
Exercise-1

Marked questions may have for revision questions.

* Marked Questions may have more than one correct option.

OBJECTIVE QUESTIONS

Section (A): Addition and Subtraction laws of vectors, Position vector, Distance Formula, Section Formula, Direction Ratios & Direction cosines

MATHEMATICS

A-9.				
	respectively. D is poin intersect at point P, th		$\frac{BD}{DC} = \frac{2}{1}$ and E is the	midpoint of side AC. If AD and BE
	(1) 1 : 4	(2) 2 : 3	(3) 3 : 2	(4) 4 : 1
A-10.	The distance of the po	pint (1, 2, 3) from x-axis i	S	
	(1) ^{√13}	(2) $\sqrt{5}$	(3) √10	(4) \sqrt{14}
A-11.	If the distance of the p	point P(4, 3, 5) from the a	axis of y is λ unit, then	the value of $5\lambda_2$ must be equal to
	(1) 100	(2) 150	(3) 200	(4) 205
A-12.	A point P lies on a line (1) (–1, –14, 7)		3) and B(2,10,1). If z-c (3) (–1, 14, 7)	coordinate of P is 7, then point P is- (4) (1, 14, 7)
A-13.	If the sum of the squar from the origin is	es of the distances of a p	oint from the three coo	rdinate axes be 36, then its distance
	(1) 6	(2) 3 √2	(3) 2	(4) 6√2
A-14.	The vertices of a triar bisector of the angle A		, 3, 1) and C(2, 3, 5).	A vector representing the internal
	(1) $\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$	(2) $2\hat{i} - 2\hat{j} + \hat{k}$	(3) $2\hat{i} + 2\hat{j} - \hat{k}$	(4) $2\hat{i} + 2\hat{j} + \hat{k}$
A-15.	1, 3, -7) respectively	is		A and B are (3, 4, 5) and (–
	(1) 8x + 2y + 24z - 9 - (3) 8x + 2y + 24z + 9 -		(2) 8x + 2y + 24z - 2 (4) 8x - 2y + 24z - 2	
A-16.	If angles α , β , γ are m	nade by a line with positi	ve axes, then $\sin_2 \alpha + \frac{1}{2}$	$\sin_2\beta + \sin_2\gamma$ equals
	(1) 2	(2) 3	(3) 4	(4) 1
A-17.	A line makes angles c (1) 0	ι, β, γ with the coordinate (2) 90°	e axes. If α + β= 90°, th (3) 180°	nen γ = (4) 60º
A-18.	Direction cosines of th	e line equally inclined w	ith axes are -	
		1 1 1	<u> 1 1 </u>	$\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$
	(1) 1,1,1	(2) $\sqrt{3}$, $\sqrt{3}$, $\sqrt{3}$	(3) $\sqrt{3} + \sqrt{3} + - \sqrt{3}$	$\sqrt{3}$ (4) - $\sqrt{2}$, - $\sqrt{2}$, - $\sqrt{2}$
A-19.			4, α, 2), (5, -3, 2), (β, -	1, 1) & (3, 3, −1). Line AB would be
	perpendicular to line C (1) $\alpha = -1$, $\beta = -1$	(2) $\alpha = 1, \beta = 2$	(3) $\alpha = 2, \beta = 1$	(4) $\alpha = 2, \beta = 2$
A-20.	If the edges of a rectar by	ngular parallelopiped are	3, 2, 1 then the angle I	between a pair of diagonals is given
	-	<u>3</u>	2	
_		(2) $\cos_{-1} \frac{3}{7}$		
Secti	on (B) : Dot Produ	ct, Projection of a I	ine segement on o	other line, Cross Product

B-1.	If θ be the angle between vectors $\hat{i} + 2\hat{j} + 3\hat{k}$ and $3\hat{i} + 2\hat{j} + \hat{k}$, then the value of sin θ is				
	(1) $\sqrt{\frac{6}{7}}$	(2) $\frac{2\sqrt{6}}{7}$	<u>1</u>	(4) $2\sqrt{\frac{6}{7}}$	
		. ,			
B-2.	If X and \tilde{Y} are two up	t vectors and θ is the an	ale between them then	$\frac{1}{2} \left \frac{x}{x} - \frac{y}{y} \right _{is equal to}$	
D-2.			gie between them, then $ _{\theta \in \Theta} \theta $	$\left \begin{array}{c} \theta \\ \theta \end{array} \right $	
	(1) $\frac{\pi}{2}$	(2) 0	(3) $\left \cos\frac{\theta}{2}\right $	(4) $\left \frac{\sin 2}{2} \right $	
B-3.	Angle between diagon	als of a parallelogram wh	ose side are represente	d by $\overset{\mathbb{M}}{a} = 2\hat{i} + \hat{j} + \hat{k}$ and $\overset{\mathbb{M}}{b} = \hat{i} - \hat{j} - \hat{k}$	
	(1) $\cos \left(\frac{1}{3}\right)$	(2) $\cos_{-1}\left(\frac{1}{2}\right)$	(3) $\cos \left(\frac{4}{9}\right)$	(4) $\cos \left(\frac{5}{9}\right)$	
B-4.		$ \ddot{\mathbf{b}} = 5, \ddot{\mathbf{c}} = 7$ then the	_		
		(2) $\frac{2\pi}{3}$		(4) $\frac{\pi}{3}$	
B-5.	Let $\stackrel{\boxtimes}{a} = \hat{i}$ be a vector $(a+b)$ is -	which makes an angle of	120° with a unit vector $\overset{\flat}{k}$	in XY plane, then the unit vector	
	$(1) -\frac{1}{2}\hat{i} + \frac{\sqrt{3}}{2}\hat{j}$	(2) $-\frac{\sqrt{3}}{2}\hat{i}+\frac{1}{2}\hat{j}$	(3) $\frac{1}{2}\hat{i} + \frac{\sqrt{3}}{2}\hat{j}$	(4) $\frac{\sqrt{3}}{2}\hat{i} - \frac{1}{2}\hat{j}$	
B-6.		s of length 3, 4, 5 respect	ively. Let $\stackrel{{}^{\!$	cular to $\overset{\textcircled{w}}{b} + \overset{\textcircled{w}}{c}$, to $\overset{\textcircled{w}}{c} + \overset{\textcircled{w}}{a}$ and $\overset{\textcircled{w}}{c}$	
	to $a + b$. Then $a + b$	+ c is equal to :		_	
	(1) ² √5		(3) ¹⁰ $\sqrt{5}$	(4) $5\sqrt{2}$	
B-7.		and $ \overset{a}{a} + \overset{b}{b} = 10$, then	^ø is equal to :		
	(1) 1	(2) √57	(3) 3	(4) 4	
B-8.		ctors such that $a + b + c$			
	(1) 1	(2) 3	$(3) -\frac{3}{2}$	(4) $\frac{3}{2}$	
B-9.	of perpendicular draw	gle ABC are A (1, $-2, \frac{2}{vx^{n}}$ n from B on AC, then BN	, B (1, 4, 0) and C (–4, 1	, 1) respectively. If M be the foot	
	(1) $\frac{10}{7} (-2^{\hat{i}} - 3^{\hat{j}} + \hat{k})$) (2) 10 ($-2\hat{i} - 3\hat{j} + \hat{k}$)	$(3) 2 \hat{i} + 3 \hat{j} - \hat{k})$	$(4) - 2\hat{i} - 3\hat{j} + \hat{k}$	
B-10.				ection of $\overset{a}{a} + \overset{b}{b}$ on $\overset{a}{c}$ is -	
	(1) 3	(2) ⁵ / ₃	(3) 3	(4) \sqrt{43}	
B-11.		N	141	XY-plane. A vector in the XY-	
	plane having projectio	ns 1 and 2 along \overline{b} and	^c is :		

	(1) $2\hat{i} + \hat{j}$	(2) ^{î – 2} ĵ	$(3) \frac{1}{5} (-2^{\hat{i}} + 11^{\hat{j}})$	$(4) \; (-^{2\hat{i} + 11\hat{j}})$
B-12.	lf A (6, 3, 2), B (5, 1, 4), C (3, -4, 7), D (0, 2, 5	5) are four points, then pr	rojection of CD on AB is
		(2) $-\frac{13}{7}$		
	$(1) - \frac{13}{3}$	(2) 7	(3) ¹³	(4) 13
B-13.	The length of the li	ine segment whose pr	ojection on the coordi	nate axes are of magnitudes
	12, 4, 3 is			
	(1) 13	(2) 17	(3) 19	(4) 21
B-14.	lot b_3j+4k a.	$\hat{i} + \hat{j}$ and let \hat{b}_1 and \hat{b}_2	be component of vector	$\overset{\scriptscriptstyle{\mathrm{a}}}{b}$ parallel and perpendicular to
D-14.			be component of vecto	
	$\overset{\square}{a}$. If $\overset{\square}{b}_{1} = \frac{3}{2} + \frac{3}{2}\hat{j}$, then \ddot{b}_2 is equal to		
		(2) $\frac{3}{2}\hat{i} + \frac{3}{2}\hat{j} + 4\hat{k}$	$\frac{3}{2}$ $\frac{3}{2}$	$\frac{3}{2}$ $\frac{3}{2}$
	(1) – 2 î́ + 2 []]	(2) $2\hat{i} + 2^{j} + 4\hat{k}$	(3) – 2 î + 2 ^J +4 k̂	(4) $2\hat{i} + 2 J - 4\hat{k}$
	1 (₀ ; 0;	c)		
B-15. ⊺	The vector $\frac{1}{3}(2\hat{i} - 2\hat{j} +$	is:		
				$-\hat{i} + \hat{j} - \frac{1}{2}\hat{k}$
	(1) a unit vector		(2) parallel to the vector	or 2
	(3) perpendicular to th	e vector $3\hat{i} + 2\hat{j} - 2\hat{k}$	(4) all of these	
		141		
B-16.	The force determined	by the vector $f = (1,$	-8, -7) is resolved alo	ng three mutually perpendicular
		N	e vector $a = 21 + 2j + k$. Then the vector $\overset{\boxtimes}{r}$ component
	of the force along the		44 44 7	
	$(1) -\frac{14}{3}\hat{i} - \frac{14}{3}\hat{j} + \frac{14}{3}\hat{j} +$	$\frac{7}{3}$ k	$\frac{14}{3}\hat{i} - \frac{14}{3}\hat{j} - \frac{7}{3}$	ĥ
		-		
	(3) $-\frac{14}{3}\hat{i} + \frac{14}{3}\hat{j} - \frac{14}{3}\hat{j}$	– k 3	$(4) -\frac{14}{3}\hat{i} - \frac{14}{3}\hat{j} -$	r <mark>-</mark> k
B-17.	If $\mathbf{\hat{u}} = 2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$ and	$\vec{v} = 6\hat{i} - 3\hat{j} + 2\hat{k}$ the unit ve	ector perpendicular to $\ddot{\mathbf{u}}$	and $\overset{\forall}{v}$ is -
	î −10ĵ −18k̂	$\hat{i} + 10\hat{j} - 18\hat{k}$	$\hat{i} + 10\hat{j} + 18\hat{k}$	$-\hat{i}+10\hat{j}-18\hat{k}$
	(1) \[\sqrt{425} \]	(2) $\frac{\hat{i} + 10\hat{j} - 18\hat{k}}{\sqrt{425}}$	(3) \[\sqrt{425}\]	(4) \[\sqrt{425} \]
B-18.	If the vector ^b is collin	near with the vector (2) $\overset{a}{a} \pm 2\overset{a}{b} = 0$	$(2\sqrt{2}, -1, 4)$ and $ \bar{b} $	= 10, then :
	(1) $a^{\square} \pm b^{\square} = 0$	$(2) \stackrel{\boxtimes}{a} \pm 2\stackrel{\boxtimes}{b} = 0$	(3) $2a \pm b - 0$	$(4) \dot{a} \pm 3 \dot{b} = 0$
B-19.	If $\hat{i} + 2\hat{j} + 3\hat{k}$ is particular.	rallel to sum of the vecto	rs $3\hat{i} + \lambda\hat{j} + 2\hat{k}$ and $-2\hat{i} + \hat{k}$	$3\hat{j} + \hat{k}$, then λ equals -
	(1) 1			(4) – 2
				•
B-20.	The diagonals of a pai	rallelogram are $\mathbf{\hat{d}}_{1} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}}_{1}$	$j - 2k_{and} d_2 = i - 3j + 4$	^k . Its area is -
	(1) ^{10√3}	(2) ⁵ √3	(3) 8	(4) 4
•				

MATHEMATICS

Vector

Twice of the area of the parallelogram constructed on the vectors $\ddot{a} = \ddot{p} + 2\ddot{q}$ and $\ddot{b} = 2\ddot{p} + \ddot{q}$, where \ddot{p} B-21. and \ddot{q} are unit vectors containing an angle of 30°, is : (1) 2 (2)3(3) 6(4) 5 **B-22.** If $(\overset{\boxtimes}{a}\times\overset{\boxtimes}{b})^2 + (\overset{\boxtimes}{a}\overset{\boxtimes}{b})^2 = 144$ and $|\overset{\boxtimes}{a}| = 4$, then $|\overset{\boxtimes}{b}|$ equals (2) 8(1) 10 (3)3(4) 12 **B-23.** If the vector product of a constant vector \overrightarrow{OA} with a variable vector \overrightarrow{OB} in a fixed plane OAB be a constant vector, then locus of B is: (1) a straight line perpendicular to OA(2) a circle with centre O radius equal to $|\overline{OA}|$ (4) a circle with centre O radius equal to |AB|(3) a straight line parallel to \overrightarrow{OA} For a non zero vector \vec{A} if the equations $\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{C}$ and $\vec{A} \times \vec{B} = \vec{A} \times \vec{C}$ hold simultaneously, then : B-24. (1) $\stackrel{\mbox{\tiny B}}{=}$ is perpendicular to $\stackrel{\mbox{\tiny B}}{=} - \stackrel{\mbox{\tiny C}}{\subset}$ (2) $\ddot{A} = \ddot{B}$ (4) $\overset{\Box}{\mathsf{C}} = \overset{\Box}{\mathsf{A}}$ (3) $\ddot{B} = \ddot{C}$ If $\overset{\square}{a} \times \overset{\square}{b} = \overset{\square}{c} \times \overset{\square}{d}$ and $\overset{\square}{a} \times \overset{\square}{c} = \overset{\square}{b} \times \overset{\square}{d}$, then the vectors $\overset{\square}{a} - \overset{\square}{d}$ and $\overset{\square}{b} - \overset{\square}{c}$ are: B-25. (1) null vectors (2) linearly independent (3) perpendicular (4) parallel

Section (C) : Straight Line in three dimensional geometry

C-1. Which of the following **doesnot** represent the equation of line passing through the points (2, 1, 3) and (-1, 3, 1).

