Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students. Max. Marks : 120 Max. Time : 1 Hr.

Important Instructions :

- 1. The test is of **1 hour** duration and max. marks 120.
- 2. The test consists 30 questions, 4 marks each.
- 3. Only one choice is correct 1 mark will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- There is only one correct response for each question. Filling up more than one response in any question 4. will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.

1.	If t₁ denotes the n (1) 2603	term of the series 2 + 3 (2) 2601	3 + 6 + 11 + 18 + thei (3) 2403	n t₅₀ is (4) 2401	
2.	The largest term	common to the sequence	əs 1, 11, 21, 31,	to 100 terms and 31, 36, 41, 46,	to
	(1) 381	(2) 471	(3) 281	(4) 521	
3.	If Sr denotes the s	sum of the first r terms of	an A.P. then $(S_{3r} - S_{r-1})$	$/(S_{2r} - S_{2r-1})$ is equal to	
	(1) 2r – 1	(2) 2r + 1	(3) 4r + 1	(4) 2r + 3	
4.	If Sn denotes the	sum of the first n terms c	of an A.P. such that S2n =	= 3 S_n then S_{3n} : S_n is equal to .	
	(1) 10	(2) 8	(3) 6	(4) 4	
5.	If sum of k conse	cutive odd natural numbe	ers is (2n + r)r, n∈N, r∈N	I then k is equal to	
	(1) r	(2) r + 1	(3) n	(4) n + 1	
6.	The sum of the p	roducts of the ten numbe	ers ±1, ±2, ±3, ±4, ±5 tak	ing two at a time is	
	(1) 165	(2) –165	(3) 55	(4) –55	
	1 1 1	π^4	1 1 1		
7.	Let $\frac{1^4}{1^4} + \frac{1^4}{2^4} + \frac{1^4}{3^4}$	$+\infty = \frac{\pi^4}{90}$ then the value	ue of $\frac{1^4}{1^4} + \frac{3^4}{3^4} + \frac{5^4}{5^4} +\infty$	is equal to .	
	(1) $\frac{\pi^4}{96}$	(2) $\frac{\pi^4}{45}$	(3) $\frac{89\pi^4}{90}$	$16\pi^4$	
	(1) 96	(2) 45	(3) 90	(4) 45	
8.	If a, b, c are in AF	P then a₃ + c₃ – 8b₃ is equ	ual to		
	(1) 8 abc	(2) – 6 abc	(3) 2 abc	(4) – 4 abc	

	If $\frac{3+5+7+\dots\text{upto n terms}}{5+8+11+\dots\text{upto 10 terms}} = 7 \text{ then value of n is -}$								
9.									
	(1) 35	(2) 36	(3) 37	(4) 40					
10.	Let $f(x) = 2x + 1$. IF $f(x)$, $f(2x)$, $f(4x)$ are in GP then number of real values of x is								
	(1) 0	(2) 1	(3) 2	(4) 3					
	$\left(\frac{5c}{3b}\right)$	$\left(\underline{a}\right)$							
11.	If $\log^{(a)}$, $\log^{(5c)}$,	$\log^{(3b)}$ are in AP, whe	ere a, b,c are in GP, then	a, b, c are the lengths of sides					
	If $\log\left(\frac{5c}{a}\right)$, $\log\left(\frac{3b}{5c}\right)$, $\log\left(\frac{a}{3b}\right)$ are in AP, where a, b,c are in GP, then a, b, c are the lengths of sides of								
	(1) an isosceles triang	le	(2) an equilateral trian	gle					
	(3) a scalene triangle		(4) none of these						
12.	If x, 2y, 3z are in AP,	where the distinct numbe	ers x, y, z are in GP then	common ratio of GP is-					
		(2) $\frac{1}{3}$		(4) $\frac{1}{2}$					
	(1) 3	(2) 3	(3) 2	(4) 2					
13.	In the sequence 1, 2,	2, 4, 4, 4, 4, 8, 8 ,8 ,8 ,8	,8, 8, 8, where n con	secutive terms have the value n,					
	then 1025th term is								
	(1) 29	(2) 210	(3) 211	(4) 28					
		n							
14.	lf (1 + y) (1 + y ₂) (1 + y	$(4) \dots (1 + x_{128}) = \sum_{r=0}^{r=0} x^r$ th	on n is aqual to						
14.	(1) 255	(2) 127	(3) 60	(4) 256					
			. ,						
15.		-	d 1 _{st} term equal to 1536 a						
	(1) 2	(2) 1	(3) – 2	(4) 2					
16.	The rational number 2	2.357357357 is							
	2355	2379	2355	2379					
	(1) 10001	(2) 999	(3) 999	(4) 10001					
17.	Given a G.P. having a	an even number of terms	. If the sum of all the tern	ns be five times the sum of terms					
		, then the common ratio							
	(1) 3	(2) 5	(3) 4	(4) 2					
18.	The minimum value o	$f 4_x + 4_{1-x}$ xeR is							
	(1) 2	(2) 1	(3) 4	(4) 8					
19.		n minimum value of x _{logy-}							
	(1) 3	(2) 1	(3) 9	(4) 16					
	$a_2a_3 a_2 + a_3 3($	$(a_2 - a_3)$							
20.	$\frac{1}{a_1a_4} = \frac{1}{a_1 + a_4} = \frac{1}{a_1 + a_4} = \frac{1}{a_1 + a_4}$	^{(a} ₂ − a ₃) ^a 1 − a ₄ , then a₁, a₂, a₃,	a₄ are in						
	 (1) AP	(2) GP	(3) HP	(4) none of these					

