<u>Alter</u> n	ating Current							
	Exercise	-1						
🖻 Marl) used as Revision Que	estions.					
OBJECTIVE QUESTIONS								
Secti	on (A) : Average, F	Peak And RMS Valu	ues And RMS Value	25				
A-1. №		e 5.0 mH and negligi e peak current in the circ (2) 1 amp		ected to an alternating voltage (4) 20 amp				
A-2.ൔ		stantaneous value of e.r		olt and frequency is 50 Hz. At time				
	(1) 10 volt	(2) 5 $\sqrt{3}$ volt	(3) 5 volt	(4) 1 volt				
A-3.⊾̀	(1) n	(2) 2 n	circuit is n, the power va (3) n/2	(4) zero				
A-4.	An AC voltage of V = (1) 220 $\sqrt{2}$ V	$\frac{220\sqrt{2} \sin \left(100\pi t + \frac{\pi}{2}\right)}{(2)\sqrt{2} V}$	is applied across a DC (3) 220 V	voltmeter, its reading will be: (4) zero				
Secti		nsumed In An Ac C						
B-1.	The average power do (1) Erms Irms	elivered to a series AC α (2) E _{rms} I _{rms} cos φ	circuit is given by (symbo (3) E _{rms} I _{rms} sin φ	ols have their usual meaning) : (4) zero				
B-2.	Energy dissipates in L (1) L only	CR circuit in : (2) C only	(3) R only	(4) all of these				
B-3. ≱				ue of 2 A flow through two identical ame time interval will be: (4) 4 : 1				
B-4èà	A sinusoidal AC curre power dissipated is :	ent flows through a resis		e peak current is I_p , then average				
	(1) $I_p^2 R \cos \theta$	(2) $\frac{1}{2}I_{p}^{2}R$	$\frac{4}{\pi}I_p^2R$	$(4) \frac{1}{\pi^2} I_p^2 R$				
B-5ൔ				through a resistor produces heat, sistor in the same time interval?				
	(1) 6 ampere	(2) 2 ampere	(3) $2\sqrt{3}$ ampere	(4) 0.65 ampere				
B-6	of the circuit is :			ohm reactance. The power factor				
	(1) 0.4	(2) 0.6	(3) 0.8	(4) 1.0				
B-7	of the source, the brig (1) increase (2) decreases (3) remains unchange	htness of the bulb :		ource. On increasing the frequency				

(4) sometimes increases and sometimes decreases

Section (C) : AC Source With R, L, C Connected In Series

	ating Current					
C-1 ≧	in the circuit and the ph		ected in series to a 220- current and the source v	V, 50-Hz AC source. The current oltage are respectively.		
	Use π = 22/7. (1) 2 A, tan ⁻¹ 3/4	(2) 14.4 A, tan ⁻¹ 7/8	(3) 14.4 A, tan ⁻¹ 8/7	(4) 3.28 A, tan ⁻¹ 2/11		
C-2è			500 rad/s is connected t The potential difference	o a LCR circuit with L = 0.8 H, across the resistance is		
C-3		(2) 100 volt tance of R ohm is connec 45°, the value of inductiv		(4) $50\sqrt{3}$ ctance L. If phase angle between th the given data		
C-4è			oss an inductance and difference across the circ (3) 31.9 V	resistance joined in series are cuit is (4) 53.5 V		
		_				
C-5.			connected across a circ The reading of ammeter (3) 40 mA	cuit containing an AC ammeter(it er is : (4) 80 mA		
C 6						
C-6.	voltage of the source is (1) equal to $V_1 + V_2 + V_3$ (3) more than $V_1 + V_2 + V_3$	s always : /₃	(2) equal to $V_1 - V_2 + V_3$ (4) none of these is tru			
C-7.	In the series LCR circu readings are : (1) $V = 100$ volt, $I = 2$ a (2) $V = 100$ volt, $I = 5$ a (3) $V = 1000$ volt, $I = 2$ (4) $V = 300$ volt, $I = 1$ a	imp amp	ne voltmeter and ammete	$\begin{array}{c} \text{er} & 400 \lor 400 \lor \\ & & & & & & \\ & & & & & \\ & & & & &$		
Secti	on (D) : Resonance					
D-1	The value of power fac (1) zero	tor cosφ in series LCR c (2) 1	ircuit at resonance is : (3) 1/2	(4) 1/2 ohm		
D-2		capacitance is made or so that the circuit remain (2) 1/4 times		ance. Then what should be the (4) 2 times		
D-3.ൔ	4 × 10 ³ rad s ⁻¹ . At		ge across resistance	angular resonance frequency and inductance are 60V and (4) 2mH, 25/8 nF		
D-4.	connected to an oscilla When the frequency frequency, the voltmete case of :	tor in the circuit as show of the oscillator is in er reading (at resonance	oltmeters V ₁ , V ₂ and V ₃ a n in the adjoining diagrar creased, upto resonanc e frequency) is zero in th			
	(1) voltmeter V_1 (3) voltmeter V_3		tmeter V ₂ the three voltmeters			
Section (E) : Transformer						

