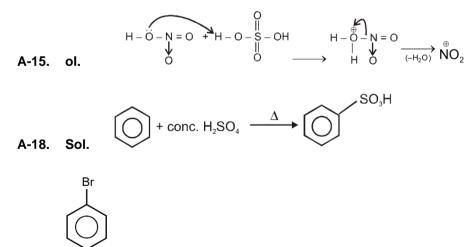
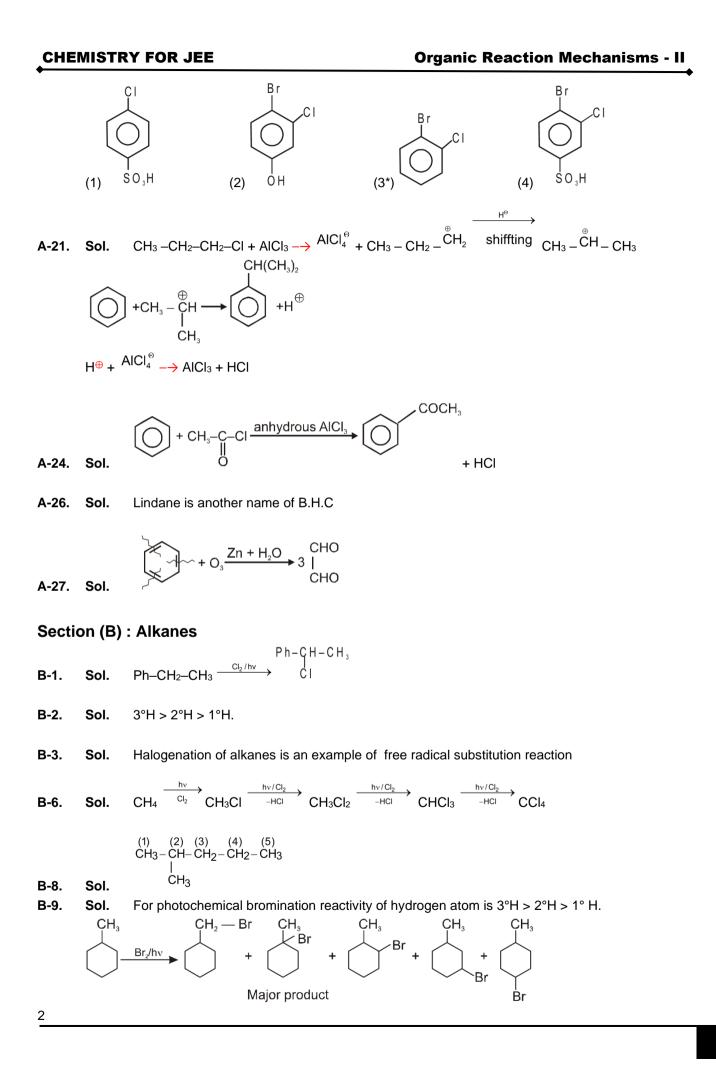

Exercise-1

OBJECTIVE QUESTIONS


Section (A) : Preparation and chemical properties of benzene

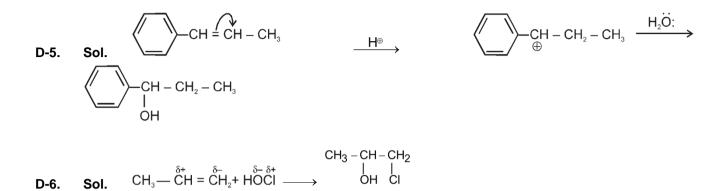
- A-1. Sol. The characteristic reaction of benzene is electrophilic substitution.
- **A-2.** Sol. A deactivating group deactivates o-and p-more than m-position because m-position does not have conjugation with the group.
- A-7. Sol. Cinnanyl system is ortho-para directing group.
- A-8. Sol. As the number of CI atom increases deactivation increases.
- A-9. Sol. –O⁻ is strongest activators and o/p- director.
- **A-11.** Sol. Rate of electrophilic substitution reaction ∝ Stability of arenium ion.


A-14. Sol. The direct iodination of benzene is not possible because resulting C_6H_5I is reduced to C_6H_6 by HI

1

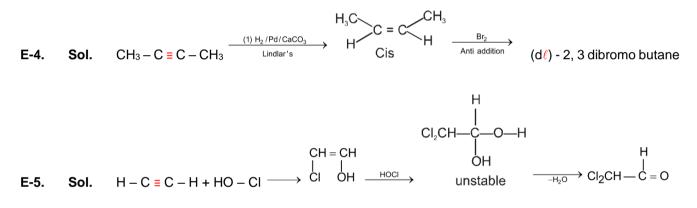
A-13.

