STRUCTURAL IDENTIFICAITON & POC

Additional Problems for Self Practice (APSP)

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

PART - I : PRACTICE TEST PAPER

Max. Marks : 120 Important Instructions

- 1. The test is of 1 hour duration.
- 2. The Test Booklet consists of **30** questions. The maximum marks are **120**.
- 3. Each question is allotted 4 (four) marks for correct response.
- **4.** Candidates will be awarded marks as stated above in Instructions No. 3 for correct response of each question.

¹/₄ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.

- 5. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 4 above.
- 1. Degree of unsaturation of product form after complete hydrogenation of the following compound :

How many isomeric structural alkene on catalytic hydrogenation gives 3-Methyl hexane.
 (1) 3
 (2) 4
 (3) 5
 (4) 6

3. Compound A (C₆H₁₂) does not absorb H₂ in presence of Ni. It forms two monochloro isomers on photochemical chlorination. Its structure can be :

4. How many cyclo alkenes (structural only) on hydrogenation can give following compound.

Max. Time : 1 Hr.

(4) 4

6. When one mole of the given compound reacts with sodium metal then how many moles of H₂ gas will release?

- mole (4) 2.5 mole
- Which of the following compounds will give a positive iodoform test ?
 (1) methanol
 (2) 2,2-dimethylpropanol
 (3) α-haloethanol
 (4) methanal
- 8. Which of the following reagent is used to distinguish between benzylamine and aniline ? (1) $CHCl_3 + alc. KOH$ (2) Azodye test (3) $HgCl_2 + CS_2$ (4) Tollen's test

9. Which of the following compound can not give lodoform when react with IO-(hypoiodite).

- 10.How many structural isomeric ketones having molecular formula ($C_5H_{10}O$) give iodoform test ?(1) 1(2) 2(3) 3(4) 4
- **11.** A compound which can give iodoform test, bromine water test, FeCI₃ test but not Tollen's test.