E-1 A power (step up) transformer with an 1 : 8 turn ratio has 60 Hz, 120 V across the primary; the load in the secondary is $10^4 \Omega$. The current in the secondary is

(1) 96 A	(2) 0.96 A	(3) 9.6 A	(4) 96 mA
		n	

Alternating Current/

E-2 The overall efficiency of a transformer is 90%. The transformer is rated for an output of 9000 watt. The primary voltage is 1000 volt. The ratio of turns in the primary to the secondary coil is 5 : 1. The iron losses at full load are 700 watt. The primary coil has a resistance of 1 ohm.

(i)	The voltage in seconda (1) 1000 volt	ry coil is : (2) 5000 volt	(3) 200 volt	(4) zero volt
(ii)	In the above, the currer (1) 9 amp	nt in the primary coil is : (2) 10 amp	(3) 1 amp	(4) 4.5 amp
(iii)	In the above, the coppe (1) 100 watt	er loss in the primary coil (2) 700 watt	is : (3) 200 watt	(4) 1000 watt
(iv)	In the above, the copp (1) 100 watt	er loss in the secondary (2) 700 watt	coil is : (3) 200 watt	(4) 1000 watt
(v)	In the above, the currer (1) 45 amp	nt in the secondary coil is (2) 46 amp	; ; (3) 10 amp	(4) 50 amp
(vi)	In the above, the resist (1) 0.01 Ω	ance of the secondary cc (2) 0.1 Ω	il is approximately : (3) 0.2 Ω	(4) 0.4 Ω
E-3	The core of a transform (1) eddy current loss	er is laminated to reduce (2) hysteresis loss	e (3) copper loss	(4) magnetic loss

Exercise-2

Marked Questions can be used as Revision Questions.

OBJECTIVE QUESTIONS

E

7

1. r.m.s. value of current i = 3 + 4 sin (ω t + $\pi/3$) is:

(1) 5 A (2)
$$\sqrt{17}$$
 A (3) $\frac{5}{\sqrt{2}}$ A (4) $\frac{7}{\sqrt{2}}$ A

2. An alternating voltage is given by : $e = e_1 \sin \omega t + e_2 \cos \omega t$. Then the root mean square value of voltage is given by :

$\overline{)}$		e ₁ e ₂	$e_1^2 + e_2^2$
(1) $\sqrt{e_1^2 + e_2^2}$	(2) √ ^e ₁ ^e ₂	(3) $\sqrt{\frac{e_1e_2}{2}}$	(4) $\sqrt{\frac{e_1^2 + e_2^2}{2}}$

3. The potential difference V across and the current I flowing through an instrument in an AC circuit are given by :

 $V = 5 \cos \omega t \text{ volt}$ $I = 2 \sin \omega t \text{ ampere}$ The power dissipated in the instrument is :
(1) zero
(2) 5 watt
(3) 10 watt
(4) 2.5 watt