Sol.


: Ans. is (3)

B-10. Sol. Iodination of an alkane is carried out in presence of HNO₃ or HIO₃

Section (C) : Free radical addition and substitution in alkenes/alkynes

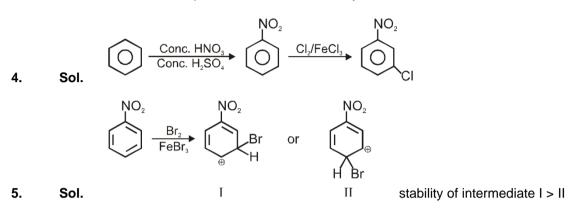

		$CH_{3} \longrightarrow \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \xrightarrow{Br_{2}} CH_{3} \longrightarrow \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \xrightarrow{CH} CH_{3} \longrightarrow \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \xrightarrow{CH} CH_{2} \longrightarrow \begin{array}{c} CH_{2} \\ CH_{3} \\ CH_{3} \end{array} \xrightarrow{CH} CH_{2} \xrightarrow{CH} Br$
C-1.	Sol.	Major Minor (1) 3° Alkyl halide
	(2)	$CH_{3} - CH - CH = CH_{2} \xrightarrow{H - Br} CH_{3} - CH_{3} - CH_{2} - CH_{2} - Br$ $1^{\circ} Alkyl halide$
	(_)	$(CH_{3})_{2}CH - CH = CH_{2} \xrightarrow{H^{\oplus}} CH_{3} - CH_{3} \xrightarrow{CH} CH_{3} \xrightarrow{H^{\oplus}} $
		3° Alkyl halides $CH_3 - CH_2 - CH_3 = Br^{\Theta}$
	(3) So, ans	CH ₃ swer is (4)
C-4.	Sol.	Peroxide effect is observed only with HBr
C-5.	Sol.	$CH_3 - CH = CH_2 + H - Br \xrightarrow{H_2O_2} CH_3 - CH_2 - CH_2 - Br$
C-7.	Sol.	$CH_3 - CH = CH_2$
		Free radical site for Reaction Alkane like character
C-8.	Sol. _ CH ₂	$CH_2=CH - CH_2 - CH = CH_2 \xrightarrow{NBS} CH_2 = CH - \stackrel{CH}{\bullet} - CH = CH_2 \xleftarrow{-} CH_2 = CH - CH = CH$
		$CH_2 = CH - CH = CH - CH_2 - Br \leftarrow NBS$
Section (D) : Alkene		

D-3. Sol. $CH_2 = CH_2 + Br_2 \xrightarrow{CCI_4} Br Br Br$ D-4. Sol. Bromination is anti addition.

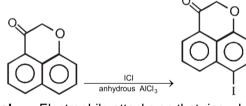
Section (E) : Alkyne

E-2. Sol. Most Acidic hydrogen is present in ethyne.

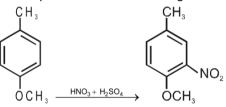
E-6. Sol. 1-Butyne can be converted into 1-bromo-1-butene by antimarkownikoff. Addition of H-Br in presence of peroxide.

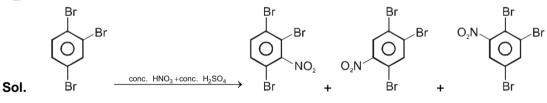

E-7. Sol.
$$CH_3 - CH_2 - C \equiv C - H \xrightarrow{HBr} Br \xrightarrow{Br} CH_3 - CH_2 - Br$$

- **E-8.** Sol. $H-C=C-H + H_2O \xrightarrow{H_{G^{+2}}} OH \xleftarrow{CH_2 = CH} CH_3CHO.$ Ans is (1).
- **E-10.** Sol. 1-butyne and 2-Butyne can be distinguish by ammonical silver nitrate solution.


Exercise-2

PART - I : OBJECTIVE QUESTIONS


- **1. Sol.** According to energy profile diagram.
- Sol. Ar S_E2 reaction occurs in 5-membered ring. because 5 member ring has high electron density compare to 7 membered ring.
- **3.** Sol. Rate of electrophilic substitution \propto Stability of arenium ion.

