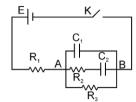
Capacitance

5.🖎

(1) 4.5 V

(2) (3) 3 V (4) 2 V

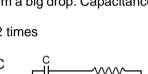

18

Marked Questions can be used as Revision Questions.

Exercise-2

PART - I: OBJECTIVE QUESTIONS

- 1.🖎 A network of uncharged capacitors and resistances is shown Current through the battery immediately after key K is closed and after a long time interval is :
 - (2) $\frac{E}{R_{1}+R_{3}}, \frac{E}{R_{1}+\frac{R_{2}-R_{3}}{R_{2}+R_{3}}}$ $\frac{E}{R_{1}+\frac{R_{2}-R_{3}}{R_{2}+R_{3}}}, \frac{E}{R_{1}}$ (4) $(1) \frac{E}{R_1} \frac{E}{R_1 + R_3}$ (3) Zero.



₹R С

- 2. n resistances each of resistance R are joined with capacitors of capacity C (each) and a battery of emf E as shown in the figure. In steady state condition ratio of charge stored in the first and last capacitor is (1) n : 1 (2) (n – 1) : (n + 1) $(3)(n^2 + 1):(n^2 - 1)$ (4) 1:1
- 3. Eight drops of mercury of same radius and having same charge coalesce to form a big drop. Capacitance of big drop relative to that of small drop will be (1) 16 times (3) 4 times (4) 2 times (2) 8 times
- 4.🖎 The magnitude of charge in steady state on either of the plates of condenser C in the adjoining circuit is-

In the combination shown in the figure, the ideal voltmeter reading will be

	CER ₂
(1) CE	(2) $(R_1 + r)$
CER2	CER ₁
(3) $(R_2 + r)$	(4) $(R_2 + r)$

 \sim R₂

С

ξR

С

ξR

E٦

- 6μF 2uF 3µF
- 6.🖎 Three capacitors of same capacitance are connected in parallel. When they are connected to a cell of 2 volt, total charge of 1.8µC is accumulated on them. Now after discharging they are connected in series and then charged by the same cell. The total charge stored in them will be (1) 1.8µC (2) 0.9µC (3) 0.6µC (4) 0.2µC

Capa	citance /				
7.	An uncharged capacitor of capacitance 8.0 μ F is connected to a battery of emf 6.0 V through a resistance				
	of 24 Ω , then	and the stand of the state of			
	(1) the current in the cir (1) 0.25 A	(2) 0.5 A	connections are made is (3) 0.4 A	: (4) 0 A	
	(ii) the current in the ci (1) 0.25 A	rcuit at one time c (2) 0.09 A	constant after the connect (3) 0.4 A	tions are made is : (4) 0 A	
8.	A capacitor of capacit difference will become	•	narged at the rate of 100	μ C/s. The time in	which the potential
	(1) 100 s	(2) 50 s	(3) 20 s	(4) 10 s	
9.ൔ		ice of the capacit	rallel plate capacitor is R or is equal to the capacit		
	(1) R/4	(2) R/2	(3) R	(4) 2R	
10.	condenser of capacity batteries are removed	2C is connected and now the con gative plate of an 25CV ²	is connected to a battery to another battery and is idensers are connected i other. The final energy of $\frac{3CV^2}{2}$	charged to potentian n such a way that the f this system is– 9CV ²	al 2V. The charging
	(1) zero	(2) 6	(3) 2	(4) 2	
11.¤	In the following figure, be– (1) 3μC (3) 9μC	the charge on ea	ach condenser in the ste (2) 6μC (4) 12μC	ady state will 3, 3 3	$\begin{array}{c c} \mu F & 4\Omega & 3\mu F \\ \hline 4\Omega & & & \\ \mu F & 4\Omega & 3\mu F \\ \hline - & - & - & - \\ \hline - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - & - \\ \hline - & - & - \\ \hline - & - & - & - \\ \hline - & - $
12.	The equivalent capacit shown will be– (1) 100 pF (2) 200 pF (3) 300 pF (4) 400 pF	ance between the	e terminals X and Y in the	e figure X 200pF 200pF 200pF 100pF Y	100pF100pF
13.	In the adjoining diagram C will be fully charged (1) S_1 and S_2 both are (2) S_1 and S_2 both are (3) S_1 is closed and S_2 (4) S_1 is open and S_2 is	to potential V if open closed is open	pattery to be ideal) the cor	ndenser 50	$ \begin{array}{c} $
14.è		. Air is filled betwo	ally identical capacitors A een the plates of C ₁ and (2) q ¹ > q ² (4) None of these		$C_2 Z Z K C_1 A$

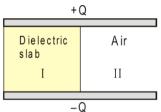
Capa	citance ,	/				
15.		uncharged capacitor of capacitance C is connected to a battery of emf ε at t = 0 through a resistance				
	R, then					
	.,	naximum rate a	•••	stored in the capacitor is		
	ϵ^2		$\frac{\epsilon^2}{\epsilon}$	$\underline{\epsilon^2}$	(4) $\frac{2\varepsilon^2}{R}$	
	(1) 4R		(2) 2R	(3) R	(4) R	
	(ii) time	at which the ra	te has this maximu 1	um value is		
	(1) 2CR	R In2	(2) 2 CR In2	(3) CR In2	(4) 3CR In2	
16. ⊾̀	in air. Τ equivale 4πε	The two are cor ent capacitance : ₀ kr ₁ .r ₂		adii r1 and r2 are placed o per wire as shown in figu		A ₂ A ₂ r ₁
	(1) ^r ₂ (3) 4π∈	₂ − r ₁ ₀r₂		(2) 4π∈₀ (r₁ + r₂ (4) 4π∈₀r₁	2)	× ·
17.			nt of time is d ther 1	are being moved away the rate of change of ca		
	(1) d		(2) d ²	(3) d ²	(4) d	
18.			lel plate capacito na particle will be :	or shown in the figure	e, the force • C	
		kimum at C	•	(2) zero at A		• B
	(3) sam	e at A and C		(4) zero at C		• A
19.		ircuit shown in f time after closin	figure the switch is a the switch	closed at t = 0.		~}
	(1)		across the capacit	E	Ĩ	
	(2)	current throug	gh the battery is ^F	$\frac{R_1 + R_2}{C\left(\frac{R_2E}{R_1 + R_2}\right)^2}$	C	
	(3)	energy stored	d in the capacitor is	$(R_1 + R_2)$		
	ÌÀ		h the conceitor he			