	$\xrightarrow{0_3}$						
13.	(x) C ₇ H ₁₂ Me ₂ S P -	+ Q					
	Compound P responds	s to Tollen's test and lodo	oform test but Q does not	respond with both the reagents.			
	1		CH-CH ₃	\sim			
	(1)	(2)	(3)	(4)			
	\downarrow						
14.	$\mathbb{I} \longrightarrow P$	$\xrightarrow{Cl_2/IN}$ Q (Total numb	er of monochloro structu	ral products).			
	(1) 2	(2) 3	(3) 4	(4) 5			
15.	Yellow precipitate obta	ined during the test of ha	alogen by lassaigne's tes	t is due to the formation of			
	(1) AgF	(2) AgCl	(3) AgBr	(4) None of these			
16	A research scholar get	a mixture of three produ	ict during an experiment	with ammonia. In product I only			
10.	one H of ammonia is r	eplaced by ethyl group	and in II two H atoms of	ammonia are replaced by ethyl			
	groups and in III all the	H-atoms are replaced I	by ethyl groups . Which t	est he should use to distinguish			
	or separate the produc	ts :					
	(1) Carbyl amine test	(2) lodoform test	(3) Fehling solution tes	t (4) Hinsberg test			
17.	How many alcohols giv	e immediate turbidity wit	th Lucas reagent having	molecular formula (C ₅ H ₁₂ O):			
	(1) 1	(2) 2	(3) 3	(4) 4			
18.	Which of the following	compound can give test	with Tollen's reagent and	yellow precipitate with iodine in			
	NaOH ?						
				CH ₃ –C–CH ₃			
	(1) CH ₂ =O	(2) CH ₃ CH=O	(3) CH ₃ CH ₂ CH=O	CH ₃ -C-CH ₃ (4) O			
19.	(1) CH ₂ =O Which is incorrect mate	(2) CH ₃ –CH=O	(3) CH ₃ –CH ₂ –CH=O	CH ₃ -C-CH ₃ (4) O			
19.	 (1) CH₂=O Which is incorrect mate (1) Carbohydrates 	(2) CH ₃ –CH=O ch with respect to the rea \rightarrow α –Naphthol (M	(3) CH ₃ –CH ₂ –CH=O agent used for lab test ? folish reagent)	CH ₃ -C-CH ₃ (4) O			
19.	 (1) CH₂=O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane 	(2) CH ₃ –CH=O ch with respect to the rea $\rightarrow \qquad \alpha$ –Naphthol (M $\rightarrow \qquad Zn \ NH_4Cl and$	(3) CH ₃ –CH ₂ –CH=O agent used for lab test ? folish reagent) AgNO ₃ (Muliken Barker	CH ₃ -C-CH ₃ (4) O			
19.	 (1) CH₂=O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol 	(2) CH ₃ –CH=O ch with respect to the rea $\rightarrow \qquad \alpha$ –Naphthol (M $\rightarrow \qquad$ Zn, NH ₄ Cl and $\rightarrow \qquad$ Anbydrous Zn((3) CH ₃ –CH ₂ –CH=O agent used for lab test ? Iolish reagent) AgNO ₃ (Muliken Barker	$(4) \qquad O \qquad CH_3 - C - CH_3 \qquad (4) \qquad O \qquad CH_3 - C - CH_3 \qquad CH_3 - C$			
19.	 (1) CH₂=O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid 	(2) CH ₃ –CH=O ch with respect to the rea $\rightarrow \qquad \alpha$ –Naphthol (M $\rightarrow \qquad Zn, NH_4Cl and$ $\rightarrow \qquad Anhydrous Zn(\rightarrow \qquad NaHCO_2$	(3) CH ₃ –CH ₂ –CH=O agent used for lab test ? Iolish reagent) AgNO ₃ (Muliken Barker Cl ₂ + Conc. HCI (Lucas F	$(4) \qquad \begin{array}{c} CH_{3}-C-CH_{3} \\ H\\ O\end{array}$ test) Reagent)			
19.	 (1) CH₂=O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid 	(2) CH ₃ –CH=O ch with respect to the rea $\rightarrow \qquad \alpha$ –Naphthol (M $\rightarrow \qquad Zn, NH_4Cl and$ $\rightarrow \qquad Anhydrous Znd \rightarrow \qquad NaHCO_3$	(3) CH ₃ –CH ₂ –CH=O agent used for lab test ? Iolish reagent) AgNO ₃ (Muliken Barker Cl ₂ + Conc. HCI (Lucas F	$(4) \qquad \begin{array}{c} CH_{3}-C-CH_{3} \\ H\\ O\end{array}$ test) Reagent)			
19. 20.	 (1) CH₂=O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid How many hydrocarbon 	 (2) CH₃–CH=O ch with respect to the reative a–Naphthol (M → Zn, NH₄Cl and → Anhydrous Zna → NaHCO₃ 	(3) CH ₃ –CH ₂ –CH=O agent used for lab test ? Iolish reagent) AgNO ₃ (Muliken Barker Cl ₂ + Conc. HCI (Lucas F	CH ₃ -C-CH ₃ (4) test) Reagent)			
19. 20.	 (1) CH₂=O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid How many hydrocarbon (1) 1 	 (2) CH₃–CH=O ch with respect to the reative a–Naphthol (M → Zn, NH₄Cl and → Anhydrous Zn(A) → NaHCO₃ ns having molecular mass (2) 2 	 (3) CH₃–CH₂–CH=O agent used for lab test ? lolish reagent) AgNO₃ (Muliken Barker Cl₂ + Conc. HCI (Lucas F cs 68 can give white precoson (3) 3 	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)			
19. 20. 21.	 (1) CH₂=O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid How many hydrocarbon (1) 1 On oxidative ozonolysi 	 (2) CH₃–CH=O ch with respect to the reation a–Naphthol (M → Zn, NH₄Cl and → Anhydrous Zn → NaHCO₃ ns having molecular mass (2) 2 is of 3-Methylhex-3-ene, 	 (3) CH₃–CH₂–CH=O agent used for lab test ? Iolish reagent) AgNO₃ (Muliken Barker Cl₂ + Conc. HCI (Lucas F SS 68 can give white precession (3) 3 two products A & B are 	CH_3-C-CH_3 (4) test) Reagent) sipitate with Tollen's reagent ? (4) 4 e formed. A gives CO ₂ gas with			
19. 20. 21.	 (1) CH₂=O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid How many hydrocarbon (1) 1 On oxidative ozonolysis sodium bicarbonate, bu CH = CH = C = CH 	 (2) CH₃–CH=O ch with respect to the reative a–Naphthol (M → Zn, NH₄Cl and → Anhydrous Znd → NaHCO₃ ns having molecular mass (2) 2 is of 3-Methylhex-3-ene, at B can not. The structure 	 (3) CH₃–CH₂–CH=O agent used for lab test ? folish reagent) AgNO₃ (Muliken Barker Cl₂ + Conc. HCI (Lucas F cs 68 can give white pred (3) 3 two products A & B are respective 	CH_3-C-CH_3 (4) CH_3-C-CH_3 (4) CH_3-C-CH_3 (4) CH_3-C-CH_3 (4) CH_3-CH_3 (4) CH_3-CH_3 (4) CH_3-CH_3 (4) CH_3-CH_3 (4) CH_3-C-CH_3 (4) $CH_3-C-C-CH_3$ (4) $CH_3-C-C-C-CH_3$ (4) $CH_3-C-C-C-C-C-C-C-CH_3$ (4) $CH_3-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C$			
19. 20. 21.	(1) CH ₂ =O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid How many hydrocarbon (1) 1 On oxidative ozonolysis sodium bicarbonate, buccH ₃ -CH ₂ -C-CH ₃	 (2) CH₃–CH=O ch with respect to the reation a–Naphthol (M → Zn, NH4Cl and → Anhydrous Zna → NaHCO₃ ns having molecular mass (2) 2 is of 3-Methylhex-3-ene, at B can not. The structure 	 (3) CH₃–CH₂–CH=O agent used for lab test ? Iolish reagent) AgNO₃ (Muliken Barker Cl₂ + Conc. HCI (Lucas F cs 68 can give white precession (3) 3 two products A & B are respective 	CH_3-C-CH_3 (4) O test) Reagent) tipitate with Tollen's reagent ? (4) 4 e formed. A gives CO_2 gas with vely :			