 $\frac{x-2}{3} = \frac{y-1}{-2} = \frac{z-3}{2}$ (2) $\hat{r} = -\hat{i} + 3\hat{j} + \hat{k} + \lambda \left(3\hat{i} - 2\hat{j} + 2\hat{k}\right)$ (3) $\hat{r} = 8\hat{i} - 3\hat{j} + 7\hat{k} + \mu \left(3\hat{i} - 2\hat{j} + 2\hat{k}\right)$ (4) $\frac{x-5}{-3} = \frac{x+3}{2} = \frac{y-5}{-2}$

$$\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-3}{2}$$

- **C-2.** Coordinate of a point on the line $1 \quad 2 \quad -2$. Which is at a distance of 6 unit from the point (2, -1, 3) is
 - (1) (-4, -3, 1) (2) (4, 3, 1) (3) (0, -5, 7) (4) (0, 5, -7)
- C-3. The point of intersection of lines

$$L_{1}: (1+\lambda)\hat{i} + (2+2\lambda)\hat{j} + (3+3\lambda)\hat{k}, \lambda \in \mathbb{R}$$

$$L_{2}: (3+2\mu)\hat{i} + (4+2\mu)\hat{j} + (1-2\mu)\hat{k}, \mu \in \mathbb{R} \text{ is}$$
(1) (-1, 2, 3) (2) (1, 2, 3) (3) (-2, 3, 4) (4) (3, 4, -1)

C-4. The angle between lines 2x = 3y = -z and 6x = -y = -4z is -(1) 0° (2) 30° (3) 45° (4) 90°

The angle between the two straight lines $\vec{r} = 3\hat{i} - 2\hat{j} + 4\hat{k} + \lambda (-2\hat{i} + \hat{j} + 2\hat{k})$ and C-5. $\vec{r} = \hat{i} + 3\hat{j} - 2\hat{k} + \mu(3\hat{i} - 2\hat{j} + 6\hat{k})$ is (3) $\cos_{-1}\left(\frac{5}{21}\right)$ (4) $\sin_{-1}\left(\frac{5}{21}\right)$ (2) $\sin_{-1}\left(\frac{4}{21}\right)$ The length of perpendicular from (2, -1, 5) to the line $\frac{x-11}{10} = \frac{y+2}{-4} = \frac{z+8}{-11}$ and the coordinates of the C-6. foot are -(1) $\sqrt{14}$, (1,2,-3) (2) $\sqrt{14}$, (1,-2,3) (3) $\sqrt{14}$, (1,2,3) (4) $\sqrt[2]{14}$ (1,2,3) C-7. The foot of the perpendicular from (a, b, c) on the line x = y = z is the point (where 3r = a + b + c) (2) (r, – r, r) (3) (–r, – r, r) (1) (r, r, r) (4) (r, r, -r)Equation of the acute angle bisector of the angle between the lines $\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{1}$ & C-8. $\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{-1}$ is : (2) $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ (4) $\frac{x-1}{-1} = \frac{y-2}{2} = \frac{z-3}{3}$ (1) $\frac{x-1}{2} = \frac{y-2}{2}$; z = -3 = 0(3) x - 1 = 0: $\frac{y - 2}{1} = \frac{z - 3}{1}$ Consider the lines $\frac{x}{2} = \frac{y}{3} = \frac{z}{5}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ the equation of the line which C-9. (1) bisects the angle between the lines is $\frac{x}{3} = \frac{y}{3} = \frac{z}{8}$ (2) bisects the angle between the lines is $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ (3) passes through activity (3) passes through origin and is perpendicular to the given lines is x = y = -z(4) passes through origin and is parallel to the given lines is x = y = -zIf the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$, $\frac{x-1}{3} = \frac{y-2}{-1} = \frac{z-3}{4}$ and $\frac{x+k}{3} = \frac{y-1}{2} = \frac{z-2}{h}$ are concurrent then C-10. (1) h = -2, k = -6 (2) $h = \frac{1}{2}, k = 2$ (3) h = 6, k = 2 (4) $h = 2, k = \frac{1}{2}$ The shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is C-11. (2) $\sqrt{6}$ (1) 0(3) 4 (4) 12 The straight lines $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ and $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{-2}$ are C-12. (1) parallel lines (2) intersecting at 60°

	(3) skew lines		(4) intersecting at right	angle		
Secti	Section (D) : Scalar Triple Product, Tetrahedron, Vector Triple Product, Vector Equations, Linear Independent and Linear dependent vectors					
D-1.	$ \overset{(a}{(a}\times\overset{b}{b})\overset{a}{,c} = \overset{a}{a} \overset{b}{b} \overset{a}{c}$ (1) $\overset{a}{a}\overset{b}{,b} = \overset{a}{b}\overset{a}{,c} = 0$. ,			
D-2.	Given unit vectors $\hat{m},$ terms of $\alpha.$ is	\hat{n} and \hat{p} such that (\hat{m})		\mathfrak{a} , then the value of $\left[\hat{n} \hat{p} \hat{m} \right]$ in		
	(1) sin α	(2) cos α	(3) sin a cos a	(4) sin2 α		
	$\hat{i}_{.}(\hat{j}_{\mathbf{x}}\hat{k}) + \hat{j}_{.}(\hat{i}_{\mathbf{x}}\hat{k}) + \hat{j}_{.}(\hat{i}_{\mathbf{x}}\hat{k}) + \hat{j}_{.}$ (1) 1		(3) 5	(4) 2		
D-4.	The value of $\begin{bmatrix} \begin{pmatrix} a \\ a + 2b \end{bmatrix}$ (1)	$ \overset{\mathbb{N}}{=} \overset{\mathbb{N}}{$	equal to $\begin{bmatrix} a & b & b \\ c & b & c \end{bmatrix}$,,,,[abc]		
D-5.	Let ^r be a vector perp	(2) 2 ∟ J pendicular to $\ddot{a} + \ddot{b} + \ddot{c}$ × \ddot{a}) + n ($\ddot{a} \times \ddot{b}$), then (ℓ	, where $\begin{bmatrix} a & b & c \\ b & c \end{bmatrix} = 2$.	(4) 4 ∟ ⊐		
	(1) 2	(2) 1	(3) 0	(4) –1		
D-6.	Given $\stackrel{\boxtimes}{a} = x\hat{i} + y\hat{j} + 2\hat{k}$, (1) $\stackrel{[\boxtimes}{a} \stackrel{\boxtimes}{b} \stackrel{\boxtimes}{c}]^2 = \stackrel{\boxtimes}{a}$		$ \begin{array}{c} \begin{pmatrix} \mathbb{A} & \wedge \mathbb{B} \\ (a & b) \\ \\ \end{array} & = \frac{\pi}{2}, \overset{\mathbb{A}}{a.c} = 4, \text{ the } \\ \begin{array}{c} (3) \end{array} \\ \begin{array}{c} \mathbb{A} & \mathbb{B} \\ \end{array} & \overset{\mathbb{B}}{b} \\ \end{array} & \begin{array}{c} \mathbb{C} \\ \end{array} & = 0 \end{array} $	en (4) ^{[ळ} b c] = [∞] ²		
D-7.			en parallelopiped. Then r	e faces of the given rectangular n is equal to: (4) 8		
D-8.	Let ^a á ₌ xî + 12ĵ – k̂ , Ĕ (1) x ∈ (2, ∞)	$\vec{c} = 2\hat{i} + 2x\hat{j} + \hat{k}$ and $\vec{c} = \hat{c}$ (2) $x \in (-\infty, -3)$		s left handed, then : (4) x ∈ {− 3, 2}		
D-9.				plane of $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} - 3\hat{j}$, is		
	(1) $\frac{6}{\sqrt{6}} (\hat{i} - 2\hat{j} + \hat{k})$	(2) $\frac{5}{\sqrt{6}} (2^{\hat{i} - \hat{j} - \hat{k}})$	(3) $\frac{3}{\sqrt{114}}$ ($8\hat{i} - 7\hat{j} - \hat{k}$)	(4) $\frac{3}{\sqrt{114}} (-7\hat{i}+8\hat{j}-\hat{k})$		
D-10.	If $\overset{\Box}{a} = \hat{i} - 2\hat{j} - 2\hat{k}, \overset{\Box}{b}$	= $2\hat{i} - \hat{j} + \hat{k}$ and $\hat{c} =$	$\hat{i} + 3^{\hat{j}} - \hat{k}$ then $\overset{\Box}{a} x (\overset{\Box}{b})$	c^{α} x c^{α}) is equal to		
	$(1) - 8^{\hat{i}} - 3^{\hat{j}} - \hat{k}$	(2) 20 $\hat{i} - 3\hat{j} - 7\hat{k}$	(3) $20^{\hat{i}} + 3^{\hat{j}} - 7\hat{k}$	(4) $8^{\hat{i}} - 3^{\hat{j}} + \hat{k}$		
D-11.	$(\mathbf{d} + \mathbf{a}) \cdot (\mathbf{a} \times (\mathbf{b} \times (\mathbf{c} \times \mathbf{d})))$)) simplifies to :				

	(1) ^(b.d) [a c d]	(2) ^(b,c) [a b d]	(3) ^{(b} . a) [a b d]	(4) ^{(Ď.D.}) [ä c d]
D-12.	If $\overset{\mathbb{X}}{a} \times [\overset{\mathbb{X}}{a} \times (\overset{\mathbb{X}}{a} \times \overset{\mathbb{X}}{b})] = \lambda^{(a)}$	$(a^{\bowtie}b)(a^{\bowtie})$ then $\lambda =$		
	(1) 1	(2) –1	(3) 0	(4) 2
		d×	(a×d)	
D-13.	If $\overset{a}{a} = \overset{b}{b} + \overset{a}{c}$, $\overset{a}{b} \times \overset{a}{d} = \overset{a}{0}$			24
	(1) [¤]			(4) ^d
D-14.	Vector $\stackrel{\scriptstyle{\boxtimes}}{\times}$ satisfying the	relation $\stackrel{\boxtimes}{A}$. $\overset{\boxtimes}{x} = c$ and	$\overset{\mbox{\tiny M}}{A} \times \overset{\mbox{\tiny M}}{x} = \overset{\mbox{\tiny M}}{B} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$\underline{cA} - (\underline{A} \times \underline{B})$	$\underline{c\ddot{A}} - (\underline{\ddot{A}} \times \underline{\ddot{B}})$	(3) $\frac{c\overrightarrow{A} + (\overrightarrow{A} \times \overrightarrow{B})}{ \overrightarrow{A} ^2}$	$\underline{cA - 2(A \times B)}$
D-15.	$\overset{\ensuremath{\mathbb{W}}}{a}=\hat{i}-\hat{j}$, $\overset{\ensuremath{\mathbb{W}}}{b}=\hat{j}-\hat{k}$, $\overset{\ensuremath{\mathbb{W}}}{c}=\hat{c}$	$\hat{k} - \hat{i}$. If $\overset{\Box}{d}$ is a unit vecto	In such that $\overset{\mathbb{X}}{a.d} = 0 = \overset{\mathbb{D}}{[b]}$	$\begin{bmatrix} a \\ c \end{bmatrix}$ then $\begin{bmatrix} a \\ d \end{bmatrix}$ equals to
			$(3) \pm \frac{\hat{i} - \hat{j} - \hat{k}}{\sqrt{2}}$	
D-16.	The vectors ^a , ^b , ^c ar	e of the same length and	l pairwise form equal ang	les. If $\overset{\mathbb{W}}{a} = \hat{i} + \hat{j}$ and $\overset{\mathbb{W}}{b} = \hat{j} + \hat{k}$ then
	vector may be :		÷ 40 f	î 40 û
	(1) $\hat{i} + \hat{k}$	(2) Î – Â	$(3) \frac{\hat{i}-4\hat{j}-\hat{k}}{3}$	(4) $\frac{1+4J-K}{3}$
Secti	on (E) : Plane	(2)	(0)	(*)
E-1.	The plane XOZ divides	s the join of (1, –1, 5) and	d (2, 3, 4) in the ratio λ :	1 then λ is
			(3) $\frac{1}{3}$	$(4) - \frac{13}{2}$
	(1) 7	(2) 0	(3) 3	(4) – 2
E-2.	Algebraic sum of interc	cepts made by the plane	x + 3y - 4z + 6 = 0 on th	
	(1) 7	(2) 0	$(3) \frac{13}{2}$	$(4) - \frac{13}{2}$
E-3.	If the plane x – 3y + 5z	= d, passes through the	point (1, 2, 4), then the	intercept on x, y, z axes are
	(1) 15, -5, 3	(2) 1, -5, 3	(3) –15, 5, –3	(4) 1, -6, 20
E-4.	The equation of a pla (3, 4, -1) & (2, -1, 5) i		gh (2, -3, 1) & is norm	nal to the line joining the points
	(1) $x + 5y - 6z + 19 = 0$		(2) x - 5y + 6z - 19 =	
	(3) x + 5y + 6z + 19 = 0)	(4) x - 5y - 6z - 19 =	0
E-5.	_	2x - y + z = 6 and $x + y$		-
E-5.	π			(4) $\frac{\pi}{6}$
E-5. E-6.	(1) $\frac{\pi}{4}$	(2) $\frac{\pi}{2}$	+ 2z = 7, is- (3) $\frac{\pi}{3}$ (3) - 4y + 5z = 0 and 2x - y	(4) $\frac{\pi}{6}$