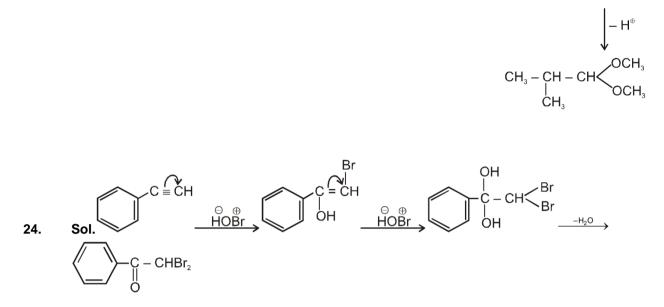

6. Sol. Electrophile attacks on that ring which has more +M effect.

7. Sol. Electrophile attacks on that ring which has more +M effect.

- 9. Sol. According to hyperconjugation effect.
- **10. Sol.** Electrophile attacks on that ring which has more +M effect.
- **11. Sol.** It is Friedel-Crafts alkylation reaction. Alkyl carbocation is formed alcohol as follow $R-OH + BH_{3} \xleftarrow{\left[\begin{array}{c} H \\ R-O-\bar{B}F_{3} \end{array} \right]} \xleftarrow{R^{+}} HO - BF_{3}^{-}$

+

- **12. Sol.** In vinyl chloride, lone pair of chlorine atom take part in resonance so partial double bond character introduce in C–Cl bond.
- **13. Sol.** Aniline form salt with lewis acid and deactivates the benzene ring so Friedel Craft reaction doesnot take place.
- **14. Sol.** Reactions (3) is free radical substitution reaction.


$$CH_{3} - CH - CH_{2} - CH_{3} \qquad Br - CH_{2} - CH_{2} - CH_{2} - CH_{3}$$

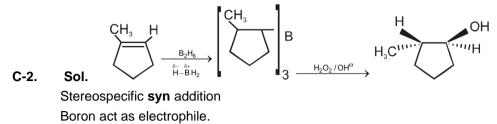
$$Br \qquad 1-bromobutane \qquad (equimolar ratio)$$
16. Sol. $CH_{3} - CH_{2} - CH_{2} - CH_{3} \qquad \stackrel{Br_{2}, h_{0}}{\longrightarrow} 2-bromobutane \qquad + \qquad (equimolar ratio)$
17. Sol.
$$H_{3}C - CH_{2} - \stackrel{C}{C} - CH_{3} \qquad CH_{3} - \stackrel{C}{C} - \stackrel{C}{C} - CH_{3} \qquad CH_{3} - \stackrel{C}{C} - \stackrel{C}{C} - CH_{3} \qquad CH_{3} - \stackrel{C}{C} - \stackrel{C}$$

 $CH_3 - CH_2 - CH_2 - CH_3$

20. Ans. Cis + Antiaddition \rightarrow Racemic mixture

21. Sol.
$$CH_{3} - C \stackrel{\frown}{=} \stackrel{\frown}{CH}_{4} \stackrel{HBr}{\longrightarrow} \stackrel{Br}{Br} \stackrel{HBr}{\longrightarrow} \stackrel{HBr}{\longrightarrow} \stackrel{HBr}{\rightarrow} \stackrel{H}{\rightarrow} \stackrel$$

PART - II : MISCELLANEOUS QUESTIONS

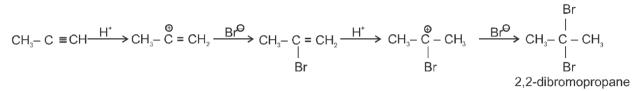

Section (A) : ASSERTION/REASONING

- A-1. Ans. 2
- A-2. Ans. (2)
- Sol. Self explanatory.
- **A-3. Ans.** (3)
- **A-4. Ans.** (2)
- A-5. Ans. (2)
- Sol. Isomerisation reaction of alkane.
- **A-6.** Ans. (1)
- **A-7. Ans.** (1)
- **A-8. Ans.** (4)
- Sol. Carbocation of But-2-ene is more stable than But-1-yne.

Section (B) : MATCH THE COLUMN

- **B-1.** Ans. $(P) \rightarrow c, (Q) \rightarrow b, (R) \rightarrow d, (S) \rightarrow a$
- **B-2.** Ans. $(P) \rightarrow c$; $(Q) \rightarrow a$; $(R) \rightarrow d$; $(S) \rightarrow b$

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT

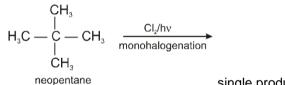

C-5. Sol. Highly deactivating and highly activating rings do not undergo Friedel craft acylation.

Exercise-3

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

$$CH=CH + HOCI \longrightarrow \bigoplus_{cH-CH}^{CH-OH} \bigoplus_{cH-CI}^{HOC} \bigoplus_{cHCI_{2}}^{CH(OH)_{2}} \bigoplus_{d:chloroacetaldhyde}^{CHO} \bigoplus_{cH-CI_{2}}^{CHO} \bigoplus_{d:chloroacetaldhyde}^{CHO} \bigoplus_{d:chloroacetaldhyde}^{CHO}$$

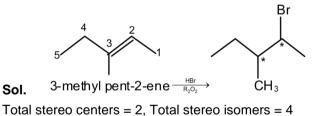
8. Sol.