19. 20. 21.	(1) CH ₂ =O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid How many hydrocarbon (1) 1 On oxidative ozonolysis sodium bicarbonate, bucch ₃ -CH ₂ -C-CH ₃ (1) 0 & (2) CH ₃ -CH ₂ -COOH	 (2) CH₃–CH=O ch with respect to the reation of a-Naphthol (M → Zn, NH₄Cl and → Anhydrous Zna → NaHCO₃ ns having molecular mass (2) 2 is of 3-Methylhex-3-ene, at B can not. The structue a CH₃–CH₂–COOH & CH₃–CH₂–CH–O 	 (3) CH₃–CH₂–CH=O agent used for lab test ? Iolish reagent) AgNO₃ (Muliken Barker Cl₂ + Conc. HCI (Lucas F cs 68 can give white precession (3) 3 two products A & B are respective 	CH_3-C-CH_3 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)			
19. 20. 21.	(1) CH ₂ =O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid How many hydrocarbon (1) 1 On oxidative ozonolysis sodium bicarbonate, bucch ₃ -CH ₂ -C-CH ₃ (1) 0 & (2) CH ₃ -CH ₂ -COOH	 (2) CH₃–CH=O ch with respect to the reation a–Naphthol (M → Zn, NH4Cl and → Anhydrous Zna → NaHCO₃ ns having molecular mass (2) 2 is of 3-Methylhex-3-ene, at B can not. The structure a CH₃–CH₂–COOH & CH₃–CH₂–CH=O CH₃–CH₂–CH₃ 	 (3) CH₃–CH₂–CH=O agent used for lab test ? folish reagent) AgNO₃ (Muliken Barker Cl₂ + Conc. HCI (Lucas F cs 68 can give white precession (3) 3 two products A & B are respective 	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)			
19. 20. 21.	(1) CH ₂ =O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid How many hydrocarbon (1) 1 On oxidative ozonolysis sodium bicarbonate, bucch ₃ -CH ₂ -C-CH ₃ (1) 0 & (2) CH ₃ -CH ₂ -COOH	(2) CH ₃ –CH=O ch with respect to the rea $\rightarrow \alpha$ –Naphthol (M $\rightarrow Zn, NH_4Cl and$ $\rightarrow Anhydrous Znd$ $\rightarrow NaHCO_3$ Ins having molecular mas (2) 2 is of 3-Methylhex-3-ene, ut B can not. The structu $A CH_3-CH_2-COOH$ $A CH_3-CH_2-CH=O$ $CH_3-CH_2-CH=O$ $CH_3-CH_2-CH=O$ $CH_3-CH_2-CH=O$ $CH_3-CH_2-CH=O$ H_3	 (3) CH₃–CH₂–CH=O agent used for lab test ? Iolish reagent) AgNO₃ (Muliken Barker Cl₂ + Conc. HCI (Lucas F cs 68 can give white precession (3) 3 two products A & B are respective 	(4) test) Reagent) sipitate with Tollen's reagent ? (4) 4 e formed. A gives CO ₂ gas with vely :			
19. 20. 21.	(1) CH ₂ =O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid How many hydrocarbon (1) 1 On oxidative ozonolysis sodium bicarbonate, bucch ₃ -CH ₂ -C-CH ₃ (1) 0 & (2) CH ₃ -CH ₂ -COOH	(2) CH_3 $CH=O$ ch with respect to the rea $\rightarrow \qquad \alpha$ -Naphthol (M $\rightarrow \qquad Zn, NH_4Cl and$ $\rightarrow \qquad Anhydrous Znd$ $\rightarrow \qquad NaHCO_3$ Ins having molecular mas (2) 2 is of 3-Methylhex-3-ene, ut B can not. The structu CH_3 CH_2 $COOH$ CH_3 - CH_2 CH_3 H_3 CH_3 - CH_2 CH_3 H_3 - CH_2 - CH_3	 (3) CH₃–CH₂–CH=O agent used for lab test ? folish reagent) AgNO₃ (Muliken Barker Cl₂ + Conc. HCI (Lucas F cs 68 can give white precession (3) 3 two products A & B are respective 	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)			
19. 20. 21.	(1) CH ₂ =O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid How many hydrocarbon (1) 1 On oxidative ozonolysis sodium bicarbonate, bucch ₃ -CH ₂ -C-CH ₃ (1) 0 & (2) CH ₃ -CH ₂ -COOH (3) CH ₃ -CH ₂ -COOH & (4) CH ₃ -CH ₂ -CH ₂ -CC	(2) CH ₃ –CH=O ch with respect to the rea $\rightarrow \alpha$ –Naphthol (M $\rightarrow Zn, NH_4Cl and$ $\rightarrow Anhydrous Znd$ $\rightarrow NaHCO_3$ Ins having molecular mas (2) 2 is of 3-Methylhex-3-ene, ut B can not. The structu $A CH_3-CH_2-COOH$ $A CH_3-CH_2-CH=O$ $CH_3-CH_2-CH=O$ $CH_3-CH_2-CH_3$ O $CH_3-CH_2-CH_3$ O $CH_3-CH_2-CH_3$ O $CH_3-CH_2-CH_3$ O CH_3-C-CH_3 O CH_3-C-CH_3 O CH_3-C-CH_3 O CH_3-C-CH_3 O O O O O O O O	 (3) CH₃–CH₂–CH=O agent used for lab test ? folish reagent) AgNO₃ (Muliken Barker Cl₂ + Conc. HCI (Lucas F cs 68 can give white precession (3) 3 two products A & B are respective 	(4) test) Reagent) sipitate with Tollen's reagent ? (4) 4 e formed. A gives CO ₂ gas with vely :			
19. 20. 21.	(1) $CH_2=O$ Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid How many hydrocarbon (1) 1 On oxidative ozonolysis sodium bicarbonate, bucch_3-CH_2-C-CH_3 (1) 0 & (2) CH_3-CH_2-COOH & (3) CH_3-CH_2-COOH & (4) CH_3-CH_2-CH_2-CCC H	(2) $CH_3-CH=O$ ch with respect to the real $\rightarrow \qquad \alpha-Naphthol (M)$ $\rightarrow \qquad Zn, NH_4Cl and$ $\rightarrow \qquad Anhydrous Znd$ $\rightarrow \qquad NaHCO_3$ Ins having molecular mass (2) 2 is of 3-Methylhex-3-ene, ut B can not. The structu CH_3-CH_2-COOH $& CH_3-CH_2-CH=O$ $CH_3-CH_2-CH=O$ $CH_3-CH_2-CH_3$ $CH_3-CH_2-CH_3$ $CH_3-CH_2-CH_3$ $CH_3-CH_2-CH_3$ $CH_3-CH_2-CH_3$ $CH_3-CH_2-CH_3$	 (3) CH₃–CH₂–CH=O agent used for lab test ? folish reagent) AgNO₃ (Muliken Barker Cl₂ + Conc. HCI (Lucas F cs 68 can give white precession (3) 3 two products A & B are respective 	(4) test) Reagent) sipitate with Tollen's reagent ? (4) 4 e formed. A gives CO ₂ gas with vely :			
19. 20. 21.	(1) CH ₂ =O Which is incorrect mate (1) Carbohydrates (2) Nitro ethane (3) Phenol (4) Benzoic acid How many hydrocarbon (1) 1 On oxidative ozonolysis sodium bicarbonate, bucch ₃ -CH ₂ -C-CH ₃ (1) 0 & (2) CH ₃ -CH ₂ -COOH (3) CH ₃ -CH ₂ -COOH & (4) CH ₃ -CH ₂ -CH ₂ -CCO H	(2) CH ₃ –CH=O ch with respect to the real \rightarrow α –Naphthol (M \rightarrow Zn, NH ₄ Cl and \rightarrow Anhydrous Znd \rightarrow NaHCO ₃ Ins having molecular mass (2) 2 is of 3-Methylhex-3-ene, ut B can not. The structu α CH ₃ –CH ₂ –COOH & CH ₃ –CH ₂ –COOH & CH ₃ –CH ₂ –CH=O CH ₃ –CH ₂ –CH=O CH ₃ –CH ₂ –CH ₃ \bigcirc CH ₃ –CH ₂ –CH ₃ \bigcirc CH ₃ –CH ₂ –CH ₃ \bigcirc CH ₃ –CH ₂ –CH ₃ \bigcirc	 (3) CH₃–CH₂–CH=O agent used for lab test ? folish reagent) AgNO₃ (Muliken Barker Cl₂ + Conc. HCI (Lucas F cs 68 can give white precession of a second second	(4) test) Reagent) sipitate with Tollen's reagent ? (4) 4 e formed. A gives CO ₂ gas with vely :			