	(1) $\frac{1}{2}$	(2) 0	(3) $\frac{1}{3}$	$(4) - \frac{1}{2}$
E-7.	A plane is passing thr plane is (1) 2x + 3y + 4z = 4	ough (1, 2, 3) and is para	allel to the plane $2x + 3y$ (2) $2x + 3y + 4z + 4 =$	-4z = 0, then the equation of the 0
	(3) $2x - 3y + 4z + 4 =$	0	(4) $2x + 3y - 4z + 4 =$	
E-8.	The equation of the pl is -	ane which passes throug	h the points (2, 3, – 4) a	and $(1, -1, 3)$ and parallel to x-axis
	(1) $7y - 4z - 5 = 0$	(2) $4y - 7z - 5 = 0$	(3) $4y + 7z + 5 = 0$	(4) $7y + 4z - 5 = 0$
E-9.	x + 2y + 2z = 5 and 3x	x + 3y + 2z = 8, is		2) and perpendicular to planes
	(1) $2x - 4y + 3z - 8 =$ (3) $2x + 4y + 3z + 8 =$		(2) 2x - 4y - 3z + 8 = (4) 3x - 4y - 3z + 8 =	
E-10.	The locus represented (1) a pair of perpendic (3) a pair of parallel pl	cular lines	(2) a pair of parallel li (4) a pair of perpend	
E-11.	A variable plane pass from origin to this plar	- .	(1, 2, 3). The locus of th	e foot of the perpendicular drawn
	(1) $x_2 + y_2 + z_2 - x - 2$ (3) $x_2 + 4y_2 + 9z_2 + x + 3z_2$		(2) $x_2 + 2y_2 + 3z_2 - x - (4) x_2 + y_2 + z_2 + x + 2$	
E-12.	The distance betweer $\frac{5}{6}$ unit	the parallel planes \ddot{r} . (2	$2^{\hat{i}} - 3\hat{j} + 6\hat{k} = 5 \text{ and } \vec{r}.$ (3) $\frac{5}{3}$ unit	$(6\hat{i} - 9\hat{j} + 18\hat{k}) + 20 = 0$ is
	(1) ⁶ unit	(2) 2 unit	(3) ³ unit	(4) 3 unit
E-13.	The reflection of the p	oint (2, –1, 3) in the plan	e 3x – 2y – z = 9 is :	
		(2) $\left(\frac{26}{7}, \frac{-15}{7}, \frac{17}{7}\right)$		$(4)\left(\frac{26}{7},\frac{17}{7},\frac{-15}{7}\right)$
E-14.	The volume of tetrah		the plane $2x - 3y + 4$	z - 12 = 0 and three co-ordinate
	(4) 0	(2) $\frac{1}{\sqrt{6}}$	(2) 4	(4) 40
E-15.	(1) 0 Which of the following line?	(-)	(3) 4 anes x – y + 2z = 3 and	(4) 12 d 4x + 3y – z = 1 along the same
	(1) $11x + 10y - 5z = 0$ (3) $5x + 2y + z = 2$)	(2) $7x + 7y - 4z = 0$ (4) $7x - 7y - 4z = 0$	
				x−1 v−2 z−3
E-16.	Equation of plane wh	ich passes through the	point of intersection of	lines $\frac{x-1}{3} = \frac{y-2}{1} = \frac{z-3}{2}$ and
	$\frac{x-1}{z-3}$ $\frac{y-2}{z-3}$			
	3 = 1 = 2 (1) $4x + 3y + 5z = 25$	and at greatest distance (2) $4x + 3y + 5z = 50$	e from the point $(0, 0, 0)$	is: $(A) \times + 7 = 2$
	(1) + x + 3y + 3z = 23	(2) + x + 3y + 32 = 30	(3) 3x + 4y + 52 = 49	$(+) \land + i y - 02 = 2$

Vect

E-17.		point where the line joini	ng the points (2, -3 , 1),	(3, -4, -5) cuts the plane $2x$
	+ y + z = 7, are (1) (2, 1, 0)	(2) (3, 2, 5)	(3) (1,-2, 7)	(4) (1, 2, 7)
E-18.	The distance of the int point $(-1, -5, -10)$, is	ersection point of the line	$\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$	and plane $x - y + z = 5$ from the
	(1) 13	(2) 9	(3) 5	(4) 12
E-19.	The distance of the poi , is:	nt (1, −2, 3) from the pla	ne x - y + z = 5 measured	d parallel to the line, $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$
		(2) ⁶ / ₇	(3) $\frac{7}{6}$	
	(1) 1			(4) 2
E-20.	The distance of the po 3x + 2y - 2z + 17 = 0 is			measured parallel to the plane
	(1) 7	(2) 0	(3) $\frac{1}{3}$	$(4) - \frac{13}{2}$
		$\underline{x-1}$ $\underline{y-2}$	$\frac{2}{z} = \frac{z+3}{-3}$ in the plane 3	
E-21.	The equation of image	of the line $9 = -1$	= -3 in the plane 3	x - 3y + 10z = 26 is
	(1) $\frac{x-4}{9} = \frac{y+1}{-1} = \frac{z}{-1}$	$\frac{1-7}{3}$	(2) $\frac{x-4}{9} = \frac{y+1}{-1} = \frac{z}{-1}$	<u>-7</u> -3
	(3) $\frac{x+4}{9} = \frac{y+1}{-1} = \frac{z-3}{-1}$		(4) $\frac{x-4}{9} = \frac{y-1}{1} = \frac{z}{-1}$	
	(3) $9 = -1 = -1$	3	(4) $9 = 1 = -$	-3
E-22.		e x + y + z - 1 = 0, 4x + y		the symmetrical form is
	(1) $\frac{x+1}{1} = \frac{y-2}{-2} = \frac{z-0}{1}$)	$\frac{x}{(2)} = \frac{y}{-2} = \frac{z-1}{1}$	
	(3) $\frac{x+1/2}{1} = \frac{y-1}{-2} = \frac{z}{-2}$	<u>-1/2</u> 1	(4) All of these	
	Exercise		、 <i>,</i>	
Marke		for revision questions		
		PART - I : OBJEC		19

A vector $\overset{a}{a}$ has components 2p and 1 with respect to a rectangular cartesian system. The system is rotated through a certain angle about the origin in the counterclockwise sense. If with respect to the new 1. system a, has components p + 1 and 1, then (2) p=1 or p = $-\frac{1}{3}$ (3) p = -1 or p = $\frac{1}{3}$ (4) p = 1 or p = −1

Let $\overset{a}{p}$ is the position vector of the orthocentre and $\overset{a}{g}$ is the position vector of the centroid of the triangle 2. ABC, where circumcentre is the origin. If $\overset{p}{p} = K^{\overset{q}{g}}$, then K is equal to : (1) 2 (2) 3 (3) 6 (4) 5

(1) p=0

3.	If the vectors $a = 3$	$\hat{i} + \hat{j} - 2\hat{k}, \dot{b} = -\hat{i}$	+ $3\hat{j}$ + $4\hat{k}_{and}\hat{c}^{\mathbb{M}} = 4\hat{i}$	$-2\hat{j} - 6\hat{k}$ constitute the sides
	of a ∆ABC. If length o (1) 2	f the median bisecting th (2) 3	e vector is λ , then λ_2 (3) 6	(4) 5
4.	-		. Each of them is equal ant has the magnitude e	to k and the angle between two qual to :
	(1) $k^{\sqrt{2+2\sqrt{2}}}$	(2) k $\sqrt{3 + 2\sqrt{2}}$	(3) k $\sqrt{4 + 2\sqrt{2}}$	(4) k $\sqrt{5+2\sqrt{2}}$
5.		the sum of the squares is 10 units. The locus of (2) $x_2 + y_2 + z_2 = 2$		six faces of a cube given by x (4) $x + y + z = 2$
6.	The angle between th	e lines whose direction c	cosines are given by ℓ + r	$m + n = 0$ and $\ell_2 + m_2 = n_2$ is
	(1) 30°	(2) 45°	(3) 60°	(4) 90°
7.	The cosine of the ang	le between any two diag	onals of a cube is -	
	(1) $\frac{1}{2}$	$\frac{1}{3}$	(3) $\frac{1}{4}$	$(4) \frac{1}{5}$
8.	in the interval :	and $\frac{\bar{e}_2}{\bar{e}_2}$ are inclined at ar	h angle 20 and $ \ddot{e}_1 - \ddot{e}_2 $	< 1, then for $\theta \in [0, \pi]$, θ may lie
	$(1)\left[0,\frac{\pi}{6}\right]$	(2) $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$	$(3)\left(\frac{5\pi}{6},\pi\right]$	$(4)\left[\frac{\pi}{2},\frac{5\pi}{6}\right]$
9.		$ \overset{\Box}{b} = -\hat{i} + 2\hat{j} + \hat{k}, \ \overset{\Box}{c} = $ (2) 7	= $3^{\hat{i}} + {\hat{j}}$ and $\overset{\boxtimes}{a} + P^{\overset{\boxtimes}{b}}$ is (3) 5	normal to ^d , then P is equal (4) 2
10.	Let $\overset{\square}{\mathbf{v}}, \overset{\square}{\mathbf{v}}$ and $\overset{\square}{\mathbf{w}}$ are version	ector such that $\overset{\mathbb{W}}{\mathbf{u}} + \overset{\mathbb{W}}{\mathbf{v}} + \overset{\mathbb{W}}{\mathbf{w}}$	$= \overset{\square}{0}. \text{ If } \overset{\square}{u} = 3, \overset{\square}{v} = 4, $	$\overset{\text{w}}{\mathbf{w}} \mid = 5 \underset{\text{then}}{\sqrt{\left \overset{\text{w}}{\mathbf{u}} \cdot \overset{\text{w}}{\mathbf{v}} + \overset{\text{w}}{\mathbf{v}} \cdot \overset{\text{w}}{\mathbf{w}} + \overset{\text{w}}{\mathbf{w}} \cdot \overset{\text{w}}{\mathbf{u}} \right }}$
	(1) 2	(2) 3	(3) 6	(4) 5
11.	Given two vectors a	$=2\hat{i}-3\hat{j}+6\hat{k}\hat{b}=$	$-2\hat{i}+2\hat{j}-\hat{k}$ and $\lambda =$	the projection of $\frac{a}{a}$ on $\frac{b}{b}$ the projection of b on $\frac{a}{a}$, then the
	value of 3λ is (1) 1	(2) 7	(3) 5	(4) 2
4-	$(\overset{\mathbb{N}}{\mathbf{r}}, \hat{\mathbf{i}})(\hat{\mathbf{i}} \times \overset{\mathbb{N}}{\mathbf{r}}) + (\overset{\mathbb{N}}{\mathbf{r}}, \hat{\mathbf{i}})(\hat{\mathbf{i}})$	$(\hat{\mathbf{r}}^{\mathbb{N}}) + (\hat{\mathbf{r}}^{\mathbb{N}}, \hat{\mathbf{k}}) (\hat{\mathbf{k}} \times \hat{\mathbf{r}})$ is equal		
12.	2	(2) r	al to (3) 2 [⊭]	(4) 3 [¤]
13.		non zero vectors such tha	$at a^{m} + b^{m} + c^{m} = 0 \text{then } \lambda ($	$(b_{\mathbf{x}}, a_{\mathbf{x}}) + (b_{\mathbf{x}}, c_{\mathbf{x}}, c_{\mathbf{x}}, a_{\mathbf{x}}) = (0, a_{\mathbf{x}})$, where
	λ is equal to (1) 1	(2) 7	(3) 5	(4) 2