9. Sol. –NO₂ group in benzene ring shows – I and – M effect, which deactivates the ring towards electrophilic substitution but activates towards nucleophilic substitution.

11. Sol.

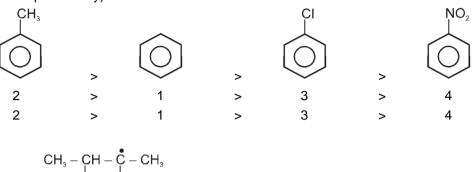
14.


Four monochloro derivatives are chiral.

12. Sol. neope

single product.

13. Sol.
$$CH_3 - CH^+ - CH_2 - CI$$

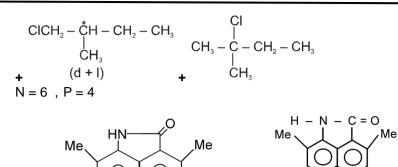

PART - II : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

* Marked Questions may have more than one correct option.

- 1. Sol. Reaction being endothermic, here sufficient energy is not available in these cases.
- 2. Sol. It is an example of electrophilic addition (Markonikov's Addition). It can be represented as follows :

Step (I)
$$CH_3 - CH = CH_2 + CI \xrightarrow{slow} \stackrel{\textcircled{El}\Pi}{\longrightarrow} CH_3 - CH - CH_2$$

 $CH_3 - CH = CH_2 + CI \xrightarrow{slow} \stackrel{\textcircled{El}\Pi}{\longrightarrow} CI$
 $CH_3 - CH - CH_2$
Step (II) $CI + OH \xrightarrow{Fast} \stackrel{\textcircled{C}\Pi}{\longrightarrow} OH CI$

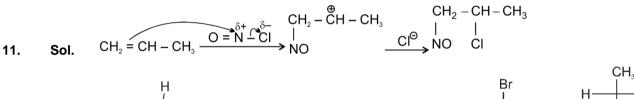

3. Sol. –NO₂ group is electron attractive group, so it deactivates the benzene ring largly, –CI atom is also deactivate the benzene ring but this deactivation is lower to –NO₂ group; while –CH₃ group activates they have the following order of electrophilic attraction (because more activated group attracts electrophile easily)

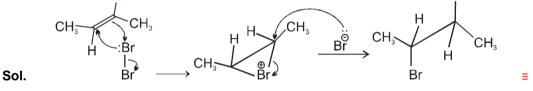
4. Sol. D CH₃ is more stable free radical among all other free radicals because t-alkyl free radical is more stable than secondary or primary alkyl free radical (Based upon hyperconjugation)

5. Sol. Addition of bromine to an alkene is an anti addition a symmetrical trans alkene on anti addition forms a meso compound. Also in addition of alkene first of all Br^o attacks therefore it is an electrophilic addition.

6. Sol. Ph - C = C - CH₃
$$\xrightarrow{H}$$
 Ph \xrightarrow{Ph} CH₃ $\xrightarrow{H_{2O}}$ CH₃ $\xrightarrow{H_{2O}}$ CH₃ \xrightarrow{Ph} CH₃ $\xrightarrow{H_{2O}}$ CH₃ $\xrightarrow{CH_3}$ CICH₂ $\xrightarrow{CH_3}$ CICH₃ $\xrightarrow{CH_3}$ CH₃ \xrightarrow

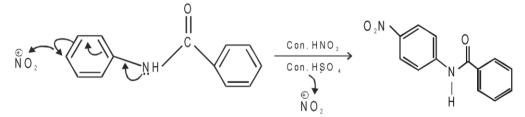
Fe/Br₂

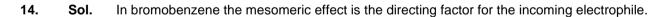

Major Product



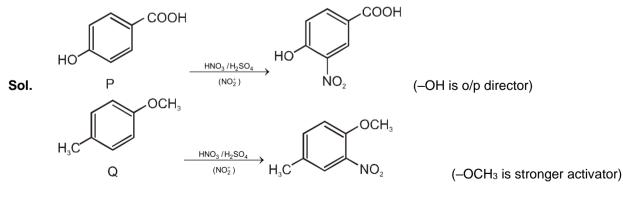
It is electrophilic substitution, so electrophile must be attached on o/p-position due to higher electron density on these position. In this ring the attached –NH–group will have high electron density due to resonance and ortho position is blocked, so electrophile is attached on para position.