STRUCTURAL IDENTIFICAITON & POC

(4) Br₂-H₂O

- (1) Carbylamine reaction(2) lodoform test (3) Cold KMnO₄
- In the Dumas method for the estimation of nitrogen, 0.0237 grams of an organic compound gave 2.21 mL of nitrogen at 754.32 mm of Hg pressure at 18°C. (Aqueous tension at 18°C is 15.4 mm of Hg.) Therefore the percentage of nitrogen in the compound is

 (1) 20.67%
 (2) 10.6%
 (3) 11.2%
 (4) 13.9%
- 24. Which of the following compound gives azo dye test ?

25. A compound (P), obtained as an ozonolysis product of (Q) gives brisk effervescence with Na, violet coloration with neutral FeCl₃ and silver mirror with Tollen's reagent. (Q) may be :

26. Which of the following reagent can distinguish the given compound I & II ?

(3) Lucas Reagent

(4) 2, 4-D.N.P

- 27. The percentage of nitrogen in a compound is determined by
 - (1) Nessler`s method
 - (2) Kjeldahl`s method
 - (3) Carius method
 - (4) taking the difference between total percentage and the sum of percentages of all other elements present.
- 28. Fehlings solution is
 - (1) AgNO₃ solution + NaOH solution + NH₄OH
 - (2) Alkaline solution of Cupric ion complexed with citrate ion
 - (3) Copper sulphate + sodium potassium tartarate + NaOH
 - (4) Copper sulphate solution
- 29. Identify a reagent from the following list which can easily distinguish between 1-butyne and 2-butyne.
 (1) bromine, CCl₄
 (2) H₂/Ni
 (3) dilute KMnO₄
 (4) ammonical Cu₂Cl₂ solution
- **30.** Acetaldehyde and Propyne can be distinguish by :

(i) Tollen's reagent	(ii) I₂/NaOH	(iii) Lucas reagent	(iv) neutral FeCl ₃
(1) (i) , (ii) & (iii)	(2) (ii) & (iii)	(3) (i) & (ii)	(4) (iii) & (iv)

STRUCTURAL IDENTIFICAITON & POC

Practice Test (JEE-Main Pattern)

OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

PART - II : PRACTICE QUESTIONS

- Quinine is the most important alkaloid obtained from Cinchona bark. It's molecular formula is C₂₀H₂₄N₂O₂. It may contain
 - (1) 5 double bond & 6 ring

(3) 6 double bond & 3 ring

- (2) 6 double bond & 4 ring
- (4) 7 double bond & 5 ring

$$(P) \xrightarrow{H_2/Ni} Q$$

2.

4.

Which of the following is the correct statement about P & Q.

- (1) Product will be 1-Methyl-3-(2-methylpropyl)cyclohexane.
- (2) Product will be 3-Methyl-1-(2-methylpropyl)cyclohexane.
- (3) DU of reactant P is 3.
- (4) DU of product Q is zero.
- 3. If 1 mole H₂ is reacted with 1 mole of the following compound.

(2) b

Which double bond will be hydrogenated ?

(3) a

(4) d

Which of the following compound is/are having D.U. more than or equal to 4.

(1) NH₂ (2)

(3)

(4) All of these

5. Which of the following compound on reductive ozonolysis gives 3, 4-Dioxopentanal and 3-Oxohexane-1,6-dial.

6. For the following reactions sequence 0 HC $\sim C \text{ HO}$

$$HC \xrightarrow{CHO} \underbrace{O_3}_{Zn/H_2O} \xrightarrow{C_7H_{10}}_{H_2/Ni} \xrightarrow{H_2/Ni}_{Y} \xrightarrow{C_7H_{12}}_{Y}$$

The structures of X and Y are :

- **7.** An alkane with the molecular formula C₇H₁₆ forms seven monochlorinated products. The name of the alkane is :
 - (1) Heptane
 - (3) 3-Methylhexane

- (2) 2-Methylhexane
- (4) 2,3-Dimethylpentane
- **8.** $X \xrightarrow{Cl_2/h_v}$ 4-structural products.

Identify 'X'

(1) Tollen's reagent

9. A organic compound (C₆H₈) gives only one symmetrical diketone on ozonolysis. The product diketone gives 2,4-DNP test but does not give iodoform test. Structure of organic compound can be :

(3)

10. Compound 'A' gives red precipitate with Cu₂Cl₂ / NH₄OH solution and decolourises bromine water. The compound 'A' can be :

(2) 2, 4 - DNP

13. Which amongs the following will give test of both acidic hydrogen and unsaturation test.

14. Alcohol X having four carbon atoms. It gives Lucas test in 10 min. Which cannot be the alcohol X.

15. Observe the following compound and select +ve & – ve test respectively.

- **16.** How many structural isomers of molecular formula $C_5H_{10}O$ give chloroform with NaOCl? (1) 2 (2) 3 (3) 4 (4) 6
- **17.** A alkene on ozonolysis give only one product(X). x does not respond with Tollen's reagent and NaOI but give yellow precipitate with 2,4-DNP, The structure of alkene can be-

STRUCTURAL IDENTIFICAITON & POC

20. The given below reaction of ninhydrin with amino acid is used to test for :

ADDITIONAL THEORY

1. Quantitative analysis :

After the detection of various elements in the organic compound, the next step is the determination of their percentage composition. The determination of the percentage of various elements is also referred to as **estimation of elements**. The different methods employed for the estimation of various elements are being discussed as follows :

(1) Estimation of Carbon and Hydrogen :

(Liebig's Method)

Carbon and hydrogen in the organic compound are estimated together.

Principle :

A known mass of the organic compound is heated with dry copper oxide in an atmosphere of air or oxygen free from moisture and carbon dioxide. The carbon and hydrogen of the organic compounds are oxidized to carbon dioxide and water respectively.

 $C + 2CuO \longrightarrow CO_2 + 2Cu$

 $2H+CuO \longrightarrow H_2O+Cu$

Carbon dioxide produced is collected in potash bulbs (containing KOH) whereas water is absorbed in calcium chloride tube (containing CaCl₂). The respective masses of CO_2 and H_2O are determined by difference.

Knowing the masses of CO₂ and water vapours formed and the mass of the compound taken, the percentage of carbon and hydrogen can be calculated.

Calculations :

Let the mass of the organic compound taken = w gMass of water formed = x g (Indicated by increase in the mass of U tube) Mass of carbon dioxide formed = y g (Indicated by increase in the mass of potash bulb)

(i) Percentage of Carbon :

44 g of CO_2 (G.M.M.) contains carbon = 12 g

y g of CO_2 contains carbon = 44 g

12y

Now, 44 g of carbon is present in w g of organic compound.

12y

: Percentage of carbon in the organic compound = $\frac{44 \times w}{44 \times w} \times 100$

(ii) Percentage of Hydrogen :

18 g of H₂O (G.M.M) contains hydrogen = 2g $\frac{2x}{2}$

x g of H₂O contains hydrogen = 18 g

Now, ¹⁸ g of hydrogen is present in w g of organic compound.

12y

: Percentage of hydrogen in the organic compound = $\frac{18}{18}$ × 100

In Short, %C = $\frac{12 \times W_{CO_2} \times 100}{44 \times W_{substance}}$ and %H = $\frac{2 \times W_{H_2O} \times 100}{18 \times W_{substance}}$

- Que. 0.378 g of an organic acid gave on combustion 0.264 g of carbon dioxide and 0.162 g of water vapour. Calculate the percentage of C and H.
- Mass of organic compound = 0.378 g Ans. Mass of CO_2 formed = 0.264 g Mass of H_2O formed = 0.162 g (i) Percentage of carbon 44 g of CO₂ contains carbon = 12 g12 0.264 g of CO₂ contains carbon = $\frac{44}{4}$ × 0.264 = 0.072 g 0.072 Percentage of carbon = $0.378 \times 100 = 19.04\%$ Percentage of hydrogen (ii) 18 g of H_2O contains hydrogen = 2 g 0.162 g of H₂O contains hydrogen = $\frac{18}{18} \times 0.162 = 0.018$ g 0.018 Percentage of hydrogen = $0.378 \times 100 = 4.76\%$

(2) Estimation of Nitrogen :

There are two methods in use for the estimation of nitrogen. These are :

(A) Duma's Method (B) Kjeldahl's Method.