$f \stackrel{\boxtimes}{a}, \stackrel{\boxtimes}{b}, \stackrel{\boxtimes}{c}_{are non-cop}$ 1) unit vector Points X and Y are tak QX = 4XR and RY = 4Y 1) 4 : 21 $f \stackrel{\boxtimes}{a} = \hat{i} + \hat{j} + \hat{k}, \stackrel{\boxtimes}{b} = \hat{i} - \hat{j}$ 1) 2 $f \stackrel{\boxtimes}{b}$ and $\stackrel{\boxtimes}{c}$ are two not	lanar vectors and $\stackrel{\boxtimes}{\mathbf{v}}$. $\stackrel{\boxtimes}{\mathbf{a}}$ (2) null vector ken on the sides QR ar S. The line XY cuts the li (2) 3 : 4 $\hat{\mathbf{j}} + \hat{\mathbf{k}}, \stackrel{\boxtimes}{\mathbf{c}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}},$ ther (2) 4	(3) $2\hat{i} + 3\hat{j} + 3\hat{k}$ $= \vec{v} \cdot \vec{b} = \vec{v} \cdot \vec{c} = 0, t$ (3) $2\hat{i}$ and RS, respectively of at ine PR at Z. Find the ration (3) 21 : 4 $\begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} \end{vmatrix}$ (3) 16	hen \vec{V} must be a (4) $2\hat{j}$ parallelogram PQRS, so that o PZ : ZR. (4) 4 : 3
1) unit vector Points X and Y are tak QX = 4XR and $RY = 4Y1) 4 : 21f \stackrel{\boxtimes}{a} = \hat{i} + \hat{j} + \hat{k}, \stackrel{\boxtimes}{b} = \hat{i} - \hat{j}1) 2f \stackrel{\boxtimes}{b} and \stackrel{\boxtimes}{c} are two not$	(2) null vector ken on the sides QR ar S. The line XY cuts the li (2) 3 : 4 $\hat{j} + \hat{k}, \ddot{c} = \hat{i} + 2\hat{j} - \hat{k}, \text{ ther}$ (2) 4	(3) $2\hat{i}$ and RS, respectively of a sine PR at Z. Find the ration (3) 21 : 4 $ a \cdot a = a \cdot b \cdot b \cdot a = b \cdot b$	(4) $2\hat{j}$ parallelogram PQRS, so that o PZ : ZR. (4) 4 : 3 $\hat{a} \cdot \hat{c}$ $\hat{b} \cdot \hat{c}$ $\hat{b} \cdot \hat{c}$ $\hat{c} \cdot \hat{c}$ is equal to :
Points X and Y are tak QX = 4XR and $RY = 4Y1) 4 : 21f^{a} = \hat{i} + \hat{j} + \hat{k}, b = \hat{i} - \hat{j}1) 2f^{b} and c^{c} are two not$	ken on the sides QR ar S. The line XY cuts the line (2) 3 : 4 $\hat{j} + \hat{k}, \ddot{c} = \hat{i} + 2\hat{j} - \hat{k},$ ther (2) 4	nd RS, respectively of a ine PR at Z. Find the rati (3) 21 : 4 a. a. a. b. b. a. b. b. c. a. c. b. n the value of	parallelogram PQRS, so that o PZ : ZR. (4) 4 : 3 $a \cdot c$ $b \cdot c$ $b \cdot c$ $c \cdot c$ is equal to :
QX = 4XR and RY = 4Y 1) 4 : 21 $\int_{f} a^{b} = \hat{i} + \hat{j} + \hat{k}, b^{b} = \hat{i} - \hat{j}$ 1) 2 $\int_{f} b^{b} and c^{c} are two notesity and both the second second$	S. The line XY cuts the li (2) 3 : 4 $\hat{j} + \hat{k}, \ddot{c} = \hat{i} + 2\hat{j} - \hat{k}, \text{ then}$ (2) 4	ine PR at Z. Find the ration (3) 21 : 4 $\begin{vmatrix} a & a & a \\ a & a & a \\ b & a & b & b \\ c & a & c & b \\ c & a & c & b \end{vmatrix}$	PZ : ZR. (4) 4 : 3 A : C A : C
b^{α} and c^{α} are two not	(_)	a.a.a.t b.a.b.t c.a.c.t (3) 16	$a \cdot c$ $b \cdot c$ $b \cdot c$ $c \cdot c$ is equal to : (4) 64
b^{α} and c^{α} are two not	(_)	1 the value of 1	(4) 64
b^{α} and c^{α} are two not	(_)	(3) 16	(4) 64
f $\overset{\square}{\overset{\square}{b}}$ and $\overset{\square}{\overset{\square}{c}}$ are two nor			
1) ^{a²} (b . c)	n-collinear vectors such t (2) $\vec{b}^2 (\vec{a} \cdot \vec{c})$	that $\stackrel{a}{a} \parallel (\stackrel{a}{b} \times \stackrel{a}{c})$, then ($\stackrel{a}{a}$ (3) $\stackrel{a}{c^2} (\stackrel{a}{a} \cdot \stackrel{b}{b})$	(\mathbf{a}, \mathbf{b}) . $(\mathbf{a}, \mathbf{x}, \mathbf{c})$ is equal to (4) \mathbf{a}^2
The foot of the perpendi plane is	cular drawn from the orig	gin to the plane is (4, –2,	–5), then the vector equation of
1) $\vec{r} . (4\hat{i} - 2\hat{j} - 5\hat{k})_{=35}$		(2) $\vec{r} \cdot (4\hat{i} - 2\hat{j} - 5\hat{k})_{=45}$	
3) $\vec{r} . (4\hat{i} - 2\hat{j} - 5\hat{k})_{=55}$		(4) $\vec{r} . (4\hat{i} - 2\hat{j} - 5\hat{k})_{=46}$	
The plane passing throu 1) xy-plane	ugh the points (1, 1, 1), ((2) yz-plane	1, –7, 1) and (–7, –3, –5) (3) xz-plane	is perpendicular to (4) x+y+z = 5
The direction ratios of n he plane x + y = 3 are :		gh (1, 0, 0), (0,1, 0) if pla	ne makes an angle of $\pi/4$ with
1) (1, $\sqrt{2}$,1)	(2) (1, 1, ^{√2})	(3) (1, 1, 2) (4) ($\sqrt{2}$, 1, 1)
The angle between the $x - y = 3$ is :	plane 2x – y + z = 6 and	l a plane perpendicular to	o the planes x + y + 2z = 7 and
1) $\frac{\pi}{4}$	(2) $\frac{\pi}{3}$	$(3) \frac{\pi}{6}$	(4) $\frac{\pi}{2}$
$\int_{a}^{\infty} a_{and} \overset{\omega}{b}_{lie}$ in a plar	ne normal to the plane c	ontaining the vectors $\overset{\square}{C}$	and $\overset{\square}{d}$, then $(\overset{\square}{a} \times \overset{\square}{b})$. $(\overset{\square}{c} \times \overset{\square}{d})$ is
1) 0	(2) ^a ^b ^c ^d	(3) <mark>a</mark> c	(4) ^b ^d
		ne origin. If a plane cuts	them at distances a, b, c and
	$+\frac{1}{b_1^2}+\frac{1}{c_1^2}$	(2) $\frac{1}{a^2} - \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a_1^2}$	$-\frac{1}{b_1^2}+\frac{1}{c_1^2}$
		(4) $a_2 - b_2 + c_2 = a_1^2 - b_1^2$	0
h 1 1 1	the plane x + y = 3 are :) (1, $\sqrt{2}$,1) the angle between the - y = 3 is :) $\frac{\pi}{4}$ $\overset{\Box}{a}$ and $\overset{\Box}{b}$ lie in a plan qual to) 0 wo systems of rectangle b, b_1, c_1 from the origin,	the plane x + y = 3 are : (1, $\sqrt{2}$, 1) (2) (1, 1, $\sqrt{2}$) The angle between the plane $2x - y + z = 6$ and -y = 3 is : (2) $\frac{\pi}{3}$ $a = \frac{\pi}{4}$ (2) $\frac{\pi}{3}$ $a = \frac{\pi}{4}$ (2) $\frac{\pi}{3}$ (2) $ a b c d $ wo systems of rectangular axes have the same b, b_1, c_1 from the origin, then	$(1, \sqrt{2}, 1)$ $(2) (1, 1, \sqrt{2})$ $(3) (1, 1, 2)$ $(4) (\sqrt{2})$ the angle between the plane $2x - y + z = 6$ and a plane perpendicular to $-y = 3$ is : $(2)^{\frac{\pi}{3}}$ $(2)^{\frac{\pi}{3}}$ $(3)^{\frac{\pi}{6}}$ $(3)^{$

33.

Vector

If the volume of tetrahedron formed by planes whose equations are y + z = 0, z + x = 0, x + y = 0 and

x + y + z = 1 is t cubic unit, then the value of 729 t is equal to (1) 486 (2) 672 (3) 588 (4) 729 The non zero value of 'a' for which the lines 2x - y + 3z + 4 = 0 = ax + y - z + 2 and 34. x - 3y + z = 0 = x + 2y + z + 1 are co-planar is : (1) - 2(3) 6 (4) 0(2) 4If line $\vec{r} = (\hat{i} - 2\hat{j} - \hat{k}) + \lambda(2\hat{i} + \hat{j} + 2\hat{k})$ is parallel to the plane. $\vec{r} (3\hat{i} - 2\hat{j} - m\hat{k}) = 14$, then the value 35. of m is (1) 2(2) - 2(4) can not be predicted with these informations (3) 0The acute angle that the vector $2\hat{i} - 2\hat{j} + \hat{k}$ makes with the plane contained by the two vectors 36. $2\hat{i} + 3\hat{j} - \hat{k}$ and $\hat{i} - \hat{j} + 2\hat{k}$ is given by: (2) $\sin_{-1}\left(\frac{1}{\sqrt{2}}\right)$ (3) $\tan_{-1}\left(\sqrt{2}\right)$ (4) $\cot_{-1}\left(\sqrt{2}\right)$ Equation of the plane passing through A(x₁, y₁, z₁) and containing the line $\frac{x - x_2}{d_1} = \frac{y - y_2}{d_2} = \frac{z - z_2}{d_3}$ 37. $x - x_2$ $y - y_2$ $z - z_2$ $x_1 - x_2 \quad y_1 - y_2 \quad z_1 - z_2$ $x_1 - x_2$ $y_1 - y_2$ $z_1 - z_2$ (2) $\begin{vmatrix} d_1 & d_2 & d_3 \end{vmatrix} = 0$ (1) $\begin{vmatrix} d_1 & d_2 & d_3 \end{vmatrix} = 0$ $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \end{vmatrix}$ $\begin{vmatrix} \mathbf{x} - \mathbf{x}_1 & \mathbf{y} - \mathbf{y}_1 & \mathbf{z} - \mathbf{z}_1 \end{vmatrix}$ (4) $\begin{vmatrix} y_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$ $\mathbf{x}_1 \mathbf{y}_1 \mathbf{z}_1$ X_2 (3) The equation of the plane containing parallel lines $(x - 4) = \frac{3 - y}{4} = \frac{z - 2}{5}$ and $(x - 3) = \lambda (y + 2) = \mu z$ is 38. (1) 11x + y - 3z = 35(2) 11x - y - 3z = 35(3) 11x - y - 3z = 40(4) 11x + y + 3z = 35The equations of the plane through the origin which is parallel to the line $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z+1}{-2}$ and distant 39. 5 ³ from it is (1) 2x + 2y + z = 0 (2) x + 2y + 2z = 0 (3) 2x - 2y + z = 0 (4) x - 2y - 2z = 0 $\frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2}$ and 3x - 2y + z + 5 = 0 = 2x + 3y + 4z - k are coplanar, then k is -40. The lines (1) 1(3) 3 (4) 4

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : ASSERTION/REASONING

DIRECTIONS :

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.

A-1. Statement-1 : If I is incentre of \triangle ABC then $\begin{vmatrix} 1 \\ BC \end{vmatrix} \begin{vmatrix} 1 \\ IA + \end{vmatrix} \begin{vmatrix} 2 \\ CA \end{vmatrix} \begin{vmatrix} 1 \\ BC \end{vmatrix} \begin{vmatrix} 1 \\ IB + \end{vmatrix} \begin{vmatrix} 2 \\ AB \end{vmatrix} \begin{vmatrix} 1 \\ CA \end{vmatrix} \begin{vmatrix} 1 \\ BC \end{vmatrix} \begin{vmatrix} 1 \\ IB + \end{vmatrix} \begin{vmatrix} 2 \\ AB \end{vmatrix} \begin{vmatrix} 1 \\ CA \end{vmatrix} \begin{vmatrix} 1 \\ BC \end{vmatrix} \begin{vmatrix} 1 \\ BC \end{vmatrix}$

Statement-2 : In a triangle, if position vector of vertices are , then position vector of incentre is 3

A-2. Statement 1 : If α , β , γ are the angles which a half ray makes with the positive directions of the axes, then $sin_2\alpha + sin_2\beta + sin_2\gamma = 2$.

Statement 2 : If ℓ ,m,n are the direction cosines of a line then $\ell_2 + m_2 + n_2 = 1$.

- A-3. Statement 1 : The locus represented by xy + yz = 0 is a pair of perpendicular planes. Statement 2 : If $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ are perpendicular then $a_1a_2 + b_1b_2 + c_1c_2 = 1$.
- A-4. Statement 1 : Let $\overset{a,b,c}{a,b,c}$ be unit vectors such that $\overset{a}{a} + 5\overset{b}{b} + 3\overset{a}{c} = 0$, then $\overset{a}{a} \cdot (\overset{a}{b} \times \overset{a}{c}) = \overset{b}{b} \cdot (\overset{a}{a} + \overset{a}{c})$. Statement 2 : Scalar triple product of three coplanar vectors is 0.
- A-5. Statement 1 : The shortest distance between the skew lines $\frac{x+3}{-4} = \frac{y-6}{3} = \frac{z}{2}$ and $\frac{x+2}{-4} = \frac{y}{1} = \frac{z-7}{1}$ is 9 Statement 2 : Two lines are skew lines if there exists no plane passing through them.