R


+ HBr

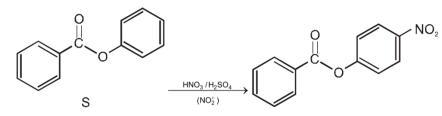


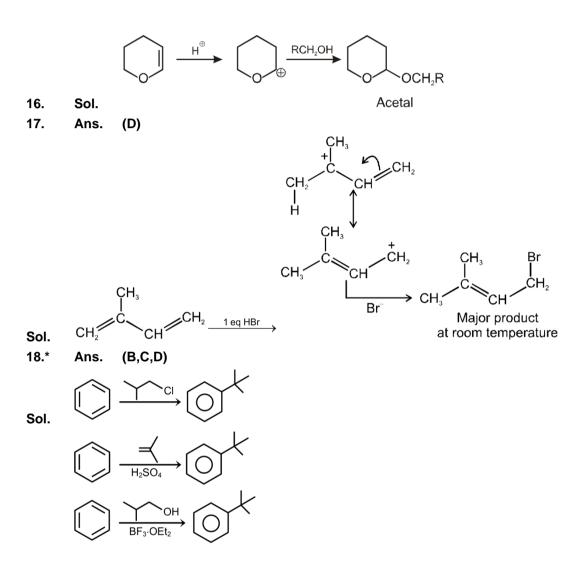
12.



Sol.

Note : (–NH– part is p-directing).


15.


- Br

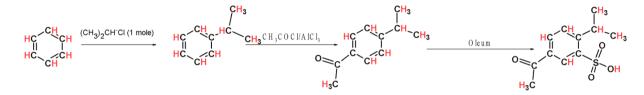
Br

ĊH₃ (meso)

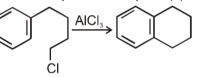
(Substitution takes place in activated ring on least crowded p-position)

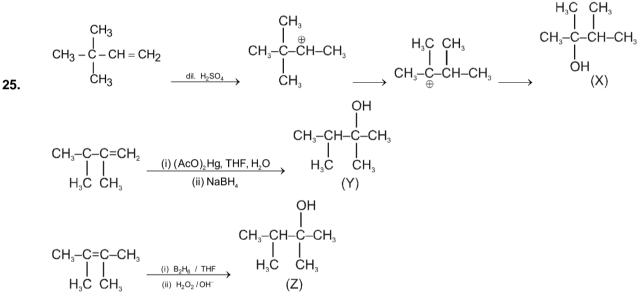
APSP Solutions

PART-I

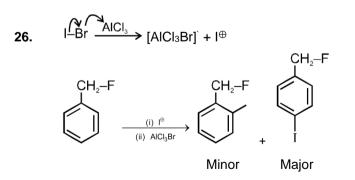

- **1.** It is allylic substitution reaction.
- 2. Reaction A is free radical addition reaction and all are electrophilic addition reactions.
- 6. Rate of nitration at benzene does not affect by H or D because H or D leave in the fast step.

1


7. EAS $\propto \overline{EWG}$ on Benzene ring.


- 8. In presence of +M effect rate of mononitration increase and in presence of -M effect rate will decreases.
- **14.** As in previous question.

16.

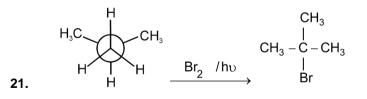


23. Reaction is possible in option (3) only.

All products are identical.

29. In the presence of peroxide, HBr undergoes free radical addition and HCl undergoes electrophilic addition, because of H–Cl bond have high bond energy.

- 8. It is Friedal-Crafts reaction and is used for the preparation of diphenylmethane.
- **9.** Formation of carbocation is the rate determining step.
- 10. Oxymercuration-Demercuration take place.(Addition of –OH takes place according to Markovnikoff's rule)
- **11.** Most stable alkene less heat of hydrogenation.
 - $a \rightarrow 4 \alpha H$
 - b
 ightarrow 10 lpha H
 - $c \rightarrow 6\alpha H$
 - $d \to 3 \alpha H$
- **12.** All alkyne on catalytic hydrogenation give 3-ethylhexane.


 $\longrightarrow C = C + H \xrightarrow{\oplus \Theta}_{NaNH_2} \longrightarrow C = C + G = C$ 13.

14. Addition of CH₃OH, according to Markovnikoff's rule take place.

16. In anti addition, trans reactant will give meso.

OCH₃

- **17.** Addition of water by oxymercuration reduction without rearrangement.
- **18.** Product will have two chiral carbon, so total product will be $2^n = 2^2 = 4$.
- 19. Conceptual