(4) current through the capacitor becomes none zero

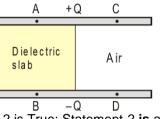
PART - II : MISCELLANEOUS QUESTIONS

Section (A) : Assertion/Reasoning

A-1. **STATEMENT-1**: If the potential difference across a plane parallel plate capacitor is doubled then the potential energy of the capacitor becomes four times under all conditions.


STATEMENT-2: The potential energy U stored in the capacitor is $U = \overline{2} CV^2$, where C and V have usual meaning.

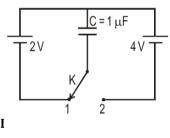
1


- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

Capacitance

A-2. STATEMENT-1 : A charged plane parallel plate capacitor has half interplanar region (I) filled with dielectric slab. The other half region II has air. Then the magnitude of net electric field in region I is less than that in region II.

STATEMENT-2 : In a dielectric medium induced (or polarised) charges tend to reduce the electric field inside the dielectric.


- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True.
- A-3. Statement-1 : The circuits containing capacitor be handled cautiously even when there is no current. Statement-2 : A charged capacitor, can discharge through our body and harm us.

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for
(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for

- Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True.

Section (B) : Match the column

B-1. The circuit involves two ideal cells connected to a 1 μF capacitor via a key K. Initially the key K is in position 1 and the capacitor is charged fully by 2V cell. The key is then pushed to position 2. Column I gives physical quantities involving the circuit after the key is pushed from position 1. Column II gives corresponding results. Match the statements in Column I with the corresponding values in Column II.

Column I					

Column II (p) 2

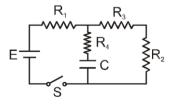
(q) 6

(r) 8

(s) 16

- (1) The net charge crossing the 4 volt cell in μ C is (2) The magnitude of work done by 4 Volt cell in μ J is
- (2) The magnitude of work done by 4 voit cert in µJ is
- (3) The gain in potential energy of capacitor in μ J is (4) The net heat produced in circuit in μ J is

Section (C) : One or More Than One Options Correct

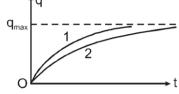

C-1. In the circuit shown in figure the switch S is closed at t = 0. A long time after closing the switch

Е

- (1) voltage drop across the capacitor is E
- (2) current through the battery is $R_1 + R_2 + R_3$

$$\frac{1}{2}C\left(\frac{(R_2+R_3)E}{R_1+R_2+R_3}\right)^2$$

- (3) energy stored in the capacitor is 2^{-1}
- (4) current through the resistance R₄ becomes zero
- **C-2.** When a charged capacitor is connected with an uncharged capacitor, then which of the following is/are correct option/options.
 - (1) the magnitude of charge on the charged capacitor decreases.



Capacitance

- (2) a steady state is obtained after which no further flow of charge occurs.
- (3) the total potential energy stored in the capacitors remains conserved.
- (4) the charge conservation is always true.
- **C-3.** The charge on capacitor in two different RC circuits 1 and 2 are plotted as shown in figure.

Choose the correct statement(s) related to the two circuits.

- (1) Both the capacitors are charged to the same magnitude of charge
- (2) The emf's of cells in both the circuits are equal.
- (3) The emf's of the cells may be different
- (4) The emf E_1 is more than E_2

- **C-4.** Capacitor C_1 of the capacitance 1 microfarad and capacitor C_2 of capacitance 2 microfarad are separately charged fully by a common battery. The two capacitors are then separately allowed to discharge through equal resistors at time t = 0.
 - (1) the current in each of the two discharging circuits is zero at t = 0.
 - (2) the current in the two discharging circuits at t = 0 are equal but non zero.
 - (3) the current in the two discharging circuits at t = 0 are unequal
 - (4) capacitor C₁ loses 50% of its initial charge sooner than C₂ loses 50% of its initial charge
- **C-5.** The terminals of a battery of emf V are connected to the two plates of a parallel plate capacitor. If the space between the plates of the capacitor is filled with an insulator of dielectric constant K, then :
 - (1) the electric field in the space between the plates does not change
 - (2) the capacitance of the capacitor increases
 - (3) the charge stored in the capacitor increases
 - (4) the electrostatic energy stored in the capacitor decreases
- **C-6.** The plates of a parallel plate capacitor with no dielectric are connected to a voltage source. Now a dielectric of dielectric constant K is inserted to fill the whole space between the plates with voltage source remaining connected to the capacitor.
 - (1) the energy stored in the capacitor will become K-times
 - (2) the electric field inside the capacitor will decrease to K-times
 - (3) the force of attraction between the plates will increase to K² times
 - (4) the charge on the capacitor will increase to K-times