21.	Let a,b be two positive numbers, where $a > b$ and $4(GM) = 5(HM)$ for the numbers, then a is equal to-								
	(1) b	(2) 2b	(3) 4b	(4) $\frac{1}{4}$ b					
22.	The sum of infinite terms of the series								
	$1 + 2 \left(1 - \frac{1}{n}\right) + 3 \left(1 - \frac{1}{n}\right)^2 + 4 \left(1 - \frac{1}{n}\right)^3 + \dots$ is given by								
	(1) n ₂ + 1	(2) n(n + 1)	$(3) n^{\left(1-\frac{1}{n}\right)^2}$	(4) n ₂					
23.	$\sum_{r=1}^{n} r^2 - \sum_{m=1}^{n} \sum_{r=1}^{m} r$ is equal	al to							
	(1) 0		(3) $\frac{1}{2}\left(\sum_{r=1}^{n}r^{2}-\sum_{r=1}^{n}r\right)$	(4) none of these					
24.	-			P. The volume of the block is 216					
	(1) 12 cm	ce area is 252 cm ₂ . The l (2) 6 cm	(3) 18 cm	(4) 3 cm					
	$\left(\sqrt{2+\gamma}\right)$	$\overline{\sqrt{2}}\right)^{x} + \left(\sqrt{2 - \sqrt{2}}\right)^{x} = 2.2_{x/4}$							
25.	(1) {2}	(2) $\{0\}$	⊧ IS (3) [0,2]	(4) none of these					
26.		-	-	the rate of 1 kg, 2 kg, 3kg & 4 kg bes per ruppe , then the vlaue of					
	(1) 2	(2) 2.5	(3) 1.92	(4) 2.12					
27.	If the roots of the equa	ation x ₃ – 12x ₂ + 39 x – 2	8 = 0 are in AP then com	mon difference will be-					
	(1) ± 1	(2) ± 2	(3) ± 3	$(4) \pm 4$					
28.		of n terms of an AP, ther							
	(1) 0	(2) 1	(3) 2	(4) 3/2					
29.	-	ero real numbers such thref $r_2) \le (xy + yz + zw)_2$ then							
	(1) AP	(2)GP	(3) HP	(4) none of these					
30.	The largest term of the $\frac{1}{503}, \frac{4}{524}, \frac{9}{581}, \frac{16}{692}, \dots$	-							

Sequence & Series

16	4	49	36
(1) 692	(2) 524	(3) 1529	(4) 1148

Practice Test (JEE-Main Pattern) OBJECTIVE RESPONSE SHEET (ORS)

Que. 1 2 3 4 5 6 7 8 9 10 Ans. 11 12 13 14 15 16 17 18 19 20 Que. Ans. 21 22 23 25 26 27 28 29 Que. 24 30 Ans.

PART - II : PRACTICE QUESTIONS

- 1. The sum of those integers from 1 to 100 which are not divisible by 3 or 5 is

 (1) 2489
 (2) 4735
 (3) 2317
 (4) 2632

 2. Let $a_1, a_2, a_3, \dots, a_{11}$ be real numbers satisfying $a_1 = 15, 27 2a_2 > 0$ and $a_1^2 + a_2^2 + \dots + a_{11}^2$ $a_1 + a_2 + \dots + a_{11}$
 - $\begin{array}{c} a_{k} = 2a_{k-1} a_{k-2} \text{ for } k = 3, 4, \dots, 11. \text{ If } \\ to \\ (1) 3 \\ \end{array} \begin{array}{c} 11 \\ (2) 5 \\ (3) 9 \\ (4) 0 \end{array} = 90, \text{ then the value of } \\ 11 \\ (4) 0 \\ \end{array} \begin{array}{c} 11 \\ (4) 0 \\ \end{array}$

 \mathbf{C}

3*. If a, b & c are in arithmetic progression and a₂, b₂ & c₂ are in harmonic progression, then

(1) a = b = c	(2) a, b, $-\frac{3}{2}$ are in A.P.
<u>c</u>	C
(3) a, b, - 2 are in G.P.	(4) a, b, -2 are in H.P.

