Self Practice Paper (SPP)

- 1. A sphere of radius 1 cm has potential of 8000 V. The energy density near the surface of sphere will be: (1) $64 \times 10_5 \text{ J/m}_3$ (2) $8 \times 10_3 \text{ J/m}_3$ (3) 32 J/m_3 (4) 2.83 J/m_3
- 2. In the above question, the electric force acting on a point charge of 2 C placed at the origin will be : (1) 2 N (2) 500 N (3) -5 N (4) -500 N
- 3. Figure shows two large cylindrical shells having uniform linear charge densities $+ \lambda$ and λ . Radius of inner cylinder is 'a' and that of outer cylinder is 'b'. A charged particle of mass m, charge q revolves in a circle of radius r. Then, its speed 'v' is : (Neglect gravity and assume the radii of both the cylinders to be very small in comparison to their length.)

- A charge q is uniformly distributed over a large plastic plate. The electric field at a point P close to the centre and just above the surface of the plate is 50 V/m. If the plastic plate is replaced by a copper plate of the same geometrical dimensions and carrying the same uniform charge q, the electric field at the point P will become:

 (1) zero
 (2) 25 V/m
 (3) 50 V/m
 (4) 100 V/m
- 5. A point charge q is brought from infinity (slowly so that heat developed in the shell is negligible) and is placed at the centre of a conducting neutral spherical shell of inner radius a and outer radius b, then work done by external agent is:

6. The magnitude of electric force on 2μc charge placed at the centre O of two equilateral triangles each of side 10 cm, as shown in figure is P. If charge A, B, C, D, E & F are 2μc, 2μc, 2μc, -2μc, -2

7. A tiny spherical oil drop carrying a net charge q is balanced in still air with a vertical uniform electric field $\frac{81\pi}{10^5} \times 10^5$

of strength 7 Vm-1. When the field is switched off, the drop is observed to fall with terminal

Electrostatics

velocity 2×10^{-3} m s⁻¹. Given g = 9.8 m s⁻², viscosity of the air = 1.8×10^{-5} Ns m⁻² and the density of oil = 900 kg m⁻³, the magnitude of q is : (1) 1.6×10^{-19} C (2) 3.2×10^{-19} C (3) 4.8×10^{-19} C (4) 8.0×10^{-19} C

8. Identical charges (-q) are placed at each corners of a cube of side b, then the electrostatic potential energy of charge (+q) placed at the centre of the cube will be :

$$\begin{array}{cccc} & & & & & & \\ (1) & -\frac{4\sqrt{2}q^2}{\pi\varepsilon_0} & & & & \\ (2) & & & & \\ \end{array} \begin{array}{c} & & & & & \\ \hline & & & & \\ \end{array} \begin{array}{c} & & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ \end{array} \begin{array}{c} & & & \\ \end{array} \begin{array}{c} & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ \end{array} \begin{array}{c} & & & \\ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ \end{array} \end{array}$$

9. Three charges Q, +q and +q are placed at the vertices of a right – angled isosceles triangle as shown. The net electrostatic energy of the configuration is zero if Q is equal to :

10. Six point charges are kept at the vertices of a regular hexagon of side L and centre O, as shown in the $K = \frac{1}{q}$

figure. Given that $\frac{\kappa - \frac{1}{4\pi\epsilon_0}L^2}{L^2}$, which of the following statement (s) is incorrect?

- (1) The elecric field at O is 6K along OD
- (2) The potential at O is zero
- (3) The potential at all points on the line PR is same
- (4) The potential at all points on the line ST is same.
- **11.** Two non-conducting solid spheres of radii R and 2R, having uniform volume charge densities ρ_1 and ρ_2 respectively, touch each other. The net electric field at a distance 2R from the centre of the smaller

 ρ_1

sphere, along the line joining the centres of the spheres, is zero. The ratio ρ_2 can be ;

(1)
$$-4$$
 (2) 2 (3) $\frac{32}{25}$ (4) 4

12. Let $E_1(r)$, $E_2(r)$ and $E_3(r)$ be the respective electric fields at a distance r from a point charge Q, an infinitely long wire with constant linear charge density λ , and an infinite plane with uniform surface charge density σ . if $E_1(r_0) = E_2(r_0) = E_3(r_0)$ at a given distance r_0 , then

6.

7.

The given figure shows force diagram for charge at O due to all other charges with r = $\sqrt{3}$ cm \therefore F_{net} = 2F + 4F cos 60° = 4F

$$\frac{4k(2\mu c)(2\mu c)}{\left(\frac{10}{\sqrt{3}100}\right)^2} = \frac{4 \times 9 \times 10^9 \times 2 \times 2 \times 10^{-12}}{\left(\frac{1}{300}\right)}$$

= $36 \times 4 \times 300 \times 10_{-3}$ N = 43.2 N. (Towards E)

10

- In equilibrium, mg = qEIn absence of electric field, $mg = 6\pi\eta rv$ $qE = 6\pi qrv$ \Rightarrow qE 4 $m = \overline{3} \pi Rr_3 d. = g$ $\frac{4}{3}\pi$ qE qE d 6πην g After substituting value we get, q = 8 × 10–19 C Ans.
- 8. Electrostatic potential energy of charge +q placed at the centre of cube is a^2

9. Net electrostatic energy of the configuration will be

$$U = 8 \times \frac{1}{4\pi\epsilon_0} \times \frac{q(-q)}{kalf - diagonal distace} = 8 \times \frac{1}{4\pi\epsilon_0} \frac{q^{-q^{-1}}}{b\sqrt{3}} = \frac{-4q^2}{\sqrt{3}\pi\epsilon_0 b}$$
9. Net electrostatic energy of the configuration will be

$$U = K \begin{bmatrix} q.q + Q.q \\ a + \sqrt{2a} + Q.q \\ d = \sqrt{2a} \end{bmatrix} \text{Here } K = \frac{1}{4\pi\epsilon_0}$$

$$U = 0 \text{ gives}$$

$$Q = \frac{-2q}{2 + \sqrt{2}}$$

$$\frac{q}{\sqrt{2} + \sqrt{2}} = \frac{-q}{\sqrt{2} + \sqrt{2}}$$
10. E₀ = 6 K (along OD)
V₀ = 0
Potential on line PR is zero

11.

At point P

If resultant electric field is zero

then

$$\frac{\mathrm{KQ}_{1}}{\mathrm{4R}^{2}} = \frac{\mathrm{KQ}_{2}}{\mathrm{8R}^{3}}\mathrm{R}$$

<u>ρ</u>1

 $\rho_2 = 4$

At point Q

If resultant electric field is zero

then

$$\frac{KQ_1}{4R^2} + \frac{KQ_2}{25R^2} = 0$$
$$\frac{\rho_1}{\rho_2} = -\frac{32}{25} \quad (\rho_1 \text{ must be negative})$$

12.
$$\frac{Q}{4\pi \in_{0} r_{0}^{2}} = \frac{\lambda}{2\pi \in_{0} r_{0}} = \frac{\sigma}{2 \in_{0}}$$

$$Q = \frac{2\pi\sigma r_{0}^{2}}{\pi\sigma}$$
A incorrect
$$r_{0} = \frac{\lambda}{\pi\sigma}$$
B incorrect
$$E_{1}\left(\frac{r_{0}}{2}\right) = \frac{4E_{1}(r_{0})}{1}$$

$$E_{2}\left(\frac{r_{0}}{2}\right) = 2E_{2}(r_{0}) \Rightarrow$$
C correct
$$E_{3}\left(\frac{r_{0}}{2}\right) = E_{3}(r_{0}) = E_{2}(r_{0})$$
D incorrect