High Level Problems (HLP)

PART - I : DIFFERENTIATION

Find the derivative of functions using quotient rule. $x^{2} - 4$ $g(x) = \overline{x + 0.5}$ 1. 2. Suppose u and v are differentiable functions of x and that u(1) = 2, u'(1) = 0 $v(1) = 5 \quad v'(1) = -1.$ Find the values of the following derivatives at x = 1. (b) $\frac{d}{dx} \left(\frac{u}{v}\right)$ d d (d) $\frac{d}{dx}$ (7v – 2u). (c) dx (a) ^{dx} (uv) ds 1+cosect sint Find \overline{dt} , s = $\overline{1 - cosect}$ 1-cost 4. 3. dy Find dx as a function of x. $y = sin^3 x$ $y = 5 \cos^{-4} x.$ 5. 6. Find the derivatives of the functions 7. $r = (cosec\theta + cot\theta)^{-1}$ $r = -(\sec\theta + \tan\theta)^{-1}$ 8. **PART - II : INTEGRATION**

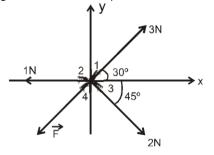
Find an antiderivative for each function. Do as many as you can mentally. Check your answer by differentiation.

1. (a) csc x cot x (b) - csc 5x cot 5x (c) - π csc $\frac{\pi x}{2}$ cot $\frac{\pi x}{2}$

2. (1 +2 cos x)²

``

Evaluating Integrals. Check your answers by differentiation.


3.
$$\int \left(\frac{\sqrt{x}}{2} + \frac{2}{\sqrt{x}}\right)_{dx} 4.$$
$$\int \left(\frac{8y - \frac{2}{y^{1/4}}}{y^{1/4}}\right)_{dy} 5.$$
$$\int 2x(1 - x^{-3})_{dx}$$

6.
$$\int (-3 \csc^2 x)_{dx} 7.$$
$$\int \left(-\frac{\sec^2 x}{3}\right)_{dx} 8.$$
$$\int \frac{\csc \theta \cot \theta}{2}_{d\theta}$$

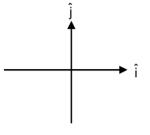
9.
$$\int \frac{2}{5} \sec \theta \tan \theta_{d\theta} 10.$$
$$\int (4 \sec x \tan x - 2 \sec^2 x)_{dx}$$

11.
$$\int \frac{1}{2} (\csc^2 x - \csc x \cot x)_{dx} 12.$$
$$\int (\sin 2x - \csc^2 x)_{dx} 13.$$
$$\int (2\cos 2x - 3\sin 3x)_{dx} 14.$$
$$\int 4\sin^2 y_{dy}$$

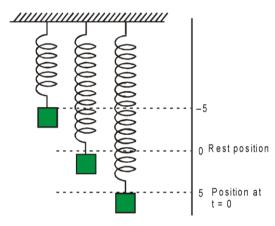
15.
$$\int \frac{\csc \theta}{\csc \theta - \sin \theta}_{d\theta}$$

Evaluate Integrals by substitution method.

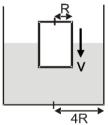
16.
$$\int \frac{1}{\sqrt{5s+4}} \, ds$$
 17. $\int 3y\sqrt{7-3y^2} \, dy$ **18.** $\int \sin^5 \frac{x}{3} \cos \frac{x}{3} \, dx$


Mathematical Tools $\int r^2 \left(\frac{r^3}{18} - 1\right)^5$ $\int r^4 \left(7 - \frac{r^5}{10}\right)^3 dr$ $\int \tan^7 \frac{x}{2} \sec^2 \frac{x}{2} dx$ 21. 19. 20. $\int \csc\left(\frac{\upsilon-\pi}{2}\right) \cot\left(\frac{\upsilon-\pi}{2}\right)$ $\int x^{1/3} \sin(x^{4/3} - 8) dx$ 23. 22. $\int \frac{1}{t^2} \cos\left(\frac{1}{t} - 1\right)$ secztanz $\int \sqrt{\cot y} \csc^2 y dy$ √secz 24. 25. 26. Find the definite integrals of following Functions 3/2 ∫ 1/2 27. (–2x +4) dx 28. Evaluate definite integrals of following Functions x² dx 29. $\theta^2 d\theta$ 30. **PART - III : VECTOR**