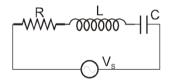
- 4.ABy what percentage the impedance in an AC series circuit should be increased so that the power factor
changes from (1/2) to (1/4) (when R is constant) ?
(1) 200%(2) 100%(3) 50%(4) 400%
- 5.A An LCR series circuit with 100 Ω resistance is connected to an AC source of 200 V and angular frequency 300 radians per second. When only the capacitance is removed, the current lags behind the voltage by 60°. When only the inductance is removed, the current leads the voltage by 60°. Then the current and power dissipated in LCR circuit are respectively (1) 1A, 200 watt. (2) 1A, 400 watt. (3) 2A, 200 watt. (4) 2A, 400 watt.
- **6.** A pure resistive circuit element X when connected to an AC supply of peak voltage 200 V gives a peak current of 5 A which is in phase with the voltage. A second circuit element Y, when connected to the

<u>Alterr</u>				he current lags behind by 90°. If the				
				nat will be the rms value of current?				
	10	(2) $\frac{5}{\sqrt{2}}$ amp	$\frac{5}{2}$					
	(1) $\overline{\sqrt{2}}$ amp	(2) √ ² amp	(3) ² amp	(4) 5 amp				
7.		luctor L and a capacitor (/ is n _r , then the current la		es to an oscillator of frequency n. If the				
	(1) n = 0	(2) n < n _r	(3) $n = r_r$	(4) n > n _r				
8.	Find the effective v	alue of current i = 2 + 4	cos 100 π t.					
	(1) ² √3	(2) 2√2	(3) $\sqrt{3}$	(4) $4\sqrt{3}$				
9	The peak value of an alternating current is 5 A and its frequency is 60 Hz. How long will the current take to reach the peak value starting from zero?							
	1	3	1	1				
	(1) $\frac{1}{240}$ s	(2) $\frac{3}{240}$ s	(3) ¹ / ₁₄₀ s	(4) $\frac{1}{340}$ s				
10.⊾		is connected with an ac What will be the reading		(100 t) V through an ac ammeter (it				
	(1) 100 mA	(2) 300 mA	(3) 500 mA	(4) 200 mA				
11.	If a resistance of	200 a capacitor of	reactance 20 0 and	an inductor of inductive reactance				
	If a resistance of 30Ω , a capacitor of reactance 20 Ω , and an inductor of inductive reactance 60Ω are connected in series to a 100 V, 50 Hz power source, then -							
	(1) A current of 2.0		•	(2) A current of 3.33 A flows				
	(3) Power factor of	the circuit is zero	(4) Power factor o	(4) Power factor of the circuit is 2/5				
12.🖻	An AC voltage is g							
		$2\pi t$						
	$E = E_0 sin$	$E = E_0 \sin \frac{2\pi t}{T}$						
	Then the mean value of voltage calculated over time interval of T/2 seconds :							

Then the mean value of voltage calculated over time interval of T/2 seconds : (1) is always zero (2) is never zero (3) is $(2e_0/\pi)$ always (4) may be zero

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : Assertion/Reasoning


A-1. STATEMENT-1 : In a series R,L,C circuit if V_R, V_L, and V_c denote rms voltage across R, L and C repectively and V_s is the rms voltage across the source, then $V_{s}=V_{R} + V_{L} + V_{c}$. STATEMENT-2 : In AC circuits, kirchoff voltage law is correct at every

instant of time.(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1

(2) Statement-1 is True, Statement-2 is True; Statement-2 **is NOT** a correct explanation for Statement-1

(3) Statement-1 is True, Statement-2 is False

(4) Statement-1 is False, Statement-2 is True.

Alternating Current/

- A-2. STATEMENT-1 : An inductor is connected to an ac source. When the magnitude of current decreases in the circuit, energy is absorbed by the ac source.
 - STATEMENT-2: When current through an inductor decreases, the energy stored in inductor decreases.
 - (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
 - (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 - (3) Statement-1 is True, Statement-2 is False
 - (4) Statement-1 is False, Statement-2 is True.
- **A-3. STATEMENT-1** : Average power consumed in an ac circuit is equal to average power consumed by resistors in the circuit.

STATEMENT-2: Average power consumed by capacitor and inductor is zero

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True.
- A-4. STATEMENT-1: The electrostatic energy stored in capacitor plus magnetic energy stored in inductor will always be zero in a series LCR circuit driven by ac voltage source under condition of resonance.
 STATEMENT-2: The complete voltage of ac source appears across the resistor in a series LCR circuit driven by ac voltage source under condition of resonance.
 - (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
 - (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 - (3) Statement-1 is True, Statement-2 is False
 - (4) Statement-1 is False. Statement-2 is True.

