                                                                                  | bh is correct ?<br>$z \int_{1}^{1} \frac{1}{1/V_m}$                                                                             |
| 21.            | Use of hot air balloons (1) Boyle's law                                                                                                 | in sports and meteorolog<br>(2) Newtonic law                                                                                                         | gical obsevations is an a<br>(3) Kelvin's law                                                                                         | oplication of<br>(4) Charle's law                                                                                               |
| 22.🖻           | Pure hydrogen sulphide                                                                                                                  | e is stored in a tank of 10                                                                                                                          | 00 <i>litre</i> capacity at 20°C a                                                                                                    | nd 2 atm pressure. The mass of                                                                                                  |
|                | (1) 34 <i>g</i>                                                                                                                         | (2) 340 <i>g</i>                                                                                                                                     | (3) 282.4 g                                                                                                                           | (4) 28.24 <i>g</i>                                                                                                              |
| 23.ष           | The density of a gas a temperatures will its de (1) 20°C                                                                                | at 27ºC and 1 <i>atm</i> is <i>d</i> .<br>nsity become 0.75 d<br>(2) 30ºC                                                                            | Pressure remaining co                                                                                                                 | nstant at which of the following (4) 300 K                                                                                      |
| 24.            | If P, V, M, T and R are                                                                                                                 | pressure, volume, molai                                                                                                                              | r mass, temperature and                                                                                                               | gas constant respectively, then                                                                                                 |
|                | (1) $\frac{\text{RT}}{\text{PM}}$                                                                                                       | (2) $\frac{P}{RT}$                                                                                                                                   | (3) <sup>M</sup> V                                                                                                                    | (4) <sup>PM</sup> / <sub>RT</sub>                                                                                               |
|                |                                                                                                                                         |                                                                                                                                                      |                                                                                                                                       |                                                                                                                                 |

### **GASEOUS STATE**

|          | (1) SO <sub>2</sub> |      | (2) CO <sub>2</sub> |     | (3) O <sub>2</sub> |     | (4) H <sub>2</sub> |     |     |
|----------|---------------------|------|---------------------|-----|--------------------|-----|--------------------|-----|-----|
|          | APSP                | Answ | /ers )≡             |     |                    |     |                    |     |     |
|          |                     |      |                     | PA  | RT-I               |     |                    |     |     |
| -        | (2)                 | 2.   | (2)                 | 3.  | (3)                | 4.  | (4)                | 5.  | (2) |
| <b>.</b> | (1)                 | 7.   | (4)                 | 8.  | (3)                | 9.  | (4)                | 10. | (1) |
| 1.       | (1)                 | 12.  | (1)                 | 13. | (3)                | 14. | (4)                | 15. | (2) |
| 6.       | (1)                 | 17.  | (2)                 | 18. | (2)                | 19. | (2)                | 20. | (2) |
| 21.      | (2)                 | 22.  | (4)                 | 23. | (2)                | 24. | (2)                | 25. | (4) |
| 26.      | (4)                 | 27.  | (1)                 | 28. | (1)                | 29. | (1)                | 30. | (2) |
|          |                     |      |                     | PA  | RT - II            |     |                    |     |     |
| ۱.       | (3)                 | 2.   | (2)                 | 3.  | (2)                | 4.  | (2)                | 5.  | (3) |
| 5.       | (3)                 | 7.   | (3)                 | 8.  | (1)                | 9.  | (3)                | 10. | (2) |
| 1.       | (3)                 | 12.  | (2)                 | 13. | (4)                | 14. | (1)                | 15. | (3) |
| 6.       | (2)                 | 17.  | (2)                 | 18. | (1)                | 19. | (4)                | 20. | (1) |
| 21.      | (4)                 | 22.  | (3)                 | 23. | (3)                | 24. | (4)                | 25. | (4) |