(A) **Duma's Method :** This method is applicable to nitrogenous compounds.

Principle :

A known mass of the organic compound is heated strongly with excess of copper oxide in an atmosphere of carbon dioxide. The carbon and hydrogen are converted to CO_2 and water. Nitrogen is set free as dinitrogen. If any oxide of nitrogen is produced, it is reduced to dinitrogen by passing over hot reduced copper spiral. The dinitrogen is collected over the concentrated solution of potassium hydroxide and its volume is measured at room temperature and atmospheric pressure.

The chemical reaction can be represented as : $\begin{array}{cccc} C + 2H + 3CuO \longrightarrow CO_2 + H_2O + 3Cu \\ Organic compound \\ \end{array}$ $\begin{array}{cccc} 2N + Cu \longrightarrow N_2 + oxides of nitrogen \\ Organic compound \end{array}$

Oxides of nitrogen + Cu \longrightarrow N₂ + CuO

(Reduced copper gauze)

Calculations :

Let the mass of the organic compound taken = W g Volume of moist N₂ collected = v cm³ Barometric pressure P mm _ Room temperature ТΚ = Pressure of water vapours at T K = p mm Pressure of dry N₂ (P - p) mm= **Step I.** To reduce the volume of N₂ to S.T.P. $V_1 = v \, cm^3$, $V_2 =$? $P_1 = (P - p), P_2 =$ 760 mm $T_1 = T$, $T_2 = 273 K$ $\frac{\mathsf{P}_1\mathsf{V}_1}{\mathsf{T}_1} = \frac{\mathsf{P}_2\mathsf{V}_2}{\mathsf{T}_2}$ $V_{2} = \frac{\frac{P_{1}V_{1}}{T_{1}}}{T_{1}} \times \frac{\frac{T_{2}}{P_{2}}}{T_{2}} = \frac{(P-p)v \times 273}{T \times 760}$ Calculation of percentage of nitrogen Step II. 28 V₂ 22400 cm³ of N₂ at S.T.P. weights = 22400 g 28 V₂ Now amount of nitrogen present in W g of organic compound = 22400 g Percentage of N in organic compound = $\frac{28 V_2}{22400} \times \frac{100}{W}$. $28 \times V_{N_2}$ (S.T.P.) $\times 100$ In Short, % N = $22400 \times W_{\text{Substance}}$

Questions based on Duma's Method :

- 0.25 g of an organic compound gave 30 cm³ of moist dinitrogen at 288 K and 745 mm pressure. Calculate Que. the percentage of nitrogen. (Aq tension of 288 K = 12.7 mm).
- Ans. Mass of the substance = 0.25 g Volume of moist dinitrogen = 30 cm³ Temperature = 288 K Pressure 745 -12.7 = 732.3 mm =

Step I. To reduce the volume of N₂ at S.T.P.

We know,
$$\frac{\underline{P_1V_1}}{T_1} = \frac{\underline{P_2V_2}}{T_2}$$

P₂, T₂, V₂ refer to S.T.P. conditions)

$$V_2 = \frac{P_1 V_1}{T_1} \times \frac{T_2}{P_2} = \frac{732.3 \times 30 \times 273}{288 \times 760} = 27.4 \text{ cm}^3.$$

Step II. Calculation of percentage of nitrogen.

22400 cm³ of dinitrogen at S.T.P. weighs = 28 g

$$\frac{28 \times 274}{22422} = 0.034$$

27.4 cm³ of dinitrogen at S.T.P. weighs =
$$22400$$
 g

$$\frac{0.034}{0.25} \times 100$$

Percentage of nitrogen in organic compound = 0.25= 13.6.

(B) Kjeldahl's Method :

This method is simpler and convenient. It is largely used for the estimation of nitrogen in food, fertilizers and drugs. The method is however not applicable to compounds containing nitrogen in the ring like pyridine or quinoline etc, and the compounds, containing nitro $(-NO_2)$ and diazo (-N = N) groups. **Principle :**

A known mass of the organic compound is heated with concentrated sulphuric acid. The nitrogen in the organic compound is quantitatively converted into ammonium sulphate. The resulting liquid is then distilled with excess of sodium hydroxide solution and the ammonia evolved is passed into a known but excess volume of the standard acid (HCI or H₂SO₄). The acid left unused is estimated by titration with some standard alkali. The amount of acid used against ammonia can thus, be known and from this, the percentage of nitrogen in the compound can be calculated.

Chemical reactions involved are :

$$\begin{array}{cccc} C &+ &H + &S \\ & & & & \\ & &$$

Let volume of alkali (say NaOH) of molarity M_2 used for neutralising unused acid =

V2

Chemical equation for titration involved is NaOH + HCL **____** NaCl + H₂O unused : According to molarity relation $\frac{M_2\nu_2}{1}=\frac{M_1\nu_1}{1}$ or Volume of acid used by ammonia $(V - v_1)$ cm³ Millimoles of acid used by ammonia $(V - v_1) \times M_1$ = Milimoles of NH₃ formed Millimoles of acid used up = $(V - v_1) \times M_1$ = Mass of NH₃ formed = Millimoles $\times 10^{-3} \times$ Molar mass $= (V - v_1) \times M_1 \times 10^{-3} \times 17g$ $(V - v_1)M_1 \times 10^{-3} \times 17 \times 14$ 17 Mass of N = a g (say) a×100 Percentage of N = W $\frac{1.4 \times M_{(acid)} \times basicity \text{ of } acid \times V_{(acid \text{ used})}}{W_{Substance}} \text{ or } = \frac{1.4 \times N_{(acid)} \times V_{(acid \text{ used})}}{W_{Substance}}$ In Short % N = or =

Questions based on Kjeldahl's Method :

Que. During nitrogen estimation in an organic compounds by Kjeldahl's method, the ammonia evolved from 0.5 g of the compound neutralised 10 ml, of 1 M H₂SO₄, What is the % of N in the organic compound ?
 Ans. Volume of 1 M H₂SO₄ used by NH₃ = 10 ml.