Section (B) : MATCH THE COLUMN

B-1. Match the following set of lines to the corresponding type :

Column-I Column-II (A) $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{-2}$ & (p) parallel but not coincident (B) $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ $\frac{x-5}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ & (q) intersecting (C) $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{-2}$ $\frac{x-3}{-1} = \frac{y-4}{-1} = \frac{z-1}{1}$ & (r) skew lines (D) $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{3}$ $\frac{x}{2} = \frac{y+1}{3} = \frac{z}{1}$ & (s) Coincident

B-2. Column-I

Column-II

 $\overset{\boxtimes}{a} + \overset{\boxtimes}{b} + \overset{\boxtimes}{c}$

	(A)	Volume of parallelopiped determined by vectors	(p)	100	
		a, b and c is 2. Then the volume of the parallelepiped			
		determined by vectors $2(\ddot{a} \times \ddot{b}), 3(\ddot{b} \times \ddot{c})$ and $(\ddot{c} \times \ddot{a})$ is			
	(B)	Volume of parallelepiped determined by vectors ^{a,b}	(q)	30	
		and $\overset{\omega}{c}$ is 5. Then the volume of the parallelepiped			
		determined by vectors $3(\ddot{a} + \ddot{b}), (\ddot{b} + \ddot{c})$ and $2(\ddot{c} + \ddot{a})$ is			
	(C)	Area of a triangle with adjacent sides determined by	(r)	24	
		vectors $\overset{a}{a}$ and $\overset{b}{b}$ is 20.Then the area of the triangle			
		with adjacent sides determined by vectors $\begin{pmatrix} 2a \\ a \\ b \end{pmatrix}$			
		and $(\ddot{a} - \ddot{b})$ is			
	(D)	Area of a paralelogram with adjacent sides determined by	(s)	60	
		vectors \ddot{a} and b is 30. Then the area of the parallelogram			
		with adjacent sides determined by vectors $(\ddot{a}+b)$ and \ddot{a} is			
8-3.		Column – I		Colur	nn – II
	(A)	Let $\vec{a} & \vec{b}$ be two non-zero perpendicular vectors. If a vector \vec{x} satisfying the equation $\vec{x} \times \vec{b} = \vec{a}$ is $\vec{x} = \beta \vec{a} - \frac{1}{ \vec{b} ^2} \cdot \vec{a} \times \vec{b}$ then β can be		(p)	2
	(B)	If $\overset{\boxtimes}{x}$ satisfying the conditions $\overset{\boxtimes}{b} \cdot \overset{\boxtimes}{x} = \beta$ & $\overset{\boxtimes}{b} \times \overset{\boxtimes}{x} = \overset{\boxtimes}{a}$			
	(D)	is $ \begin{array}{c} x = \frac{\left(\beta^2 - 12\right)b}{ b ^2} + \frac{a \times b}{ b ^2} \\ \frac{\beta}{ b ^2} \\$			
		is $\frac{\alpha}{ b ^2} + \frac{\alpha}{ b ^2} + \frac{\beta}{ b ^2}$ then $\frac{\beta}{2}$ can be		(~)	0
		is then 2 can be		(q)	0
	(C)	The points (0, –1, –1), (4, 5, 1), (3, 9, 4) and (–4, 4, k) are coplanar, then k =		(r)	8
	(D)	In ΔABC the mid points of the sides AB, BC and CA are		(s)	4
		respectively (ℓ , 0, 0) (0, m ,0) and (0, 0, n).			
		$AB^2 + BC^2 + CA^2$			
		Then $\ell^2 + m^2 + n^2$ is equal to			
		der the lines L ₁ : $\frac{x-1}{2} = \frac{y}{-1} = \frac{z+3}{1}$, L ₂ : $\frac{x-4}{1} = \frac{y+3}{1} = \frac{z+3}{2}$ and			
8-4.		Her the lines L_1 : 2 -1 1 , L_2 : 1 1 2 and + 5y - 6z = 4. Let ax + by + cz = d the equation of the plane passing			

Consider the lines L_1 : 2 -1 1, L_2 : 1 1 2 and the planes P_1 : 7x + y + 2z = 3, P_2 : 3x + 5y - 6z = 4. Let ax + by + cz = d the equation of the plane passing through the point of intersection of lines L_1 and L_2 , and perpendicular to planes P_1 and P_2 .

	Column-I		Column-II
(A)	а	(p)	13
(B)	b	(q)	-3
(C)	С	(r)	1
(D)	d	(s)	-2

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT

C-1. In $\triangle OBC$, O is origin and position vector of B and C are $\hat{i} + \hat{j}$ and $\hat{i} - \hat{j}$ respectively D and E divides OC and BC in 2 : 1 and 1 : 2 respectively. Also, OE and BD intersect at P, then (1) P divides BD in 3 : 4 (3) P divides OE in 1 : 6 (4) P divides OE in 6 : 1

C-2 A vector \vec{r} is inclined at equal angles to OX, OY and OZ. If the magnitude of \vec{r} is 6 units, then \vec{r} is equal to

(1)
$$\sqrt{3} (\hat{i} + \hat{j} + \hat{k})$$
 (2) $-\sqrt{3} (\hat{i} + \hat{j} + \hat{k})$ (3) $2\sqrt{3} (\hat{i} + \hat{j} + \hat{k})$ (4) $-2\sqrt{3} (\hat{i} + \hat{j} + \hat{k})$

C-3. The direction cosines of the lines bisecting the angle between the lines whose direction cosines are ℓ_1 , m_1 , n_1 and ℓ_2 , m_2 , n_2 and the angle between these lines is θ , are

$ \begin{array}{c} \frac{\ell_{1}+\ell_{2}}{\cos\frac{\theta}{2}}, \frac{m_{1}+m_{2}}{\cos\frac{\theta}{2}}, \frac{n_{1}+n_{2}}{\cos\frac{\theta}{2}} \\ (1) \\ \frac{\ell_{1}+\ell_{2}}{\sin\frac{\theta}{2}}, \frac{m_{1}+m_{2}}{\sin\frac{\theta}{2}}, \frac{n_{1}+n_{2}}{\sin\frac{\theta}{2}} \\ (3) \\ \frac{\ell_{1}+\ell_{2}}{\sin\frac{\theta}{2}}, \frac{m_{1}+m_{2}}{\sin\frac{\theta}{2}}, \frac{n_{1}+n_{2}}{\sin\frac{\theta}{2}} \\ (4) \\ \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{m_{1}-m_{2}}{2\sin\frac{\theta}{2}}, \frac{n_{1}-n_{2}}{2\sin\frac{\theta}{2}} \\ \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}} \\ \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}} \\ \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}} \\ \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}} \\ \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}} \\ \frac{\ell_{1}-\ell_{2}}{2\sin\frac{\theta}{2}}, \ell_{2$	(1) $\frac{\ell_1 + \ell_2}{\cos\frac{\theta}{2}}, \frac{m_1 + m_2}{\cos\frac{\theta}{2}},$	$\frac{n_1 + n_2}{\cos\frac{\theta}{2}}$	(2) $\frac{\ell_1 + \ell_2}{2\cos\frac{\theta}{2}}, \frac{m_1 + m_2}{2\cos\frac{\theta}{2}},$	$\frac{n_1 + n_2}{2\cos\frac{\theta}{2}}$
(1) $\overset{\text{a}}{a} \overset{\text{b}}{b} = \frac{\pi}{6}$ (2) $\overset{\text{b}}{b} \overset{\text{c}}{c} = \frac{\pi}{3}$ (3) $\overset{\text{a}}{a} \overset{\text{b}}{b} = 0$ (4) $\overset{\text{b}}{b} \overset{\text{c}}{c} = 0.$ A line <i>l</i> passing through the origin is perpendicular to the lines $l_1 : (3 + t) \overset{\text{i}}{i} + (-1 + 2t) \overset{\text{j}}{+} (4 + 2t) \overset{\text{k}}{,} - \infty < t < \infty$ $l_2 : (3 + 2s) \overset{\text{i}}{i} + (3 + 2s) \overset{\text{j}}{+} (2 + s) \overset{\text{k}}{,} - \infty < s < \infty$ Then, the coordinate(s) of the point(s) on l_2 at a distance of $\sqrt{17}$ from the point of intersection of l_3 is(are) (7 7 8)	(3) $\frac{\ell_1 + \ell_2}{\sin\frac{\theta}{2}}, \frac{m_1 + m_2}{\sin\frac{\theta}{2}},$	$\frac{n_1 + n_2}{\sin\frac{\theta}{2}}$	(4) $\frac{\ell_1 - \ell_2}{2\sin\frac{\theta}{2}}, \frac{m_1 - m_2}{2\sin\frac{\theta}{2}}$	$\int_{1}^{\frac{n_1-n_2}{2\sin\frac{\theta}{2}}}$
A line <i>l</i> passing through the origin is perpendicular to the lines $l_1 : (3 + t) \stackrel{\hat{i}}{i} + (-1 + 2t) \stackrel{\hat{j}}{j} + (4 + 2t) \stackrel{\hat{k}}{k}, -\infty < t < \infty$ $l_2 : (3 + 2s) \stackrel{\hat{i}}{i} + (3 + 2s) \stackrel{\hat{j}}{j} + (2 + s) \stackrel{\hat{k}}{k}, -\infty < s < \infty$ Then, the coordinate(s) of the point(s) on l_2 at a distance of $\sqrt{17}$ from the point of intersection of l_3 is(are) (7 7 8)	If $\begin{pmatrix} \mathbb{A} \cdot \mathbb{B} - \frac{\sqrt{3}}{2} \end{pmatrix} = \frac{\mathbb{A}}{2}$	_ (b · c) a and a, b, c ar	e unit vector $\overset{{}_{\!$	re non-collinear then
$l_{1}: (3 + t)^{\hat{j}} + (-1 + 2t)^{\hat{j}} + (4 + 2t)^{\hat{k}}, -\infty < t < \infty$ $l_{2}: (3 + 2s)^{\hat{i}} + (3 + 2s)^{\hat{j}} + (2 + s)^{\hat{k}}, -\infty < s < \infty$ Then, the coordinate(s) of the point(s) on l_{2} at a distance of $\sqrt{17}$ from the point of intersection of l_{3} is (are) $(7 7 5)$ $(7 7 8)$	$(1) \overset{\boxtimes}{a} \overset{\frown}{b} = \frac{\pi}{6}$	(2) $\overset{\boxtimes}{\mathbf{b}} \overset{\wedge}{\mathbf{c}} = \frac{\pi}{3}$	$(3) \overset{\boxtimes}{a \cdot b} = 0$	$(4) \stackrel{\boxtimes}{\mathbf{b} \cdot \stackrel{\boxtimes}{\mathbf{c}}} = 0.$
$l_{2}: (3+2s)^{\hat{i}} + (3+2s)^{\hat{j}} + (2+s)^{\hat{k}}, -\infty < s < \infty$ Then, the coordinate(s) of the point(s) on l_{2} at a distance of $\sqrt{17}$ from the point of intersection of l_{3} is(are) $\begin{pmatrix} 7 & 7 & 5 \end{pmatrix}$ $\begin{pmatrix} 7 & 7 & 8 \end{pmatrix}$	A line <i>l</i> passing throug	h the origin is perpendicu	lar to the lines	
Then, the coordinate(s) of the point(s) on l_2 at a distance of $\sqrt{17}$ from the point of intersection of l_3 is(are) (7 7 5) (7 7 8)	$l_1: (3 + t) \hat{i} + (-1 + 2t)$	$\hat{j} + (4 + 2t) \hat{k} , -\infty < t < 0$	∞	
is(are) (775) (778)	$l_2: (3+2s)^{\hat{i}} + (3+2s)^{\hat{i}}$	s) $\hat{j} + (2 + s) \hat{k} , -\infty < s < 0$	< ∞	
(1) $\left(\frac{7}{3}, \frac{7}{3}, \frac{5}{3}\right)$ (2) (-1, ,-1, 0) (3) (1, 1, 1) (4) $\left(\frac{7}{9}, \frac{7}{9}, \frac{8}{9}\right)$) of the point(s) on <i>l</i> ₂at a	distance of $\sqrt{17}$ from the first distance of $\sqrt{17}$	ne point of intersection of la
		(2) (-1, ,-1, 0)	(3) (1, 1, 1)	$(4)^{\left(\frac{7}{9},\frac{7}{9},\frac{8}{9}\right)}$

and l1

C-6 If $\stackrel{\mathbb{D}}{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}_{and} \stackrel{\mathbb{D}}{\mathbf{b}} = \hat{\mathbf{i}} - \hat{\mathbf{j}}_{, then the vectors} (\stackrel{\mathbb{D}}{\mathbf{a}} \cdot \hat{\mathbf{i}}) \hat{\mathbf{i}} + (\stackrel{\mathbb{D}}{\mathbf{a}} \cdot \hat{\mathbf{k}}) \hat{\mathbf{k}}_{, (\stackrel{\mathbb{D}}{\mathbf{b}} \cdot \hat{\mathbf{i}}) \hat{\mathbf{i}} + (\stackrel{\mathbb{D}}{\mathbf{b}} \cdot \hat{\mathbf{j}}) \hat{\mathbf{j}} + (\stackrel{\mathbb{D}}{\mathbf{b}} \cdot \hat{\mathbf{k}}) \hat{\mathbf{k}}_{and} \hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$

- (1) are mutually perpendicular
 (2) are coplanar
 (3) form a parallelopiped of volume 6 units
 (4) form a parallelopiped of volume 3 units
- **C-7.** The volume of the tetrahedron whose vertices are the points 0(0, 0, 0), A(1, 1, 1), B(λ , 0, 1) and C(0, 1, λ) is $\frac{5}{6}$ cubic units, if the value of λ is (1) -3 (2) 3 (3) -2 (4) 2

C-4.

C-5.