# APSP Solutions

PART-I

1. Using 
$$p_1V_1 = P_2V_2$$
 1 × 2.5 = 0.5 ×  $P_2 = 5$  bar.  
 $\therefore$  % increase in pressure =  $\frac{(5-1)bar}{1bar}$  × 100% = 400 %.  
2. Given  $\sqrt{\frac{8RT}{\pi M_A}} = \sqrt{\frac{3RT}{M_B}}$   $\Rightarrow 8M_B = 3\pi M_A$   
 $\frac{\sqrt{3RT_A}}{M_A} = \sqrt{\frac{3RT_B}{M_B}}$   $\Rightarrow \frac{T_A}{M_A} = \frac{T_B}{M_B}$   $\Rightarrow M_B \cdot T_A = M_A \cdot T_B$   
 $\Rightarrow \frac{3\pi}{8} M_A \cdot T_A = M_A \cdot T_B$   $\Rightarrow T_B > T_A$  Hence (2)  
3.  $\sqrt{\frac{8RT}{\pi M}} = 2\sqrt{\frac{8 \times R \times 300}{\pi M}}$   $\Rightarrow T = 1200 \text{ K} = 927^{\circ}\text{C}$   
4. 100 P = 0.2 P × 100 + 0.2 P × V  
 $\frac{1000}{2} = 100 + V$ ; V = 400 ml  
5. PV  $\propto$  T  
6.  $U_{MPS} = \sqrt{\frac{2RT}{M}}$  ;  $U_{RMS} = \sqrt{\frac{3RT}{M}}$  ;  $U_{av} = \sqrt{\frac{8RT}{\pi M}}$   
 $T = 0$  1 mole 4 mole 0  
 $T = t_{mal}$  0 1 mole 2 mole

E

NH<sub>3</sub> will absorb by water and volume will be 15 - 5 = 10 L nRT 1×0.0821×300 P = V = 110 atm  $1 \times 0.2$ 1×0.2 (1) Total moles = RT(2) Total moles = RT 8. 2×0.1  $0.5 \times 100$ RT (4) Total moles = RT (3) Total moles = PV 1×2  $n_{\text{Total}} = \overline{\text{RT}} = \overline{0.0821 \times 299} = 0.081 \text{ moles}$ 9. 0.0788  $X_{H_2} = \frac{n_{H_2}}{n_{total}} = \frac{0.0821}{2} \times 299$ = 0.96710. K.E. ∝ Temperature  $\left[\frac{3}{2}nRT\right]_{He} = \frac{3}{2}nRT$ 11.  $0.3 T = 0.4 \times 400$ T = 533 K  $V = \frac{15}{56} \times \frac{1}{2} \times \frac{0.0821 \times 295}{1} = 3.24 \text{ L}$ 12. 13. PV = nRTΡ  $\overline{3} \times 2V = nRT$ 2  $T' = \overline{3}T$  $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ 14.  $\frac{V_0}{273} = \frac{V_2}{283}$ 283  $V_2 = 273 V_0$ ⇒ 15. Frequency of collision will increase.  $\frac{P_{N2}}{P_{CO}} = \frac{X_{N2}}{X_{CO}} = \frac{n_{N2}}{n_{co}} = \frac{x \times 28}{28 \times x} = 1$ 16.  $P_{N2} = P_{co}$ Where  $x_{n2}$ ,  $x_{\infty}$  is mole fraction of  $N_2$  & CO and x is wt. of  $N_2$  & CO taken. 3 Average K.E. = 2 RT and T is constant 298 K 17. : K.E. is same for all gases at same Temperature. <u>n<sub>A</sub>T<sub>A</sub> m 44</u> 300  $n_B T_B = 2 \times \overline{m} \times \overline{600}$ 18. 19. Net pressure of gas = P<sub>gas</sub>  $P_{gas} (P_{x l}) = 650 \text{ mm.}$  $\frac{P_1V_1}{T_1} = \left(\frac{P_2V_2}{T_2}\right)_{\text{STP}}$ 