Volume of 1 M H_2SO_4 used by $NH_3 = 10$ ml, Millimoles of H₂SO₄ used = $10 \times 1 = 10$ m. moles Millimoles of NH₃ produced = $2 \times \text{millimoles of H}_2\text{SO}_4$ $2 \times 10 = 20$ = (2 mol of NH₃ neutralise 1 mol of H₂SO₄) Moles of NH₃ × Molar mass = $20 \times 10^{-3} \times 17$ g Mass of NH₃ formed = $20\times10^{-3}\times17\times14$ 17 = 0.28 g Mass of N = 0.28×100 0.5 % of N = = 56.0%.

(3) Carius Method

It is used for the estimation of halogen, sulphur and phosphorus.

Estimation of Halogens : Halogen is estimated as silver halides.

In the process 'w' g of organic halide is treated with acidified silver nitrate solution to silver halide which is washed, dried and weighed. Let 'a' g of AgX is obtained.

 $% X = \frac{\text{Atomic mass of } X}{\text{Molecular mass of } AgX} \times \frac{\text{Wt. of } AgX}{\text{Wt. of organic halide}} \times 100$ Thus, $\% \text{ CI} = \frac{35.5}{143.5} \times \frac{\text{Wt. of } AgCl}{\text{Wt. of organic halide}} \times 100$ $\% \text{ Br} = \frac{80}{188} \times \frac{\text{Wt. of } AgBr}{\text{Wt. of organic halide}} \times 100$

Wt. of AgI 127 % I- = $\overline{235} \times \overline{Wt.}$ of organic halide $\times 100$

Estimation of Sulphur :

Sulphur is estimated as barium sulphate. In the process 'w' g of organic compound having sulphur is taken in carius tube containing HNO₃ where sulphur is finally converted into sulphuric acid. This sulphuric acid is passed through excess BaCl₂ to get BaSO₄ which is washed dried & weighed. Let 'a' g of BaSO₄ is obtained

Atomic mass of sulphur Wt. of BaSO₄ % S = $\frac{\text{Molecular mass of BaSO}_4}{\text{Wt. of organic compound}} \times 100$

% S = $\frac{32}{233} \times \frac{\text{Wt. of BaSO}_4}{\text{Wt. of organic compound}} \times 100$

Estimation of Phosphorus :

A known mass of the organic compound is heated with fuming nitric acid. The phosphorus present in the organic compound is oxidised to phosphoric acid (H₃PO₄). The phosphoric acid, thus formed is treated with magnesia mixture to get the precipitate of magnesium ammonium phosphate (MgNH₄PO₄). The precipitate is separated, dried and ignited to get magnesium pyrophosphate (Mg2P2O7). The chemical reactions involved are :

$$P + 3H + 40 \longrightarrow HNO_{3} H_{3}PO_{4}$$
From organic From
compound NHO₃

$$H_{3}PO_{4} + Magnesia mixture \longrightarrow MgNH_{4}PO_{4}$$

$$2MgNH_{4}PO_{4} \longrightarrow Mg_{2}P_{2}O_{7} + 2NH_{3} + H_{2}O$$
White ppt.
Illations :
e mass of the organic compound = W g

Calcu

Let th Mass of $Mg_2P_2O_7$ obtained = x g Now, 222 g (G.M.M.) of Mg₂P₂O₇ Contains P = 62 g 62x x g of Mg₂P₂O₇ contains P = 222 g 62x Percentage of P in organic compound = 222W × 100

 $62\times W_{_{Mg_2P_2O_7}}\times 100$ % of P = $222 \times W_{\text{Substance}}$

- (i) In sulphur estimation, 0.157 g of organic compound gave 0.4813 g of BaSO₄. What is the percentage Que. of sulphur is organic compound ? (ii) 0.092 g of organic compound on heating is carius tube and susequent ignition gave 0.111 g of Mg₂P₂O₇. Calculate the percentage of phosphorus in organic compound.
- Ans. (i) Mass of $BaSO_4 = 0.4813 \text{ g}$ mass of organic compound. = 0.157 g $\% S = \frac{\frac{32 \times W_{BaSO_4} \times 100}{233 \times W_{Substance}}}{233 \times 0.157} = \frac{32 \times 0.4813 \times 100}{233 \times 0.157} = 42.10$ (ii) Mass of organic compound = 0.092 g

Mass of $Mg_2P_2O_7 = 0.111 \text{ g}$

% of P =
$$\frac{\frac{62 \times W_{Mg_2P_2O_7} \times 100}{222 \times W_{Substance}}}{=} = \frac{\frac{62 \times 0.111 \times 100}{222 \times 0.092}}{= 33.69}$$

2. Separation techniques :

Purification:

Purification means the removal of undersirable impurities associated with a particular organic compound, i.e. to obtained the organic compound in pure state.

Methods empolyed for purification of solids

Crystallisation

Crystallisation is based on the principles of solubility of compound (solutes). solute tend to be more soluble in hot liquid (solvent) than they are in cool liquid. If a saturated hot solution is allowed to cool, the solute is no longer soluble in the solvent and form crystals of pure compound. Solid is filtered and dried.

Examples :

(a) Sugar mixed with common salt can be purified with ethanol.

(b) Phthallic acid mixed with naphthalene can be purified with hot water.

Sublimation

Certain organic substances pass directly from solid to vapour state on heating and viceversa on cooling. This is called sublimation and the process is very useful for separation of substance which sublime on heating from non volatile substance.

Examples :

Benzoic acid, naphthalene, anthracene, camphor, indigo, anthraquinone.

(1) **Distillation :** It is used to purify liquid on the basis of difference in boiling points.

(a) Simple distillation :

It is applied only for volatile liquids which boil without decomposition at atmospheric pressure and contains non-volatile impurities. It can also be used for separating liquids having sufficient difference in their boiling point.

Ex. (i) Benzene (b.pt. 80°C) and aniline (b.pt. 184°C)
(ii) Chloroform (b.pt. 61°C) and aniline (b.pt. 184°C)
(iii) Ether (b.pt. 35°C) and toluene (b.pt. 114°C)

(b) Fractional distillation :

If boiling points of liquids to be separated are closed to each other then fractional distillation is carried out by using fractionating column.

Ex. (i) Distillation of petroleum, coal tar and crude oil.
(ii) Mixture of methanol (b.pt. 65°C) and propanone (b.pt. 57°C).
(iii) Mixture of benzene and toluene.

(c) Vacuum distillation (Distillation under reduced pressure) :

The compounds which decomposes on a temperature below their normal boiling points can not be distilled at atmospheric pressure. If atmospheric pressure is reduced the liquid will boil earlier than its normal boiling point.

Ex. (i) Glycerine can be distilled at 180°C (b.pt. 280°C) under a pressure 10-12 mm.
(ii) In soap industry, the separation of glycerol from the spent-lye as carried out by this technique.