16

4. a, b, c, d are four different real numbers which are in AP. If $2(a - b) + x (b - c)_2 + (c - a)_3 = 2 (a - d) + (b - d)_2 + (c - d)_3$, then (1) $-8 \le x \le 16$ (2) $x \le -8$ (3) $x \ge 16$ (4) $x \le -8$ or $x \ge 16$

5. The H.M. between two numbers is $\overline{5}$, their A.M. is A and G.M. is G. If $2A + G_2 = 26$, then the numbers are (1) 6, 8 (2) 4, 8 (3) 2, 8 (4) 1, 8

6. If x ∈ R, the numbers $5_{1+x} + 5_{1-x}$, a/2, $25_x + 25_{-x}$ form an A.P. then 'a' must lie in the interval: (1) [1, 5] (2) [2, 5] (3) [5, 12] (4) [12, ∞)

7. If a, b, c, x are real numbers and equation $(a_2 + b_2) x_2 - 2b (a + c) x + (b_2 + c_2) = 0$ has equal roots, then a, b, c are in-(1) A.P. (2) G.P. (3) H.P. (4) None of these

- 8. If $a_n = \frac{3}{4} \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 \dots + (-1)_{n-1} \left(\frac{3}{4}\right)^n$ and $b_n = 1 a_n$, then the minimum natural number n_0 such that $b_n > a_n \forall n > n_0$ is
 - (1) 3 (2) 4 (3) 5 (4) 6

				1 1 1	
9.	If S denotes the sum to	infinity and Sn the sum	of n terms of the s	series 1 + $\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$	such that S
	$-S_n < \frac{1}{1000}$, then the k (1) 11 $\sum_{k=1}^{4n} (-1)^{\frac{k(k+1)}{2}}$	east value of n is (2) 9 . Then Sn can take val	(3) 10	(4) 8	
10.	Let $S_n = k_{=1}^{k_{=1}} k_2$ (1) 1056	. Then S₁ can take val (2) 1088	ue(s) (3) 1120	(4) 1332	
11.		o the sum of the first el	even terms is 6 : 1	e natural numbers. If the r 1 and the seventh term (4) 11	
12.	The sum of 10 terms of $(x^{20} - 1)(x^{22} + 1)$,	≠ ± 1)
	(1) $\left(\frac{x^{20}-1}{x^2-1}\right)\left(\frac{x^{22}+1}{x^{20}}\right)$ (1) $\left(\frac{x^{18}-1}{x^2-1}\right)\left(\frac{x^{11}-1}{x^9}\right)$		(2) $\left(\frac{x^{18}-1}{x^2-1}\right)\left(\frac{1}{x^2}\right)$	1 20	
	(3)	+ 20	(4) None of the		1)2
13.	even. When n is odd, th	e sum is		$\frac{n(n+1)}{2} + 2.6_2 + \dots$ is $\frac{n(n+1)}{2}$, when n is
	(1) $\frac{n(n+1)^2}{4}$	(2) $\frac{n^2(n+2)}{4}$	$\frac{n^2(n+1)}{2}$	$\frac{n(n+2)^2}{4}$	
14.		– 1, b are in AP, a, b1,	b2, b3,b2n −1,	b are in GP and a, c1, c2	
15.	We know that $1 + 2 + 3$ $1_2 + 2_2 + 3_2 + + n_2$ Greatest even natural n	$a_2 = \frac{n(n+1)(2n+1)}{6} = g_1$	(n),	⁷ n ≥ 2, is	
	(1) 2	(2) 4	(3) 6	(4) none of thes	se
16.	last (2n + 1) terms are in then first term of the sec	n GP whose common r quence is	atio 0.5. If the mic	whose common different Idle terms of the AP and	
	(1) $\frac{4n+2n \cdot 2^{n}}{2^{n}-1}$	(2) $\frac{4n-2n \cdot 2^{n}}{2^{n}-1}$	(3) $\frac{2n-n \cdot 2^n}{2^n - 1}$	(4) $\frac{2n+n \cdot 2^n}{2^n-1}$	
	APSP Answ	ers			
			RT - I		
1. 8.	(3) 2 . (4) (2) 9 . (1)	3.(2)4.10.(2)11.	(3) 5. (4) 12.	(1) 6. (4) (2) 13. (2)	7. (1) 14. (1)

MATHEMATICS				Sequence & Series									
15. 22. 29.	(3) (4) (2)	16. 23. 30.	(3) (3) (3)	17. 24.	(3) (1)	18. 25.	(3) (2)	19. 26.	(1) (3)	20. 27.	(3) (3)	21. 28.	(3) (1)
						ΡΑ	RT - II						
1. 8. 15.	(4) (3) (1)	2. 9. 16.	(4) (1) (2)	3. 10.	(1, 3) (1, 4)	4. 11.	(4) (3)	5. 12.	(3) (1)	6. 13.	(4) (3)	7. 14.	(2) (3)