|     | $\frac{650 \times 50}{291} = \frac{760 \times V_2}{273}$                                                                                                             |                                                                                                 |                                                                                                  |                                                                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|     | V <sub>2</sub> = 40.11 ml                                                                                                                                            |                                                                                                 | $P_1 = 9 atm$<br>$V_1 = 5l$                                                                      | $\begin{array}{l} P_2=6 \text{ atm} \\ V_2=10 \ \ell \end{array}$                     |
| 20. | $\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ \end{array} \\ \Rightarrow & & & & & & P_{O_2} \end{array}$                                               | where 'n' is no because $P_{gas}\alpha$                                                         | of moles of gase<br>n.                                                                           | 9S.                                                                                   |
| 22. | No. of moles of N <sub>2</sub> = $\frac{7}{24}$                                                                                                                      | $\frac{1}{3} = \frac{1}{4}$                                                                     |                                                                                                  |                                                                                       |
|     | No. of moles of H <sub>2</sub> = 1<br>No. of moles of SO <sub>2</sub> =<br>$P = \frac{nRT}{V} = \frac{11}{8} \times \frac{0.082}{V}$                                 | Mole<br>$\frac{1}{8}$ moles<br>$\frac{1 \times 300}{6}$ = 5.64 $\approx$ 5                      | Total m<br>5.7 atm.                                                                              | holes = $\frac{1}{4} + 1 + \frac{1}{8}$<br>= $\frac{1}{8} (2 + 8 + 1) = \frac{11}{8}$ |
| 23. | Let Temp (T) where V<br>= $\sqrt{\frac{3RT_1}{M_{N2}}} = \sqrt{\frac{3}{M}}$<br>T <sub>1</sub> = 173.72 K                                                            | $\frac{\text{ms of } N_2 = V_{\text{ms of }}}{RT_2} = \sqrt{\frac{3 \times 8.31}{44 \times 7}}$ | $\frac{C_{3}H_{8} \text{ at STP}}{\frac{4 \times 273}{10^{-3}}} = \sqrt{\frac{3RT_{1}}{M_{N2}}}$ | = 393.38                                                                              |
| 24. | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                 | 20/22.4<br>n CO <sub>2</sub> = 20 L<br>CO = 10 L                                                |                                                                                                  |                                                                                       |
| 25. | $C_nH_{3n}O_m + yO_2 \longrightarrow r$<br>Contraction in volume = $\frac{3n}{2}$                                                                                    | $\frac{3n}{2}H_2(g) + \frac{3n}{2}H_2(g)$<br>= Contraction in $\frac{m}{2}$                     | D ( <i>l</i> )<br>moles of gas = 1<br><u>3n</u>                                                  | $+ \frac{\frac{3n}{4}}{\underline{m}} = \frac{\underline{m}}{2}$                      |
| 26. | $\Rightarrow \qquad 4 = -$<br>No. of molecules in 22.<br>is $6.02 \times 10^{23} = 1$ mole                                                                           | <ul> <li>2 × <sup>2</sup> = y</li> <li>4 L at STP of gas.</li> </ul>                            | $\Rightarrow$ n + 4                                                                              | - <sup>2</sup> = y                                                                    |
| 27. | $P = \frac{nRT}{V} = \frac{2 \times 0.0821 \times 44.8}{44.8}$                                                                                                       | 546<br>= 2 atm                                                                                  |                                                                                                  |                                                                                       |
| 28. | V <sub>rms</sub> $\propto \frac{1}{\sqrt{M}}$ 'M' is Molect<br>order of M.wt. :<br>∴ order of V <sub>rms</sub> =                                                     | cular wt.<br>= H₂< N₂ < O₂ < I<br>H₂ > N₂ > O₂ > H                                              | HBr<br>IBr.                                                                                      |                                                                                       |
| 29. | moles of $O_2$ in 4 mole (<br>moles of $O_2$ in 2 mole (<br>moles of $O_2$ in 2 mole (<br>$\therefore$ total moles of $O_2 = 20$<br>$\therefore$ volume of 20 mole a | $H_2SO_4) = 4 \times 2$<br>$P_4O_{10}) = 10$<br>$NO_2) = 2$<br>0 mole<br>t 1 atm = 22.4 ×       | 20 L                                                                                             |                                                                                       |