- 1. Four forces of magnitudes P, 2P, 3P and 4P act along the four sides of a square ABCD in cyclic order. Use the vector method to find the resultant force .
- 2. A sail boat sails 2km due East, 5km 37^o South of East and finally has an unknown displacement. If the final displacement of the boat from the starting point is 6km due East, the third displacement is _____.
- **3.** The resultant of two vectors **u** and **v** is perpendicular to the vector **u** and its magnitude is equal to half of the magnitude of vector **v**. Find the angle between **u** and **v**.
- **4.** Let the resultant of three forces of magnitude 5N, 12N & 13N acting on a body be zero. If sin 23° = (5/13), find the angle between the 5N force & 13N force.
- 5. Two vectors $\vec{A} \otimes \vec{B}$ have the same magnitude. Under what circumstances does the vector $\vec{A} + \vec{B}$ have the same magnitude as $|\vec{A}|$ or $|\vec{B}|$. When does the vector difference $\vec{A} \cdot \vec{B}$ have this magnitude.
- 6. The resultant of \vec{P} and \vec{Q} is \vec{R} . If magnitude of \vec{Q} is doubled, magnitude of resultant is also doubled, when direction of \vec{Q} is reversed from initial condition then magnitude of resultant is again doubled, find P: Q: R.
- 7. If five consecutive sides of a regular hexagon represent five unit vectors acting in the same sense, find their resultant vector. (taking first side on x-axis)
- 8. Four ants 1, 2, 3 and 4 are pulling a grain with force of magnitudes 3 N, 1N, 2N and $|\vec{F}|$ N as shown in the figure. Find force \vec{F} if the grain remains in equilibrium under the action of the above forces.



Mathematical Tools


9. An insect moves in a circular path of radius R. If it rotates through an angle θ , find its displacement means $\vec{s} = \Delta \vec{r}$, where $\Delta \vec{r}$ is "the change in position vector".

- **10.** Find the vector equation of a line which is parallel to a given vector \vec{A} and passes through a given point P having position vector $\vec{r_0}$.
- 11. By using the concept of scalar product prove that $|\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2|\vec{A}||\vec{B}|\cos\theta}$.
- **12.** The vector \vec{A} varies with time as $\vec{A} = t\hat{i} \sin \pi t\hat{j} + t^2\hat{k}$. Find the derivative of the vector at t = 1.
- **13.** A body hanging from a spring (fig.) is stretched 5 units beyond its rest position and released at time t = 0 to oscillate up and down. Its position at any later time t is $s = 5 \cos t$. What are its velocity and acceleration at time t?

14. A cylinder of radius R is moving down with speed v into water placed in a cylinder of radius 4R as shown. Find the rate by which

- (a) Water surface is rising
- (b) Wet surface area of cylinder of radius R is increasing.
- 15._ Find the maximum area of the rectangle that can be inscribed in a circle of radius r?