Section (B) : One or More Than One Options Correct

B-1. Average power consumed in an A.C. series circuit is given by (symbols have their usual meaning) :

		E _{max} -R	I _{max} ² z cosφ	
(1) E _{rms} I _{rms} cosφ	(2) (I _{rms}) ² R	(3) $2(z)^2$	(4) 2	

B-2. An AC source supplies a current of 10 A (rms) to a circuit, rms voltage of source is 100 V. The average power delivered by the source :
(1) must be 1000 W
(2) may be less than 1000 W

(3) may be greater than 1000 W

(2) may be less than 1000 W (4) may be 1000 W

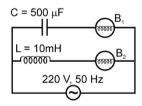
– 2**–**

B-3. In the circuit shown in figure, if both the bulbs B₁ and B₂ are identical :

- (1) their brightness will be the same
- (2) B₂ will be brighter than B₁

(3) as frequency of supply voltage is increased the brightness of bulb B_1 will

increase and that of B₂ will decrease.


(4) only B_2 will glow because the capacitor has infinite impedance

B-4. A circuit is set up by connecting L = 100 mH, C = 5 μ F and R =100 Ω in series. An alternating emf of (150

500

 $\sqrt{2}$) volt, π Hz is applied across this series combination. Which of the following is correct

- (1) the impedance of the circuit is 141.4 Ω
- (2) the average power dissipated across resistance 225 W
- (3) the average power dissipated across inductor is zero.
- (4) the average power dissipated across capacitor is zero.

Altern	ating Current/							
B-5.		own below, the supply vo cy f. At resonance, the ci		s value V $\begin{bmatrix} R & \frac{1}{\pi} \Box F & \frac{1}{\pi} H \end{bmatrix}$				
		$\frac{V}{T}$						
	(1) has a current I gi			V,f				
	(2) has a resonance frequency 500 Hz							
	(3) has a voltage ac across the inductor	cross the capacitor whic	h is 180° out of phase	e with that				
		V						
		v	<u> </u>					
	(4) has a current give	en by I = $\sqrt{R^2 + \left(\frac{1}{\pi} + \frac{1}{\pi}\right)^2}$	-					
B-6.	Power factor may be	equal to 1 for ·						
5 0.	(1) pure inductor	(2) pure capacitor	(3) pure resistor	(4) An LCR circuit				
	Exercise	-3 =====						
è Mari	ked Questions can be	used as Revision Que	etione					
	PART - I : JEE	(MAIN) / AIEEE F	PROBLEMS (PF	REVIOUS YEARS)				
1.	A circuit has a resista	nce of 12 ohm and an im	pedance of 15 ohm. T	he power factor of the circuit will be				
	(1) 0.8	(2) 0.4	(3) 1.25	[AIEEE 2005; 4/300] (4) 0.125				
-			. ,					
2.			current and emf is $\pi/2$	2. Which of the following cannot be				
	the constituent of the (1) C alone	(2) R, L	(3) L, C	[AIEEE 2005; 4/300] (4) L alone				
			. ,					
3.			fan is 10 H. In order to	impart maximum power at 50 Hz, it				
	should be connected	to a capacitance of : (2) 8μF	(3) 1µF	[AIEEE 2005, 4/300] (4) 2µF				
	(1) 4µF	(Ζ) ΟμΓ	(3) TµF	(4) ΖμΓ				
4.				of the main supply is 220 V and 50				
				rent lags behind the voltage by 30°.				
	the LCR circuit is			ge by 30°. The power dissipated in EEE 2010; 4/144, –1]				
	(1) 305 W	(2) 210 W	(3) Zero W	(4) 242 W				
-								
5.				s connected to a 220 V(rms), 50 Hz E Main 2016; 4/120, -1]				
	(1) 0.08 H	(2) 0.044 H	(3) 0.065 H	(4) 80 H				
		(_) 0.0	(0) 0100011					
	PART - II : JEE (A	ADVANCED) / IIT-	JEE PROBLEMS	(PREVIOUS YEARS)				
* 84								
	•	ve more than one corre	•					
1.		e of variable angular freq i electric bulb of resistan		blitude V connected in series with a				
	capacitance C and an	electric build of resistant	ce R (inductance zero)	[JEE 2010; 3/163, –1]				