MATHEMATICS

- The vector(s) which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to the vector C-8. $\hat{i} + \hat{j} + \hat{k}$ is/are (1) $\hat{j} - \hat{k}$ (2) $-\hat{i} + \hat{j}$ (3) ^î – ĵ (4) $-\hat{j} + \hat{k}$ If $\overset{\boxtimes}{\mathbf{x}} \times \overset{\boxtimes}{\mathbf{b}} = \overset{\boxtimes}{\mathbf{c}} \times \overset{\boxtimes}{\mathbf{b}}$ and $\overset{\boxtimes}{\mathbf{x}} \perp \overset{\boxtimes}{\mathbf{a}}$ then $\overset{\boxtimes}{\mathbf{x}}$ is equal to C-9. $(1) \frac{\overset{}{\overset{}_{\scriptstyle D}}\times(\overset{}{\overset{}_{\scriptstyle D}}\times\overset{}{\overset{}_{\scriptstyle D}})}{\overset{}_{\scriptstyle a}\cdot\overset{}{\overset{}_{\scriptstyle D}}} (2) \frac{(\overset{}{\overset{}_{\scriptstyle D}}\times\overset{}{\overset{}_{\scriptstyle D}})\times\overset{}{\overset{}_{\scriptstyle a}}}{\overset{}_{\scriptstyle b}} (3) \frac{\overset{}{\overset{}_{\scriptstyle a}}\times(\overset{}{\overset{}_{\scriptstyle D}}\times\overset{}{\overset{}_{\scriptstyle D}})}{\overset{}_{\scriptstyle a}\cdot\overset{}{\overset{}_{\scriptstyle D}}} (4) \frac{\overset{}{\overset{}_{\scriptstyle D}}\times\overset{}{\overset{}_{\scriptstyle D}}(\overset{}{\overset{}_{\scriptstyle a}}\times\overset{}{\overset{}_{\scriptstyle D}})}{\overset{}_{\scriptstyle b}\cdot\overset{}{\overset{}_{\scriptstyle C}}}$ Let $\overset{a}{A}$ be vector parallel to line of intersection of planes P₁ and P₂ through origin, P₁ is parallel to the C-10. vectors $2^{\hat{j}} + 3^{\hat{k}}$ and $4^{\hat{j}} - 3^{\hat{k}}$ and P_2 is parallel to $\hat{j} - \hat{k}$ and $3^{\hat{i}} + 3^{\hat{j}}$, then the angle between vector $\tilde{A}_{and} 2\hat{i}_{+}^{j} - 2\hat{k}_{is}$ (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{6}$ (4) $\frac{3\pi}{4}$ $(1) \overline{2}$ The projection of line 3x - y + 2z - 1 = 0 = x + 2y - z - 2 on the plane 3x + 2y + z = 0 is C-11. (1) $\frac{x+1}{11} = \frac{y-1}{-9} = \frac{z-1}{-15}$ (2) 3x - 8y + 7z + 4 = 0 = 3x + 2y + z(3) $\frac{x+12}{11} = \frac{y+8}{-9} = \frac{z+14}{15}$ $\frac{x+12}{11} = \frac{y+8}{-9} = \frac{z+14}{-15}$ If the straight lines $\frac{x-1}{2} = \frac{y+1}{k} = \frac{z}{2}$ and $\frac{x+1}{5} = \frac{y+1}{2} = \frac{z}{k}$ are coplanar, then the plane(s) containing these C-12. two lines is(are) (2) y + z = -1 (3) y - z = -1(4) y - 2z = -1(1) y + 2z = -1Two lines $L_1: x = 5$, $\frac{y}{3-\alpha} = \frac{z}{-2}$ and $L_2: x = \alpha$, $\frac{y}{-1} = \frac{z}{2-\alpha}$ are coplanar. Then α can take value(s) C-13. (1) 1(2) 2(3) 3(4) 4If p and q be the perpendicular distances of the plane containing the line $\vec{r} = \hat{i} + \hat{j} + \lambda(-\hat{i} + \hat{j} - 2\hat{k})$ and C-14. $\hat{\vec{r}} = \hat{i} + \hat{j} + \mu(\hat{i} + 2\hat{j} - \hat{k})_{from origin and (1, 1, 1) respectively, then$ (2) $|p+q| = \frac{1}{3}$ (1) arg (p + iq) = $\frac{1}{2}$ (3) (p, q) lies on $3x_2 + 3y_2 = 1$ (4) $\arg(q - ip) = 0$ Consider a pyramid OPQRS located in the first octant ($x \ge 0$, $y \ge 0$, $z \ge 0$) with O as origin, and OP and C-15. OR along the x-axis and the y-axis, respectively. The base OPQR of the pyramid is a square with
 - OP = 3. The point S is directly above the mid point T of diagonal OQ such that TS = 3. Then

(1) the acute angle between OQ and OS is
$$\frac{\pi}{3}$$

(2) the equation of the plane containing the triangle OQS is $x - y = 0$
(3) the length of the perpendicular from P to the plane containing the triangle OQS is $\frac{3}{\sqrt{2}}$
(4) the perpendicular distance from O to the straight line containing RS is $\sqrt{\frac{15}{2}}$
EXERCISE-3
PART -1: JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)
1. If $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$, where, $\vec{a} = \vec{b}$ and \vec{c} are any three vectors such that
 $\vec{b} \neq 0, \vec{b}, \vec{c} \neq 0$, then \vec{a} and \vec{c} are-
(AIEEE 2006 (3, -1), 120]
(1) inclined at an angle of $\vec{6}$ between them
(2) perpendicular
(3) parallel
(4) inclined at an angle of \vec{a} between them
(2) perpendicular
(3) parallel
(4) inclined at an angle of \vec{a} between them
(3) parallel
(4) inclined at an angle of \vec{A} between them
(5) perpendicular
(6) perpendicular from A
onto BC. The magnitude of the resultant of the forces acting along \vec{AB} , \vec{AC} with magnitudes
 $\frac{1}{AB}$ and $\frac{1}{AC}$ respectively is the force along \vec{AD} , where D is the foot of the perpendicular from A
onto BC. The magnitude of the resultant is:
(AIEEE 2006 (3, -1), 120]
(1) $\vec{AB} + \vec{AC}$ (2) $\frac{1}{AB} + \frac{1}{AC}$ (3) $\frac{1}{AD}$ (4) $(\vec{AB}^2 + \vec{AC})^2$
3. The value of a, for which the points A, B, C with position vectors $2\hat{i} = \hat{j} + \hat{k}, \hat{i} = 3\hat{j} - 5\hat{k}$ and
 $a\hat{i} - 3\hat{j} + \hat{k}$ respectively are the vertices of a right angled triangle with $C = \frac{\pi}{2}$ are-
(AIEEE 2006 (3, -1), 120]
(1) -2 and -1 (2) -2 and 1 (3) 2 and -1 (4) 2 and 1
4. The two lines $x = ay + b, z = cy + d$ and $x = a' y + b', z = c'y + d'$ are perpendicular to each other, if-
(AIEEE 2006 (3, -1), 120]
(1) $aa' + cc' = 1$ (2) $\frac{a}{a'}, \frac{c}{c'} = -1$ (3) $\frac{a}{a'}, \frac{c'}{c'} = 1$ (4) $aa' + cc' = -1$
5. The image of the point ($-1, 3, 4$) in the plane $x - 2y = 0$ is: [AIEEE 2006 (3, -1), 120]
(1) (15, 11, 4) (2) $(-\frac{17}{5}, -\frac{19}{5}, 1)$ (3) (8, 4, 4) (4) $(\frac{6}{5}, -\frac{13}{5}, 4)$

6. If \hat{u} and \hat{v} are unit vectors and θ is the acute angle between them, then 2 $\hat{u} \times 3 \hat{v}$ is a unit vector for-[AIEEE 2007 (3, -1), 120]

	 exactly two values no value of θ 	s of θ	(2) more than two va (4) exactly c	alues of θ one value of θ
7.	Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, \vec{b}	$\vec{b} = \hat{i}_{-}\hat{j} + 2\hat{k}$ and $\vec{c} = 3$	$\hat{k}^{\hat{i}}$ + (x – 2) $\hat{j}_{-}\hat{k}$. If the	vector $\stackrel{\rightarrow}{c}$ lies in the plane of $\stackrel{\rightarrow}{a}$ and
	$\overrightarrow{\mathbf{b}}$, then x equals (1) 0	(2) 1	[A II (3) – 4	EEE 2007 (3, -1), 120] (4) - 2
8.	with the positive x-ax		2x + 3y + z = 1 and x + 3	y + 2z = 2. If L makes an angle α [AIEEE 2007 (3, -1), 120]
	(1) 1/ √3	(2) 1/2	(3) 1	(4) 1/ $\sqrt{2}$
9.	If a line makes an an the line makes with the	gle of $\frac{\pi}{4}$ with the positi ne positive direction of the	ve directions of each of ne z-axis is-	x-axis & y-axis then the angle that [AIEEE 2007 (3, -1), 120]
	(1) $\frac{\pi}{6}$	(2) $\frac{\pi}{3}$	(3) $\frac{\pi}{4}$	(4) $\frac{\pi}{2}$
10.	of the other end of the	e diameter are-		- 2z + 20 = 0, then the coordinates EE 2007 (3, -1), 120] (4) (4, 3, -3)
11.	The vector $\stackrel{\rightarrow}{a} = \alpha^{\hat{i}} +$	$2^{\hat{j}} + \beta^{\hat{k}}$ lies in the pla	ne of the vectors $\vec{b} = \hat{i}$	\hat{j}_{i} and $\vec{c}_{i} = \hat{j}_{i} \hat{k}$ and bisects the
	angle between $\stackrel{\overrightarrow{b}}{b}$ and	$\stackrel{ ightarrow}{C}$. Then, which one of	the following gives pos	sible values of α and β ? [AIEEE 2008 (3, –1), 105]
	(1) $\alpha = 2, \beta = 2$	(2) $\alpha = 1, \beta = 2$	(3) $\alpha = 2, \beta = 1$	(4) $\alpha = 1, \beta = 1$
12.	The non-zero vectors	\vec{a}, \vec{b} and \vec{c} are relate	d by $\overrightarrow{a} = 8 \overrightarrow{b}$ and $\overrightarrow{c} = -$	- 7 $\stackrel{ m \vec{b}}{ m b}$. Then, the angle between $\stackrel{ m \vec{a}}{ m a}$
	and ^C is-			[AIEEE 2008 (3, –1), 105]
	(1) 0	(2) $\frac{\pi}{4}$	(3) $\frac{\pi}{2}$	(4) π
13.	The line passing thro Then,		and (3, b, 1) crosses the [AIEEE 200 (3) a = 6, b = 4	8 (3, –1), 105]
	(1) $a = 2, b = 8$	(2) a = 4, b = 6	(3) a = 6, b = 4	(4) $a = 8, b = 2$
14.	x If the straight lines k is equal to	$\frac{-1}{k} = \frac{y-2}{2} = \frac{z-3}{3}$ and		ntersect at a point, then the integer EEE 2008 (3, –1), 10
	(1) – 5	(2) 5	(3) 2	(4) – 2
15.	If $\stackrel{\rightarrow}{u}, \stackrel{\rightarrow}{v}, \stackrel{\rightarrow}{w}$ are r $\stackrel{\rightarrow}{3} \stackrel{\rightarrow}{v} \stackrel{\rightarrow}{p} \stackrel{\rightarrow}{v} \stackrel{\rightarrow}{p} \stackrel{\rightarrow}{v} \stackrel{\rightarrow}{l} \stackrel{\rightarrow}{v}$	non-coplanar vectors $q \stackrel{\rightarrow}{w} \stackrel{\rightarrow}{u}] - [2 \stackrel{\rightarrow}{w} q \stackrel{\rightarrow}{v} q$	\rightarrow	I numbers, then the equality [AIEEE 2009 (4, –1), 144]

_				
	(1) exactly two values (3) all values of (p, q)		(2) more than two by (4) exactly one value	ut not all values of (p, q) e of (p, q)
	x – 2 v	1 - 1 - 2		
16.	Let the line $\frac{x-2}{3} =$	$\frac{1}{-5} = \frac{2+2}{2}$ lies in the p	lane x + 3y – αz + β = 0	. Then (α, β) equals [AIEEE 2009 (4, –1), 144]
	(1) (6, – 17)	(2) (- 6, 7)	(3) (5, – 15)	(4) (– 5, 15)
17.	The projections of a volution of the vector are.	vector on the three coord	dinate axes are 6, −3, 2	respectively. The direction cosine: [AIEEE 2009 (4, -1), 144]
	(1) 6, –3, 2	(2) $\frac{6}{5}, -\frac{3}{5}, \frac{2}{5}$	(3) $\frac{6}{7}, -\frac{3}{7}, \frac{2}{7}$	$(4) - \frac{6}{7}, -\frac{3}{7}, \frac{2}{7}$
18.	Statement -2: The	plane $x - y + z = 5$ bise	cts the line segment join	B(1, 3, 4) in the plane x – y + z = 5 ing A(3, 1,6) and B(1, 3, 4). [AIEEE 2009 (4, –1),144]
	(2) Statement-1 is true(3) Statement -1 is f	ue, Statement-2 is false. alse, Statement -2 is tru	е.	rect explanation for Statement -1.
19.	Let $\hat{a} = \hat{j} - \hat{k}_{and} \hat{c} =$	$\hat{i} - \hat{j} - \hat{k}$. Then the vector	or $\overset{\bowtie}{b}$ satisfying $\overset{\bowtie}{a} \times \overset{\bowtie}{b} + \overset{\bowtie}{c}$	$= \overset{\omega}{0}_{and} \overset{\omega}{a} \overset{b}{b} = 3_{is}$ [AIEEE 2010 (4, –1), 144]
	(1) $2\hat{i} - \hat{j} + 2\hat{k}$	(2) $\hat{i} - \hat{j} - 2\hat{k}$	$(3) \hat{i} + \hat{j} - 2\hat{k}$	
20.	If the vectors $a^{a} = \hat{i} - \hat{j}$	$\dot{b} + 2\hat{k}, \dot{b} = 2\hat{i} + 4\hat{j} + \hat{k}$ an	d $\overset{\mathbb{Z}}{c} = \lambda \hat{i} + \hat{j} + \mu \hat{k}$ are mut	tually orthogonal, then $(\lambda, \mu) =$
	(1) (2, -3)	(2) (-2, 3)	(3) (3, -2)	[AIEEE 2010 (4, −1), 144] (4) (−3, 2)
21.		•	angles 45° and 120° with gle θ with the positive z-a	-
	(1) 45°	(2) 60°	(3) 75°	[AIEEE 2010 (4, −1), 144] (4) 30°
22.	$\int_{a}^{\mathbb{N}} = \frac{1}{\sqrt{10}} (3\hat{i} + \hat{k})_{ar}$	$b = \frac{1}{7}(2\hat{i} + 3\hat{j} - 6\hat{k}), \text{ th}$	hen the value of $(2a - b)$	$[(\overset{\mathbb{W}}{a}\times\overset{\mathbb{W}}{b})\times(\overset{\mathbb{W}}{a}+2\overset{\mathbb{W}}{b})]_{is}$ [AIEEE 2011, I, (4, –1), 120]
	(1) – 5	(2) –3	(3) 5	(4) 3
23.	The vectors ^a and ^b	are not perpendicular	and $\overset{\scriptscriptstyle{\scriptscriptstyle M}}{c}$ and $\overset{\scriptscriptstyle{\scriptscriptstyle M}}{d}$ are two ve	ctors satisfying : $\overset{\Box}{b} \times \overset{\Box}{c} = \overset{\Box}{b} \times \overset{\Box}{d}$ and
	a.d = 0. Then the ve $b - \left(\begin{array}{c} b & c \\ b & c \\ a.d \end{array} \right) c$	ctor ^d is equal to : $ \overset{\boxtimes}{c} + \begin{pmatrix} \overset{\boxtimes}{a} \overset{\boxtimes}{c} \\ \overset{\boxtimes}{a} \overset{\boxtimes}{b} \\ a . b \end{pmatrix}^{\boxtimes} b $ (2)	$(3) \overset{\mathbb{X}}{b} + \begin{pmatrix} \overset{\mathbb{W}}{b} & \overset{\mathbb{W}}{c} \\ \overset{\mathbb{W}}{a} & \overset{\mathbb{W}}{a} \\ a & b \end{pmatrix} \overset{\mathbb{X}}{c}$	[AIEEE 2011, I, (4, -1), 120] $ \overset{\mathbb{N}}{c} - \begin{pmatrix} \overset{\mathbb{M}}{a} & \overset{\mathbb{N}}{c} \\ \overset{\mathbb{M}}{a} & \overset{\mathbb{N}}{b} \\ a & b \end{pmatrix} \overset{\mathbb{N}}{b} $ (4)