(d) Steam distillation :

Those compounds which are steam volatile and are sparingly soluble in water can be separated by steam distillation by passing steam through a heated flask containing the liquid to be distilled. Thus in steam distillation the liquid gets distilled at a temperature lower than its boiling point and any chances of decomposition are avoided.

The proportion of water and liquid in the mixture that distills over is given by the relation

$$\frac{\omega_1}{\omega_2} = \frac{p_1 \times 18}{p_2 \times M}$$

where ω_1 and ω_2 stand for the masses of water and the organic liquid that distills over;

p₁ and p₂ represent the vapour pressures of water and the liquid at the distillation temperature and M is molecular mass of the liquid (molecular mass of water being 18).

Ex. o-, m-, p-chlorotoluenes, o-, p-nitrobenzene.

(2) Solvent Extraction :

The process of separation of organic compound from its aqueous solution by shaking with a suitable organic solvent is termed solvent extraction. The solvent should be immisible with water and the organic compound to be separated should be highly soluble in it.

Ex. Benzoic acid can be extracted from water solution by using benzene.

(3) Chromatography :

It is an extremely valuable method for separation, isolation, purification and identification of constituents of mixture and it is based on the general principle of phase distribution.

This technique is used for the separation of components of a mixture because of the distribution of components between a liquid as gaseous phase (mobile phase) and a solid phase (stationary phase).

Separation of compounds of mixture takes place as a result of differential adsorption - on adsorption column. After the separation, the substances are extracted from the adsorbent with suitable solvent which is called **elusion**.

Туре	Mobile / Stationary	Use
	phase	
Column	Liquid / Solid	Large scale separation
High performance liquid (HPLC)	Liquid / Solid	Qualitative and Quantitative analysis
Thin layer (TLC)	Liquid / Solid	Qualitative analysis
Gas liquid (GLC)	Gas / Liquid	Qualitative analysis
Paper	Liquid / Solid	Qualitative and Quantitative analysis of
		polar organic and inorganic
		compounds.

Common forms of chromatograph

ADDITIONAL EXERCISE

Section (A) : Separation and purification

- 1. Chromatography is a valuable method for the separation, isolation, purification and identification of the constituents of a mixture and it is based on general principle of
 - (1) Phase rule

- (2) Phase distribution
- (3) Interphase separation

(4) Distillation

2. Aniline is usually purified by

STRUCTURAL IDENTIFICAITON & POC

	 (1) Chromatographic to (3) By addition of oxalio 	echnique c acid	(2) Steam distillation(4) Fractional crystallisation			
3.	Latest technique for pu (1) chromatography	rification, isolation and s (2) steam distillation	separation of organic compounds is : (3) crystallisation (4) vacuum distillation			
4.	Steam distillation is app (1) soluble in water (3) sparingly soluble in	blied to those organic con water	mpounds which are steam volatile and : (2) insoluble is water (4) insoluble in all solvents			
5.	The most satisfactory n (1) fractional distillation	nethod for separating su (2) vacuum distillation	gars is : (3) chromatography	(4) steam distillation		
6.	Distillation involves all t (1) change of state	he following processes ((2) boiling	except : (3) condensation	(4) evaporation		
7.	Oils are purified by : (1) fractional distillation (3) vacuum distillation		(2) steam distillation (4) simple distillation			
8.	Chromatography techn (1) small samples of mi (3) dye stuffs	ique is used for the sepa xtures	aration of : (2) plant pigments (4) all of the above			
9.	Two volatile and miscible liquids can be separated by fractional distillation into pure components une the conditions when : (1) they have low boiling points (2) the difference in their boiling points is large (3) the boiling points of the liquids are close to each other (4) they do not form accettonic mixture					
10.	A fractional column is u (1) sublimation (3) fractional distillation	ised in :	(2) distillation (4) chromatography			
11.	Glycerol is purified by : (1) Steam distillation (3) Fractional distillation	ı	(2) Vacuum distillation (4) Simple distillation	under pressure		
12.	The boiling points of tw Their separation is bes (1) Vacuum distillation (3) Steam distillation	o miscible liquids, which t carried out by :	do not form azeotropic (2) Fractional distillatio (4) Redistillation	mixture, are close to each other. on		
13.	Two immiscible liquids (1) Separating funnel (3) Chromatrography	are separated by :	(2) Fractional distillatio (4) Sublimation	n		
14.	Sublimation is a proces (1) changes into anothe (2) changes into liquid (3) changes into vapou (4) None of the above	es in which a solid : er allotropic form form r form directly from solid	form			
15.	Anthracene is purified to (1) Filtration	by : (2) Distillation	(3) Crystallisation	(4) Sublimation		

Section (B) : Quantitative analysis

16.	In Kjeldahl's method, ni (1) N ₂	trogen present in estima	ted as : (3) NO ₂	(4) None of these			
17.	(1) Silver chloride meth(3) Victor Mayer's meth	latile organic solid can b od od	be determined by : (2) Platinic chloride method (4) Kjeldahl's method				
18.	Catalyst used in Kjeldahl's method for the estimation of nitrogen is :						
	(1) Sodium	(2) Magnesium	(3) Mercury	(4) Copper			
19.	6 g of the organic compound on heating with NaOH gave NH₃ which is neutralised by 200 mL of 1N Percentage of nitrogen is :						
	(1) 12%	(2) 60%	(3) 46.67%	(4) 26.67%			
20.	The dessicants used fo are:	r absorbing water during	g Liebig's method for esti	mation of carbon and hydrogen			
	(1) CaCl ₂	(2) Na ₂ SO ₄	(3) MgSO ₄ .7H ₂ O	(4) Mg(ClO ₄) ₂			
21.	0.16 g of a dibasic organ mass of the acid is :	nic acid required 25 cm ³	of 0.1M NaOH for comple	ete neutralization. The molecular			
	(1) 45	(2) 90	(3) 64	(4) 128			
22.	0.28g of a nitrogenous percentage of nitrogen	compound was subject in the organic compound	ed to Kjeldahl's process d is :	to produce 0.17 g of NH_3 . The			
	(1) 5	(2)	(3) 50	(4) 80			
23.	The equivalent weight of	of an acid is equal to					
	(1) Molecular weight × a	acidity	(2) Molecular weight ×	basicity			
	(3) Molecular weight/ba	isicity	(4) Molecular weight/ac	idity			
24.	In Dumas' method for collected at 300 K tempo in the compound. (Aque	estimation of nitrogen, (erature and 715mm pres eous tension at 300K=15	0.3 g of an organic com sure. What will be the per 5 mm)	pound gave 50 mL of nitrogen centage composition of nitrogen			
	(1) 22.38%	(2) 17.46%	(3) 55.11%	(4) 82.74%			
25.	Liebig test is used to es	stimate :					
	(1) H	(2) C	(3) C and H both	(4) N			
26.	Copper wire test of halo (1) Liebig's test	ogens is known as : (2) Lassaigne's test	(3) Fusion test	(4) Beilstein's test			
27.	During estimation of n evolved from 0.5 g of th What is the percentage	itrogen present in an c e compound in Kjeldahl's of nitrogen in the compo	organic compound by Kj s estimation of nitrogen, r pund.	eldahl's method, the ammonia neutralized 10 mL of 1 M H ₂ SO ₄ .			
	(1) 84%	(2) 56%	(3) 72%	(4) 91%			