 $\therefore \text{ at } 2 \text{ atm} = \frac{1}{2} \times 22.4 \times 20 = 224 \text{ L}$  $6 \times 16.42$  $3 \times 16.42$ mole of  $H_2 = \overline{0.0821 \times 300} = 2$ ; mole of  $D_2 = \overline{0.0821 \times 300} = 4$ 30.  $2 \times 2 + 4 \times 4$  10 = 3 4+2 average molecular weight = PART - II  $d_A = 2d_B$ ;  $3M_A = M_B$ ; PM = dRT1.  $= \frac{\frac{P_{A}}{P_{B}}}{\frac{P_{B}}{x}} \times \frac{\frac{M_{A}}{M_{B}}}{\frac{M_{B}}{x}} = \frac{\frac{d_{A}}{d_{B}}}{\frac{d_{A}}{x}} \times \frac{RT}{RT}$  $= \frac{\frac{P_A}{P_B}}{x} \times \frac{1}{2} = 2$  $\frac{P_A}{P_B} = \frac{4}{1}$ 2.  $V_1 = V, T_1 = 300 \text{ K}, T_2 = 500 \text{ K}, V_2 = ?$ At constant pressure  $V_1T_2 = V_2T_1$ :.  $V_2 = \frac{P_1 T_2}{T_1} = \frac{V \times 500}{300} = \frac{5V}{3}$ : Volume of air escaped = final volume - initial volume  $=\frac{5V}{3}-V\frac{2V}{3}$ 2V 2V/3  $\therefore$  % of air escaped =  $\overline{5V/3} \times 100 = 40\%$ 3. Attraction forces between ideal gas molecule are zero. 4. According to gas laws  $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$  $P_1 = 1$  atm,  $V_1 = 10$  L,  $T_1 = 27 + 273 = 300$  K  $P_2 = 1$  atm,  $V_2 = 5L$ ,  $T_2 = ?$ Putting the values we have 1×10 1×5  $\frac{300}{=}$  T<sub>2</sub>  $T_2 = 30 \times 5 = 150 \text{ K}$ 5.🖎 Pressure of Total mixture = 10 atm  $P_{A} + P_{B} + P_{C} = 10$  $3 + 1 + P_c = 10$  $\Rightarrow$  $P_c = 6 atm$ Total moles of mixture = 10  $n_{\rm A} + n_{\rm B} + n_{\rm C} = 10$  $\underline{P_A} = \underline{n_A} = \frac{3}{2}$  $\frac{P_B}{P_C}=\frac{n_B}{n_C}=\frac{1}{6}$  $P_B = n_B = 1$ Κ 1 n<sub>B</sub> = 3  $n_c = 6$ Let  $n_A = K$ n<sub>в</sub> = 2К  $\Rightarrow$ 

$$\Rightarrow \qquad \begin{array}{ccc} K + \frac{K}{3} + 2K = 10 & \Rightarrow & \begin{array}{c} \frac{K}{3} = \frac{n_{C}}{6} \\ \end{array} \\ \Rightarrow & \begin{array}{c} \kappa \left( \frac{10}{3} \right) \\ \kappa = 10 \\ n_{C} = 6 \end{array} \end{array} \Rightarrow \qquad \begin{array}{c} n_{C} = 2K \\ n_{C} = 2K \\ \end{array} \\ \begin{array}{c} \Rightarrow & n_{C} = 2K \\ \end{array} \\ \begin{array}{c} r_{C} = 1 \\ r_{C} = 1 \\ r_{C} = 6 \end{array} \end{array} \Rightarrow \qquad \begin{array}{c} n_{C} = 2K \\ r_{C} = 12 \\ \end{array}$$



6.

7.

Let x moe of N<sub>2</sub> present into vessel II and P is final pressure of N<sub>2</sub> P(2V) =  $xR(T_2/3)$  and P(V) =  $(0.1 - x)RT_2$ 

$$\Rightarrow \qquad 2 = \frac{\frac{x}{3(0.1-x)}}{\frac{0.6}{7}} \Rightarrow \qquad x = 0.6/7 \text{ mole,}$$

II has 2.4 g  $N_{\rm 2}$  and I has 0.4 g of  $N_{\rm 2}$  ;

$$V_{A} = 100 \qquad V_{B} = V \text{ ml}$$

$$ml$$

$$P_{A} V_{A} = P_{A}' V' \qquad \qquad Where \quad V' = V_{A} + V_{B} = (V_{A} + V) \text{ ml}$$

$$P_{A} 100 = \frac{2}{5} P_{A} \times V' \qquad \qquad P_{A} = \frac{P_{A} \times 40}{100} = \frac{2}{5} P_{A}$$

$$250 = V' \qquad \Rightarrow \qquad V_{A} + V = 250 \text{ ml}$$

$$V = 150 \text{ ml}$$

**8.**  $6.02 \times 10^{22}$  molecules of each N2, O2 and H2

$$\frac{6.02 \times 10^{22}}{6.02 \times 10^{23}}$$

 $= 6.02 \times 10^{23} \text{ moles of each}$ 

Weight of mixture = weight of 0.1 mole N2 + weight of 0.1 mole H2 + weight of 0.1 mole of O2 =  $(28 \times 0.1) + (2 \times 0.1) + (32 \times 0.1) = 6.2gm$ 

9.  

$$\frac{U_{O_3}}{U_{O_2}} = \sqrt{\frac{M_{O_2}}{M_{O_3}}} = \sqrt{\frac{32}{48}} = \sqrt{\frac{2}{3}}$$
10.  