24.	If the vector p $\hat{i} + \hat{j}_+$ (p+q+r) is- (1) 2	$\hat{k}_{,}\hat{i}_{+q}\hat{j}_{+}\hat{k}_{and}\hat{i}_{+}\hat{j}_{+}$ (2) 0	r k̂ (p ≠ q ≠ r ≠ 1) are c (3) –1	coplanar, then the value of pqr – [AIEEE 2011, II, (4, –1), 120] (4) –2
25.	and $\overset{a}{b}$ + 2 $\overset{a}{c}$ is collinea	non-zero vectors which an r with \ddot{a} , then $\ddot{a} + 3\ddot{b} + 6$ (2) \ddot{c}	re pairwise non-collinear. 6 ^C is : [AIEE (3) 0	If $\overset{a}{a} + 3\overset{b}{b}$ is collinear with E 2011, II, (4, -1), 120] (4) $\overset{a}{a} + \overset{a}{c}$
26.	If the angle between th equals:	the line $x = \frac{y-1}{2} = \frac{z-3}{\lambda}$		$x = 4 \text{ is } \cos_{-1} \left(\sqrt{\frac{5}{14}} \right)$, then λ EE 2011, I, (4, -1), 120]
27.		(2) $\frac{3}{2}$ (2) $\frac{3}{2}$ (1, 0, 7) is the mirror	$(3) \frac{2}{5}$ image of the point B(1, 6)	$(4) \frac{5}{3}$ (4) in the line :
	(1) Statement-1 is true	a, Statement-2 is true; Sta , Statement-2 is true; Sta , Statement-2 is false.	atement-2 is a correct ex	aing A(1, 0, 7) and B(1, 6, 3). [AIEEE 2011, I, (4, –1), 120] planation for Statement-1. at explanation for Statement-1.
28.	The distance of the point is : (1) 10 $\sqrt{3}$	int (1, –5, 9) from the pla (2) 5 $\sqrt{3}$	ne x – y + z = 5 measure (3) 3 $\sqrt{10}$	ed along a straight line x = y = z [AIEEE 2011, II, (4, −1), 120] (4) 3 √5
29.	The length of the perp $(1) \sqrt{29}$	endicular drawn from the (2) $\sqrt{33}$	point (3, –1, 11) to the li (3) $\sqrt{53}$	$ne^{\frac{x}{2}} = \frac{y-2}{3} = \frac{z-3}{4} is:$ [AIEEE 2011, II, (4, -1), 120] (4) $\sqrt{66}$
30.	An equation of a plane (1) $x - 2y + 2z - 3 = 0$ (3) $x - 2y + 2z - 1 = 0$	e parallel to the plane x –	2y + 2z - 5 = 0 and at a (2) $x - 2y + 2z + 1 = 0$ (4) $x - 2y + 2z + 5 = 0$	unit distance from the origin is : [AIEEE 2012, (4, –1), 120]
31.	If the line $\frac{x-1}{2} = \frac{y+1}{3}$	$=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-2}{2}$		s equal to : [AIEEE 2012, (4, –1), 120]
32.	(1) – 1 Let \hat{a} and \hat{b} be two nother, then the angle b		(3) $\frac{9}{2}$ $r_{s} \stackrel{\boxtimes}{c} = \hat{a} + 2\hat{b}$ and $\stackrel{\boxtimes}{d} = 5\hat{a}$	(4) 0 ^{I − 4b̂} are perpendicular to each [AIEEE-2012, (4, −1)/120]

	(1) $\frac{\pi}{6}$	(2) $\frac{\pi}{2}$	(3) $\frac{\pi}{3}$	(4) $\frac{\pi}{4}$
33.		elogram such that $AB = q$ e altitude directed from the		an acute angle. If [™] is the vector D, then ^r is given by : [AIEEE-2012, (4, –1)/120]
	(1) $\vec{r} = 3\vec{q} - \frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})}\vec{p}$	$ \overset{\mathbb{N}}{r} = -\mathbf{q} + \begin{pmatrix} \overset{\mathbb{N}}{p} \cdot \overset{\mathbb{N}}{q} \\ \overset{\mathbb{N}}{p} \cdot \overset{\mathbb{N}}{p} \end{pmatrix} \overset{\mathbb{N}}{p} $ (2)	$ \overset{\mathbb{N}}{r} = \overset{\mathbb{N}}{q} - \left(\begin{array}{c} \overset{\mathbb{N}}{p} & \overset{\mathbb{N}}{q} \\ \overset{\mathbb{N}}{p} & \overset{\mathbb{N}}{p} \end{array} \right) \overset{\mathbb{N}}{p} $ (3)	$ \overset{\boxtimes}{r} = -3 \overset{\boxtimes}{q} + \frac{3 (\overset{\boxtimes}{p} \cdot \overset{\boxtimes}{q})}{(\overset{\boxtimes}{p} \cdot \overset{\boxtimes}{p})} \overset{\boxtimes}{p} $ (4)
34.	If the vectors $\overrightarrow{AB} = 3\overrightarrow{a}$ median through A is (1) $\sqrt{18}$	$\hat{i} + 4\hat{k}_{and} \stackrel{\text{MWW}}{\text{AC}} = 5\hat{i} - 2\hat{j} + 4\hat{k}_{and}$ (2) $\sqrt{72}$	$4\hat{k}$ are the sides of a tri (3) $\sqrt{33}$	angle ABC, then the length of the [AIEEE - 2013, (4, − 1) 120] (4) √45
35.	Distance between two	o parallel planes 2x + y + 2	2z = 8 and 4x + 2y + 4z	+ 5 = 0 is [AIEEE - 2013, (4, - 1) 120]
	(1) $\frac{3}{2}$	(2) $\frac{5}{2}$	(3) 7/2	(4) $\frac{9}{2}$
36.	If the lines $\frac{x-2}{1} = \frac{y-3}{1}$	$\frac{-3}{1} = \frac{z-4}{-k} \text{ and } \frac{x-1}{k} = \frac{y}{k}$	$\frac{-4}{2} = \frac{z-5}{1}$ are coplar	nar, then k can have
	(1) any value	(2) exactly one value	(3) exactly two values	[AIEEE - 2013, (4, – 1) 120] s (4) exactly three values
37.	$\int_{a \times b} \begin{bmatrix} a \times b & b \times c & c \times a \end{bmatrix} = 2$ (1) 0	$\lambda \begin{bmatrix} a & b & c \\ c & b & c \end{bmatrix}^2$ then λ is equal (2) 1	to [(3) 2	JEE(Main) 2014, (4, – 1), 120] (4) 3
38.	The image of the line	$\frac{x-1}{3} = \frac{y-3}{1} = \frac{z-4}{-5}$ in the	e plane 2x – y + z + 3 =	= 0 is the line :
	(1) $\frac{x-3}{3} = \frac{y+5}{1} = \frac{z}{-1}$	- <u>2</u> 5	$\frac{x-3}{-3} = \frac{y+5}{-1} = \frac{z}{5}$	EE(Main) 2014, (4, - 1), 120] - <u>2</u> 5
	(3) $\frac{x+3}{3} = \frac{y-5}{1} = \frac{z}{-1}$	5	(4) $\frac{x+3}{-3} = \frac{y-5}{-1} = \frac{z-3}{5}$	5
39.	The angle between th	ne lines whose direction co		ons $l + m + n = 0$ and $l_2 = m_2 + n_2$ EE(Main) 2014, (4, - 1), 120]
	(1) $\frac{\pi}{6}$	(2) $\frac{\pi}{2}$	(3) $\frac{\pi}{3}$	(4) $\frac{\pi}{4}$
40.	The distance of the p plane $x - y + z = 16$, (1) $2\sqrt{14}$	point (1,0,2) from the poin is (2) 8		line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the JEE(Main) 2015, (4, -1), 120] (4) 13

MATHEMATICS

41.	The equation of the pl	ane containing the line 2	2x - 5y + z = 3, x + y	y + 4z = 5 and parallel to the plane
	x + 3y + 6z = 1, is	-		[JEE(Main) 2015, (4, – 1), 120]
	(1) 2x + 6y + 12z = 13		(2) $x + 3y + 6z = -7$	7
	(3) $x + 3y + 6z = 7$		(4) 2x + 6y + 12z =	-13
42.	Let $\overset{\boxtimes}{a, b}$ and $\overset{\boxtimes}{c}$ be $(\overset{\boxtimes}{a} \times \overset{\boxtimes}{b}) \times \overset{\boxtimes}{c} = \frac{1}{3} \overset{\boxtimes}{b} \overset{\boxtimes}{c} \overset{\boxtimes}{a}$	e three non-zero vect If θ is the angle betweer		two of them are collinear and
	0	If θ is the angle between	n vectors b and b, tr	
	<u> </u>			[JEE(Main) 2015, (4, – 1), 120]
	$2\sqrt{2}$	(2) $\frac{-\sqrt{2}}{3}$	2	$-2\sqrt{3}$
	(1) $\frac{2\sqrt{2}}{3}$	(2) 3	(3) $\frac{2}{3}$	(4) $\frac{-2\sqrt{3}}{3}$
	x-3 y+2	2 - z + 4		
43.	If the line, 2^{-} -1	$\frac{2}{3} = \frac{z+4}{3}$ lies in the plane	$e_{1}, 1x + my - z = 9, the$	en l ₂ + m ₂ is equal to
			•	[JEE(Main) 2016, (4, – 1), 120]
	(1) 18	(2) 5	(3) 2	(4) 26
	ab.		$\overset{\mathbb{M}}{a} \times (\overset{\mathbb{M}}{b} \times \overset{\mathbb{M}}{c}) = \frac{\sqrt{3}}{2} (b + b)$	⁽¹⁾ c) $\overset{\omega}{b}$ is not parallel to $\overset{\omega}{c}$, then the
44.	Let ^{a, b} and ^c be thre	ee unit vectors such that	() = 2	. If ^D is not parallel to ^C , then the
	angle between a and		_	[JEE(Main) 2016, (4, – 1), 120]
	$\frac{\pi}{}$	(2) $\frac{2\pi}{3}$	(3) $\frac{5\pi}{6}$	(4) $\frac{3\pi}{4}$
	(1) $\frac{\pi}{2}$	(2) 3	(3) 6	(4) 4
45.	The distance of the po		-	neasured along the line x = y = z is [JEE(Main) 2016, (4, – 1), 120]
		10	20	
	(1) ¹⁰ √3	(2) $\frac{10}{\sqrt{3}}$	(3) ²⁰ / ₃	(4) ³ √10
46.	If the image of the poi	nt P(1, –2, 3) in the plan		2 = 0 measured parallel to the line,
	$\frac{x}{1} = \frac{y}{4} = \frac{z}{5}$ is Q, then			
	1 = 4 = 5 is Q, the	n PQ is equal to :		[JEE(Main) 2017, (4, – 1), 120]
	(1) 3 ^{√5}	(2) 2 √ 42	(3) √42	(4) 6 ^{√5}
47.				the point (1, -1, -1), having normal
		he lines $\frac{x-1}{1} = \frac{x+2}{-2} =$	$\frac{x-4}{x-2} = \frac{y}{x-2}$	$\frac{+1}{z+7} = \frac{z+7}{z+7}$
	perpendicular to both t	he lines $1 = -2 =$	3 _{and} 2 -	-1 −1 , is
				[JEE(Main) 2017, (4, – 1), 120]
		10		10
	(1) $\frac{20}{\sqrt{74}}$	(2) $\frac{10}{\sqrt{83}}$	(3) $\frac{5}{\sqrt{83}}$	(4) $\frac{10}{\sqrt{74}}$
48.	Let $a^{ii} = 2\hat{i} + \hat{j} - 2\hat{k}$ and	$\overset{\square}{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$. Let $\overset{\square}{\mathbf{c}}$ be a ve	ector such that $\Big _{c}^{a} - a$	$ =3, \frac{ (\overset{\boxtimes}{a}\times\overset{\boxtimes}{b})\times\overset{\boxtimes}{c} }{=3}$ and the angle
		be 30º. Then ^{a.c} is equa		
		ue sur men is equa	ai iO	[JEE(Main) 2017, (4, – 1), 120]
	(1) ²⁵ / ₈			(4) $\frac{1}{8}$
	(1)	(2) 2	(3) 5	(4) °