- -

- (A) the bulb glows dimmer(B) the bulb glows brighter(C) total impedence of the circuit is unchanged(D) total impedence of the circuit increases
- 2.A series R-C circuit is connected to AC voltage source. Consider two cases; (A) when C is without a dielectric medium and (B) when C is filled with dielectric of constant 4. The current I_R through the resistor and voltage V_C across the capacitor are compared in the two cases. Which of the following is/are true?

[JEE 2011; 4/160]

(A) $I_R^A > I_R^B$ (B) $I_R^A < I_R^B$ (C) $V_C^A > V_C^B$ (D) $V_C^A < V_C^B$

Paragraph for Questions 3 and 4

A thermal power plant produces electric power of 600 kW at 4000 V, which is to be transported to a place 20 km away from the power plant for consumers' usage. It can be transported either directly with a cable

<u>Alterr</u>	of larg two en transf side step-c reaso	nds. The ormers, tl so that down tran nable to a	drawba he diss the isforme assume	ack of the sipation is current er is usec that the	e direct transm much smalle is reduced to supply po power cable is	a combination nission is the er. In this meth to a sma ower to the co s purely resisti entioned are rr	large er od, a st aller va onsume ve and t	nergy dis ep-up tra alue. At rs at the the trans	sipation. ansforme the co specified	In the i r is use onsume d lower	method using d at the plant ers' end, a voltage. It is
3.⊾	If the direct transmission method with a cable of resistance 0.4 Ω km ⁻¹ is used, the power dissipation(in %) during transmission is :[JEE(Advanced)-2013; 3/60](A) 20(B) 30(C) 40(D) 50										
4. è	 4.A In the method using the transformers, assume that the ratio of the number of turns in the primary to that in the secondary in the step-up transformer is 1 : 10. If the power to the consumers has to be supplied at 200V, the ratio of the number of turns in the primary to that in the secondary in the step-down transformer is : [JEE(Advanced)-2013; 3/60] (A) 200 : 1 (B) 150 : 1 (C) 100 : 1 (D) 50 : 1 									be supplied at n transformer	
		EXER	RCISE	E # 1				EXE	RCISE	# 2	
Sectio	on (A)					·			PART - I		
A-1.	(4)	A-2.	(2)	A-3.	(2)	1.	(2)	2.	(4)	3.	(1)
A-4.	(4)	~ =:	(2)	Α Ο.	(2)	4.	(2)	5.	(4)	6.	(3)
	. ,					7.	(4)	8.	(1)	9	(1)
Section	on (B)					10.	(4)	11.	(1)	12.	(4)
B-1.	(2)	B-2.	(3)	B-3.	(3)						
B-4	(2)	B-5	(3)	B-6	(2)	Sectio	sn (A)	ł	PART - II		
B-7	(1)					A-1.	(4)	A-2.	(1)	A-3.	(1)
Sectio	on (C)					A-1.	(4)	~ −2.	(1)	A -J.	(1)
						Sectio					
C-1	(1)	C-2	(2)	C-3	(3)	B-1.	• •	,4) B-2.	(2)	B-3.	(2,3)
C-4 C-7.	(2) (1)	C-5.	(2)	C-6.	(4)	B-4.	•	,4) B-5.	(1,2,3)		(3,4)
Sectio								EXE	ERCISE #	3	
D 4	(0)	D 0	(4)	D 0	(4)				PART- I		
D-1	(2)	D-2	(1)	D-3.	(1)	1.	(1)	2.	(2)	3.	(3)
D-4.	(2)					4.	(4)	5.	(3)		
Section	on (E)							F	PART - II		
E-1	(4)	E-2 (i)	(3)	(ii)	(2)	1.	(B)	2.	(B,C)	3.	(B)
(iii) (vi)	(1) (2)	(iv) E-3	(3) (1)	(v)	(2)	4.	(A)				
(*)	(~)	L⁻J	(1)								