$$Z = \frac{\frac{(PV)_{real}}{(PV)_{ideal}}}{\frac{r_x}{r_{O_2}}} = \sqrt{\frac{M_{O_2}}{M_x}} = \left(\frac{4}{5}\right)^2 = \frac{32}{M_x} = 50$$
11.  

$$d_x = 0.80 \text{ kg/m}^3.$$

$$V_m = \frac{1000}{800} \times 50 = 62.5 \text{ L}$$

;

$$Z = \frac{PV_m}{RT} = \frac{1 \times 62.5}{0.0821 \times 500} = 1.52$$

 $\frac{W_{\rm I}}{W_{\rm II}} = \frac{0.4}{2.4} \Rightarrow 1:6$ 

12. 
$$V_{c} = \frac{60}{0.80} = 75 \text{ cm}^{3} \text{ mol}^{-1}; \quad b = \frac{V_{c}}{3} = 25 \text{ cm}^{3} \text{ mol}^{-1} = 0.025 \text{ L mol}^{-1}$$

$$T_{c} = \frac{9a}{27 \text{ Rb}}; \quad \frac{4 \times 10^{5}}{821} = \frac{8 \times a}{27 \times 0.0821 \times 0.025} \Rightarrow a = 3.375$$
13. Average kinetic energy of a gas/ molecule =  $\frac{3}{2} \text{ KT}$ .
14. Critical temperature is a temperature above which it is not possible to liquely a gas with the application of pressure.
15. Lower the density of the gas, faster it will be filled. As H<sub>2</sub> has lowest density, it will be filled first.
16.  $u = \sqrt{\frac{387}{M}}$ 
When  $^{13}\text{Co}_{2} = \frac{10}{2}$ , then  $\frac{15}{M_{CO_{2}}} = \frac{10}{M_{O_{2}}}$  or  $\frac{15}{64} = \frac{303}{32} \Rightarrow 150_{2} = 606 \text{ K}$ .
17. At constant temperature, P, V, + P, V = P, (V + V) (4.0 \text{ dol}) (6.0 \text{ dm}^{3}) = P\_{2} (4.0 + 6.0 \text{ dm}^{3})
or  $P_{2} = \frac{16 \times 36}{10} = \frac{52}{10} = 5.2 \text{ bar}$ .
18. Pressure of helium = 8 bar
Pressure of CH<sub>4</sub> = 2 bar
 $\frac{5u_{4}}{10} = \frac{P_{2}}{M_{0}} \sqrt{\frac{M_{CH_{4}}}{M_{16}}} = \frac{8}{2} \sqrt{\frac{16}{4}} = \frac{8}{1} = 8 : 1$ 
19.  $\frac{r_{A}}{r_{B}} = \frac{n_{A}}{N} \sqrt{\frac{M_{A}}{M_{A}}}$ 
 $\frac{(\text{Moles of A coming out initially})/\Delta t}{(Moles of B coming out initially)/\Delta t} = \left(\frac{\frac{2x}{M_{A}}}{\frac{1}{M_{B}}}\right) \sqrt{\frac{M_{A}}{M_{A}}}$ 
 $\therefore$  Ratio of moles  $= \frac{n_{B}}{n_{A}} = \frac{1}{2} \times \frac{4}{1} = 2$ 
20. At low pressure vander waal's equation to a real gas is given as
 $Z = 1 - \frac{RTV}{RT}$ 
intercept = 1; slop = -ve
21.  $n = \frac{P_{V}}{RT} = \frac{m}{m}$ ;  $m = \frac{MP_{V}}{RT} = \frac{32 \times 2 \times 100}{0.082 \times 203} = 282.4 \text{ gm}$ 
23. At constant pressure
 $V \times nT \ll \frac{m}{M} T; \frac{V_{1}}{V_{2}} = \frac{m_{1}^{T}}{m_{1}} \cdot \frac{T_{1}}{T_{2}} = \frac{V_{1}}{m_{1}} \times \frac{V_{2}}{V_{2}} = \frac{60.75d}{T_{2}}$ 
 $T_{2} = \frac{300}{0.75} = 400^{9} \text{ K}$ 
24. PV = nRT
 $\frac{M}{P} = nRT$   $\left(\frac{x}{V} = \frac{M}{M}\right; d = \frac{P_{1}}{RT}$ 

25.

$$V_{rms} = \sqrt{\frac{3RT}{M}} \therefore V_{rms} \propto \frac{1}{\sqrt{M}}$$
 at same T

because  $H_2$  has least molecular weight so its r.m.s. velocity should be maximum.