P	ART - II : JEE	(ADVANCED)/III	I-JEE PROBL	EMS (PREVIOUS YEARS)
1.		1	$\mathbf{\hat{c}} = \hat{i} + \hat{j} - \hat{k}$	vector in the plane of $\overset{\boxtimes}{a}$ and $\overset{\boxtimes}{b}$ whose
	projection on $\overset{\boxtimes}{c}$			[IIT-JEE-2006, (3, – 1), 184]
	(A) $4\hat{i} - \hat{j} + 4\hat{k}$	(B) $3\hat{i} + \hat{j} - 3\hat{k}$ (C) $2\hat{i} + \hat{j}$	$-2\hat{k}$ (D) $4\hat{i} + \hat{j} - 4$	ĻŔ
2.	The number of d coplanar, is (A) zero	listinct real values of λ , for (B) one	which the vectors – (C) two	$\lambda^{2}\hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^{2}\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^{2}\hat{k}$ are [IIT- JEE-2007, Paper-I, (3, – 1), 81] (D) three
3.	Let the vectors F	PQ,QR,RS,ST,TU;	and UP represent t	he sides of a regular hexagon.
	STATEMENT-1 because	$: \stackrel{\text{PQ}}{=} PQ \times (RS + ST) \neq 0$	<u>475</u>	[IIT-JEE-2007, Paper-I, (3, – 1), 81]
		: $PQ \times RS = 0$ and F	PQ × ST ≠ 0	
				a correct explanation for Statement-1 NOT a correct explanation for Statement-
	. ,	is True, Statement-2 is Fa is False, Statement-2 is Tr		
4.			$+^{\mathbf{C}} = \overset{\mathbf{M}}{0}$. Which on	e of the following is correct? [IIT-JEE-2007, Paper-II, (3, – 1), 81] $\times \overset{\boxtimes}{c} = \overset{\boxtimes}{c} \times \overset{\boxtimes}{a} \neq \overset{\boxtimes}{0}$
	(A) $a \times b = b \times c$ (C) $a \times b = b \times c$		(B) $a \times b = b$	×c
	(C) $a \times b = b \times c$	= a×c ≠ 0	(D) a×b, b×	c, c × a are mutually perpendicular
5.	The edges of a p	arallelopiped are of unit ler 1	ngth and are parallel	to non-coplanar unit vectors \hat{a} , \hat{b} , \hat{c} such
	that â.ĥ = ĥ.ĉ	$= \hat{c}.\hat{a} = \frac{1}{2}$. Then the volu	me of the parallelopi	
	1	1	$\sqrt{3}$	[IIT-JEE-2008, Paper-I, (3, – 1), 82] 1
	(A) $\frac{1}{\sqrt{2}}$	(B) $\frac{1}{2\sqrt{2}}$	(C) $\frac{\sqrt{3}}{2}$	(D) $\sqrt[]{\sqrt{3}}$
6.			ane 2x + y + z = 9 a	P(2, -1, 2) and makes equal angles with t point Q. The length of the line segment [IIT-JEE-2009, Paper-2, (3, -1), 80]
	(A) 1	(B) √2	(C) $\sqrt{3}$	(D) 2
7.	Let P(3, 2, 6) be	a point in space and Q b	e a point on the line	$\sum_{i=1}^{M} \hat{i} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(-3\hat{i} + \hat{j} + 5\hat{k})$. Then the
	value of µ for wh	nich the vector PQ is para	llel to the plane x –	4y + 3z = 1 is [IIT-JEE-2009, Paper-I, (3, – 1), 80]
	1	1	1	1
	(A) 4	(B) – [–]	(C) ¹ / ₈	(D) – ⁸

			x V z	
8.				erpendicular to the plane containing
		$\frac{x}{3} = \frac{y}{4} = \frac{z}{2} \text{ and } \frac{x}{4} = \frac{y}{2} = \frac{z}{4}$	$\frac{z}{3}$ in	
			[]	IIT-JEE-2010, Paper-1, (3, –1), 84]
	(A) $x + 2y - 2z = 0$	(B) 3x + 2y - 2z = 0	(C) $x - 2y + z = 0$	(D) $5x + 2y - 4z = 0$
9.	The number of 3	× 3 matrices A whose entri	es are either 0 or 1 an	d for which the system A $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
•	has exactly two di	stinct solutions, is		
	(IT-JEE-2010, Paper-1, (3, −1), 84]
	(A) 0	(B) 2 ₉ – 1	(C) 168	(D) 2
10.		the point P(1, –2, 1) from th from P to the plane is	the plane $x + 2y - 2z =$	α , where $\alpha > 0$, is 5, then the foot of
		from F to the plane is	[11]	T-JEE-2010, Paper-2, (5, −2), 79]
	(A) $\left(\frac{8}{3}, \frac{4}{3}, -\frac{7}{3}\right)$	(B) $\left(\frac{4}{3}, -\frac{4}{3}, \frac{1}{3}\right)$	(C) $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$	(D) $\left(\frac{2}{3}, -\frac{1}{3}, \frac{5}{2}\right)$
11.		4		A vector $\overset{\boxtimes}{v}$ in the plane of $\overset{\boxtimes}{a}$ and $\overset{\boxtimes}{b}$,
	whose projection (A) $\hat{i} - 3\hat{j} + 3\hat{k}$	on \vec{c} is $\overline{\sqrt{3}}$, is given by (B) $^{-3\hat{i}-3\hat{j}-\hat{k}}$	(C) $3\hat{i} - \hat{j} + 3\hat{k}$	T-JEE 2011, Paper-1, (3, −1), 80] (D) ^Î + 3Ĵ – 3k̂
12.	If $\overset{\boxtimes}{a}$ and $\overset{\boxtimes}{b}$ are vertices	ctors such that $\begin{vmatrix} a \\ a \end{vmatrix} + b \end{vmatrix} = \sqrt{29}$	$\overline{9}$ and $\overset{\boxtimes}{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k})$	$= (2\hat{i}+3\hat{j}+4\hat{k}) \times b^{\breve{B}}$, then a possible
	value of ^(a + b) . ((A) 0	(B) 3	[IIT-JEE 2 (C) 4	2 012, Paper-2, (3, –1), 66] (D) 8
13.		2		of the planes $x + 2y + 3z = 2$ and
	x - y + z = 3 and a	at a distance $\overline{\sqrt{3}}$ from the p		
				IIT-JEE 2012, Paper-2, (3, –1), 66]
	(A) 5x – 11y + z =		(B) $\sqrt{2}x + y = 3\sqrt{2}$	
	(C) $x + y + z = x$	/3	(D) x - $\sqrt{2}y = 1 - 1$. √2
14.	$\operatorname{Let}_{(MAR)} PR = 3\hat{i} + \hat{j} - $	$2\hat{k}$ and $\hat{SQ} = \hat{i} - 3\hat{j} - 4\hat{k}$	determine diagonals	of a parallelogram PQRS and
	$\overrightarrow{PT} = \hat{i} + 2\hat{j} + 3\hat{k}$	e another vector. Then the	e volume of the parall	elepiped determined by the vectors
	PT, PQ and PS (A) 5	is (B) 20		dvanced) 2013, Paper-1, (2, 0)/60] (D) 30

15.	Perpendicular are drav perpendiculars lie on t	wn from points on the lin he line	$\frac{x+2}{2} = \frac{y+1}{-1} = \frac{z}{3}$ to [JEE (Adv	the plane x + y + z = 3. The feet of vanced) 2013, Paper-1, (2, 0)/60]
	(A) $\frac{x}{5} = \frac{y-1}{8} = \frac{z-2}{-13}$	(B) $\frac{x}{2} = \frac{y-1}{3} = \frac{z-2}{-5}$	(C) $\frac{x}{4} = \frac{y-1}{3} = \frac{z-2}{-7}$	$\frac{2}{(D)} \frac{x}{2} = \frac{y-1}{-7} = \frac{z-2}{5}$
16.	,	perpendiculars PQ and F ch that ∠QPR is a right a	ngle, then the possible	vely on the lines y = x, z = 1 and y e value(s) of λ is(are) vanced) 2014, Paper-1, (3, 0)/60]
	(A) √2	(B) 1	(C) –1	(D) $-\sqrt{2}$
17.	-	the point (3, 1, 7) with re P and containing the str		y + z = 3. Then the equation of the
	plane passing through (A) x + y – 3z = 0	P and containing the str (B) $3x + z = 0$	aight line 1 2 1 j (C) x – 4y + 7z = 0	s (D) $2x - y = 0$
18.	Let O be the origin and $OP_OQ_+OR_OS$	d let PQR be an arbitrary = $OR_OP_+ OQ_OS_=$	OQ.OR + OP.OS	is such that Then the triangle PQR has S as its /anced) 2017, Paper-2,(3, –1)/61]
	(A) centroid	(B) orthocenter	(C) incentre	(D) circumcenter
19.	The equation of the pla + y - 2z = 5 and $3x - 6$	ane passing through the p Sy – 2z = 7, is		pendicular to the planes 2x vanced) 2017, Paper-2,(3, –1)/61]
	(A) 14x + 2y - 15z = 1 (C) 14x - 2y + 15z = 2	7	(B) –14x + 2y + 15z (D) 14x + 2y + 15z	

Answers

F

						EXERC	SISE #	<i>‡</i> 1						
Secti	Section (A)													
A-1.	(3)	A-2.	(4)	A-3.	(3)	A-4.	(1)	A-5.	(3)	A-6.	(3)	A-7.	(2)	
A-8.	(2)	A-9.	(4)	A-10.	(1)	A-11.	(4)	A-12.	(1)	A-13.	(2)	A-14.	(4	
A-15.	(3)	A-16.	(1)	A-17.	(2)	A-18.	(2)	A-19.	(1)	A-20.	(4)			
Secti	on (B))												
B-1.	(2)	B-2.	(4)	B-3.	(1)	B-4.	(4)	B-5.	(3)	B-6.	(4)	B-7.	(2	
B-8.	(3)	B-9.	(1)	B-10.	(1)	B-11.	(3)	B-12.	(1)	B-13.	(1)	B-14.	(3	
B-15.	(4)	B-16.	(4)	B-17.	(1)	B-18.	(3)	B-19.	(2)	B-20.	(2)	B-21.	(2	
B-22.	(3)	B-23.	(3)	B-24.	(3)	B-25.	(4)							
Secti	on (C))												
C-1.	(4)	C-2.	(3)	C-3.	(2)	C-4.	(4)	C-5.	(1)	C-6.	(3)	C-7.	(1	
C-8.	(1)	C-9.	(3)	C-10.	(4)	C-11.	(2)	C-12.	(4)					
Secti	on (D))												
D-1.	(4)	D-2.	(3)	D-3.	(1)	D-4.	(3)	D-5.	(3)	D-6.	(4)	D-7.	(1	
D-8.	(3)	D-9.	(4)	D-10.	(1)	D-11.	(1)	D-12.	(2)	D-13.	(3)	D-14.	(2	
D-15.	(4)	D-16.	(1)											
Secti	on (E)													
E-1.	(3)	E-2.	(4)	E-3.	(1)	E-4.	(1)	E-4.	(3)	E-5.	(2)	E-6.	(4	
E-7.	(4)	E-8.	(1)	E-9.	(4)	E-10.	(1)	E-11.	(3)	E-12.	(2)	E-13.	(4	
E-14.	(1)	E-15.	(2)	E-16.	(3)	E-17.	(1)	E-18.	(1)	E-19.	(1)	E-20.	(2	
E-21.	(4)													

						EXER	CISE #	\$2					
						PA	RT - I						
1.	(2)	2.	(2)	3.	(3)	4.	(3)	5.	(2)	6.	(3)	7.	(2)
8.	(1)	9.	(3)	10.	(4)	11.	(2)	12.	(1)	13.	(4)	14.	(1)
15.	(4)	16.	(3)	17.	(4)	18.	(1)	19.	(4)	20.	(3)	21.	(3)
22.	(2)	23.	(2)	24.	(3)	25.	(3)	26.	(1)	27.	(2)	28.	(3)
29.	(2)	30.	(4)	31.	(1)	32.	(1)	33.	(1)	34.	(1)	35.	(1)
36.	(4)	37.	(2)	38.	(2)	39.	(1)	40.	(4)				

						PAI	RT - II				
Sect	ion (A)										
A-1.	(2)	A-2.	(1)	A-3.	(2)	A-4.	(3)	A-5.	(1)		
Sect	ion (B)										
B-1.	(A) →	(q), (B)	→ (p), (C) → (s)	, (D) –	→ (r)					
B-2.	(A) →	r ; (B) _	→ s ; (C)	→ p;(C	0) → q						
B-3.	(A) →	q, (B) -	→ p, (C)	→ (S), (D) → (r))					
B-4.	(A) →	r ; (B) _	→ q ; (C)	→ s;(C)) → p						
Sect	ion (C))									
• •	$(1 \circ 1)$	~ ~	(0 1)	~ ~	(0 1)	~ .	$(1 \circ 1)$	~ -	$(\mathbf{n} \mathbf{n})$	• •	(4 0)

 C-1.
 (1, 3)
 C-2
 (3, 4)
 C-3.
 (2, 4)
 C-4.
 (1, 2)
 C-5.
 (2, 4)
 C-6
 (1, 3)
 C-7.
 (1, 4)

 C-8.
 (1, 4)
 C-9.
 (2, 3)
 C-10.
 (2, 4)
 C-11.
 (1, 2)
 C-12.
 (2, 3)
 C-13.
 (1, 4)
 C-14.
 (1, 3, 4)

 C-15.
 (2, 3, 4)
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 <thC</td>
 C
 C

						EXER	CISE #	± 3						
	PART - I													
1.	(3)	2.	(3)	3.	(4)	4.	(4)	5.	(4)	6.	(4)	7.	(4)	
8.	(1)	9.	(4)	10.	(1)	11.	(4)	12.	(4)	13.	(3)	14.	(1)	
15.	(4)	16.	(2)	17.	(3)	18.	(1)	19.	(4)	20.	(4)	21.	(2)	
22.	(1)	23.	(4)	24.	(4)	25.	(3)	26.	(1)	27.	(2)	28.	(1)	
29.	(3)	30.	(1)	31.	(3)	32.	(3)	33.	(2)	34.	(3)	35.	(3)	
36.	(3)	37.	(2)	38.	(3)	39.	(3)	40.	(4)	41.	(3)	42.	(1)	
43.	(3)	44.	(3)	45.	(1)	46.	(2)	47.	(2)	48.	(2)			
						PA	RT - II							
1.	(A)	2.	(C)	3.	(C)	4.	(B)	5.	(A)	6.	(C)	7.	(A)	
8.	(C)	9.	(A)	10.	(A)	11.	(C)	12.	(C)	13.	(A)	14.	(C)	
15.	(D)	16.	(C)	17.	(C)	18.	(B)	19.	(D)					