Mathematical Tools

HLP Answers									
			PART – I						
	$x^{2} + x + 4$				$\frac{-2 \operatorname{cosec} t \operatorname{cot} t}{(1 - \operatorname{cosec} t)^2}$				
1.	$g'(x) = \frac{\frac{x^2 + x + 4}{(x + 0.5)^2}}{1}$	2.	(a) -2 (b) $\frac{2}{25}$ (c) $-\frac{1}{2}$ (d) -7	3.	$(1-\operatorname{cosec} t)^2$				
	$\frac{ds}{dt} = \frac{1}{\cos t - 1}$	_			$\frac{dy}{dx}$				
4.	dt = cost - 1 $cosec\theta$	5.	3 sin² x (cos x) secθ	6.	$dx = 20 \sin x \cos^{-5} x$				
7.	$\cot \theta + \csc \theta$	8.	$\overline{\sec\theta + \tan\theta}$						
PART – II									
	$\frac{1}{2}$) + C (c) 2 csc $\left(\frac{\pi x}{2}\right)$ + C						
1.	3	csc (5x) + C (c) $2 \csc(2)$ + C	2.	3x + sin 2x + 4 sin x + C				
	$\frac{x^{\frac{1}{2}}}{3} + 4x^{1/2} + C$		$4y^2 - \frac{8}{3}y^{3/4} + C$		$x^2 + \frac{2}{x} + C$				
3.	3 + 4x ^{1/2} + C	4.		5.					
6.	3 cot x + C	7.	$\frac{-\tan x}{3}$ + C	8.	$-\frac{1}{2}\csc\theta + C$				
	$\frac{2}{5} \sec \theta + C$				$-\frac{1}{2}\cot x + \frac{1}{2}\csc x + C$				
9.		10.	4 sec x – 2 tan x + C	11.	$= 2 \cot x + 2 \csc x + C$				
12.	$-\frac{1}{2}\cos 2x + \cot x + C$	13.	sin 2x + cos 3x + C	14.	2y – sin 2y +C				
			$\frac{2}{5}$ (5s + 4) ^{1/2} + C	17.	$-\frac{1}{3}(7-3y^2)^{3/2}+C$				
15.	$\tan \theta + C$	16.		17.	$-\frac{3}{(7-3y^2)^{3/2}}+C$				
18.	$\frac{1}{2}\sin^6\left(\frac{x}{3}\right)$ + C	40	$\frac{1}{4} \frac{x}{\tan^8 2} + C$	20.	$\left(\frac{r^3}{18}-1\right)^6 + C$				
18.		19.		20.					
21.	$-\frac{1}{2}\left(7-\frac{r^{5}}{10}\right)^{4}+C$	22.	$\frac{3}{-4}\cos(x^{4/3}-8)+C$	23.	$-2 \csc \left(\frac{\upsilon - \pi}{2}\right) + C$				
£1.									
24.	$-\frac{2}{3}$ (cot ³ y) ^{1/2} + C	25.	$2^{\sqrt{\text{sec } z}} + C$	26.	$-\sin\left(\frac{1}{t}-1\right)$ + C				
					$\frac{\pi^3}{24}$				
27. 30.	Area = 2 square units 9b ³	28.	Area = 2.5 square units	29.	24				

PART – III

- 1. $2\sqrt{2}$ P 2. 3 km in North 3. 150° 4. 113° 5. 3 km in North 3. 150° 5. 3 km in North 3. 150° 5. 3 when it is 60° 6. $P:Q:R=\sqrt{2}:\sqrt{3}:\sqrt{2}$ 7. $\vec{A_{3}} = \frac{1}{2}(-\hat{i}+\sqrt{3}\hat{j})$ 8. $F_{4} = \sqrt{x^{2}+y^{2}} = \sqrt{\left(\frac{3\sqrt{3}}{2}+\sqrt{2}-1\right)^{2}+\left(\frac{3}{2}-\sqrt{2}\right)^{2}}$ N, $\varphi = \tan^{-1}\left[\frac{3-2\sqrt{2}}{3\sqrt{3}+2\sqrt{2}-2}\right]$ $\vec{A} = \frac{\theta}{2}$ N, $\varphi = \tan^{-1}\left[\frac{\theta}{2}-\sqrt{2}\right]$
- 9. The magnitude of displacement = $|\Delta \vec{r}| = 2Rsin^{\frac{\nabla}{2}}$. The direction of $\Delta \vec{r}$ is given as $\beta = \frac{\pi}{2} + \frac{\theta}{2}$ 10. $\vec{r} = \vec{r_0} + n\hat{a}$ 12. $\hat{i} + \pi\hat{j} + 2\hat{k}$

Mathematical Tools									
13. 15.	Velocity : $-5 \sin t$, Acceleration : $-5 \cos t$ A _{max} = $2r^2$.	14.	(a) $\frac{dh}{dt} = \frac{v}{15}$	(b) $\frac{32 \pi R \nu}{15}$					