CHE		JEE STR	UCTURAL IDENT	IFICAITON & POC			
28.	In Carius method of estimation of halogen, 0.15 g of an organic compound gave 0.12 g of AgBr. What is the percentage of bromine in the compound.						
	(1) 18%	(2) 94%	(3) 63%	(4) 34%			
29.	In sulphur estima percentage of su	ation, 0.157 g of an organio Iphur in the compound ?	c compound gave 0.4	813 g of barium sulphate. What is the			
	(1) 38.7%	(2) 18.5%	(3) 42.1%	(4) 1.9%			
30.	An organic compound having molecular mass 60 is found to contain C = 20%, H = 6.67% and N = 46.67% It gives violet colour with alkaline copper sulphate solution. The compound is						
	(1) CH₃NCO	(2) CH ₃ CONH ₂	(3) (NH ₂) ₂ CO	(4) CH ₃ CH ₂ CONH ₂			
31.	A gaseous hydr hydrocarbon will	ocarbon has 85%carbon be.	and vapour density	of 28. The possible formula of the			
	(1) C ₃ H ₆	(2) C ₂ H ₄	(3) C ₂ H ₂	(4) C ₄ H ₈			
32.) combine to give a compound having						
	(1) XY	(2) X ₂ Y	(3) X ₂ Y ₂	(4) X ₂ Y ₃			
33.	Quantitative measurement of nitrogen in an organic compounds is done by the method.						
	(1) Berthelot met	hod	(2) Belstein method				
	(3) Lassaigne tes	st	(4) Kjheldahl's m	ethod			

	APSP Answers		/ers							
	PART - I									
1.	(4)	2.	(4)	3.	(3)	4.	(3)	5.	(3)	
6.	(3)	7.	(3)	8.	(2)	9.	(1)	10.	(2)	
11.	(4)	12.	(2)	13.	(3)	14.	(1)	15.	(3)	
16.	(4)	17.	(1)	18.	(2)	19.	(3)	20.	(2)	
21.	(3)	22.	(1)	23.	(2)	24.	(2)	25.	(1)	
26.	(3)	27.	(2)	28.	(3)	29.	(4)	30.	(3)	
				PAF	RT - II					
1.	(2)	2.	(1)	3.	(4)	4.	(4)	5.	(1)	
6.	(4)	7.	(3)	8.	(4)	9.	(4)	10.	(3)	
11.	(1)	12.	(4)	13.	(4)	14.	(1)	15.	(1)	
16.	(4)	17.	(3)	18.	(2)	19.	(3)	20.	(1)	
			<u>AC</u>	DITIONA		<u>RCISE</u>				
1.	(1)	2.	(2)	3.	(1)	4.	(2)	5.	(3)	
6.	(4)	7.	(2)	8.	(4)	9.	(4)	10.	(3)	
11.	(2)	12.	(2)	13.	(1)	14.	(3)	15.	(4)	
16.	(2)	17.	(3)	18.	(3)	19.	(3)	20.	(1)	
21.	(4)	22.	(3)	23.	(3)	24.	(2)	25.	(3)	
26.	(4)	27.	(2)	28.	(4)	29.	(3)	30.	(3)	
31.	(4)	32.	(4)	33.	(4)					

٠

17.

- **18.** Acetaldehyde is the only aldehyde which gives haloform test.
- **19.** Phenol does not gives Lucas reagent test.

20.
$$C_5H_8$$
, (Molecular Mass = 68)
 $CH_3-CH_2-C-CH_3$
21. C_5H_8 , $CH_3-CH_2-COOH + O$

28. Fehlings solution is alkaline solution of CuSO₄ with rochell salt i.e. sodium potassium tartarate.

29.
$$CH_3-CH_2-C=CH$$
 $\xrightarrow{Cu_2Cl_2}$ $CH_3-CH_2-C=\overset{\odot}{C}Cu$
Blood red Colour + NH₄Cl + H₂O

30. Acetaldehyde and Propyne can be distinguish by tollen's reagent and lodoform test.

- **12.** If boiling points are closer then best separation is done by fractional distillation.
- **14.** Solid substances are directly converted into vapour during sublimation.

STRUCTURAL IDENTIFICAITON & POC

- 16. In this method the nitrogen present is quantitatively converted into $(NH_4)_2SO_4$ on heating with conc. H₂SO₄. The $(NH_4)_2SO_4$ is then treated with standard alkali solution to liberate NH₃, which is absorbed in H₂SO₄ to obtain precentage of nitrogen.]
- **17.** Molecular mass of a volatile organic solid can be detemined by Victor Mayer's method. ∴ option (3) is correct.
- **18.** Catalyst used in Kjeldahl's method for the estimation of nitrogen is mercury.

 \therefore option (3) is correct.

- **20.** Anhydrous CaCl₂ and Mg(ClO₄)₂ are used as desiccants because they are efficient absorbent of water.
- 21. 2.5 m mol NaOH ⇒ 1.25 m mol dibasic acid reqd. 1.25 × 10⁻³ mol = 0.16 g _____

1 mol =
$$\overline{1.25 \times 10^{-3}}$$
 g = 128 g

- 22. 0.17g NH₃ will contain $\left(\frac{14}{17} \times 0.17\right)$ g of nitrogen, i.e. 0.14g of nitrogen % Nitrogen = $\frac{Mass of nitrogen}{Mass of compound} \times 100 = \frac{0.14}{0.28} \times 100 = 50\%$
- 24. Volume of nitrogen collected at 300K and 715 mm pressure is 50 mL Actual pressure = 715 - 15 = 700 mm Volume of nitrogen at STP = $\frac{273 \times 700 \times 50}{300 \times 760}$ = 41.9 mL 22,400 mL of N₂ at STP weighs = 28 g 41.9 mL of nitrogen weighs = $\frac{28 \times 41.9}{22400}$ g Percentage of nitrogen = $\frac{28 \times 41.9 \times 100}{22400 \times 0.3}$ = 17.46%

31. Mol. wt. = 2 × Vapour density = 2 × 28 = 56