Exercise-1

Marked Questions are for Revision Questions.

ONLY ONE OPTION CORRECT TYPE

SECTION - A # Introduction, Glycolysis and Fermentation

1. ა.	How many ATPs are (1) 8 ATP	produced through anae (2) 4 ATP	erobic respiration (3) 3 ATP	(4) 2 ATP
2.	Which of the following (1) Collenchyma	g shows higher rate of r (2) leaf	respiration (3) Dry seeds	(4) Germinating seeds
3.	Respiration differs fro (1) Energy is released (3) Enzymes are invo	·	of the following (2) Substance is oxi (4) All the above	dised
4.	Protein is used as res (1) Carbohydrates are (3) Both exhausted	piratory substrate only e exhausted	(2) Fats are exhaust	ted ydrates are abundant
5.	Different steps in resp (1) Auxin	oiration are controlled b (2) Sugar	y (3) Enzyme	(4) Kinetin
6.	Respiration occurs (1) Only in non-green (3) In all living cells be	_	(2) Only in non-gree (4) In all living cells	n cells both in light and dark only in light
7.ъ.	How many ATPs are (1) One	used in phosphorylatio	n of glucose (3) Three	(4) Four
8.bs	In anaerobic glycolysi (1) Four	s, net gain of ATP is (2) Two	(3) Eight	(4) None of the above
9.	Calculate total produc	etion of ATP in aerobic (2) four	glycolysis (3) Eight	(4) Ten
10.	Glycolysis occurs in (1) Mitochondria	(2) Golgi body	(3) Cytoplasm	(4) Chloroplast
11.	The end product of ar (1) Pyruvic acid	naerobic respiration in p	plants is (3) Ethyl alcohol	(4) Methyl alcohol
12.	Which group of the fo (1) Embden, Meyerho (3) Embden, Morrison	of and Parnas	vered the EMP pathway (2) Emerson, Hoffm (4) Avery, Macleod	an and Petrison
13.১৯.	Which is not true for g (1) End product is CC (3) Production of ATP	0 ₂ , H ₂ O	(2) Substrate level p	

14.🔈	Which of the following				
	(1) Phosphoenol pyr	uvic acid	(2) Pyruvic acid		
	(3) Both (1) and (2)		(4) None of these		
15.	The full form of NAD	is			
	(1) Nicotine adenosi	ne diphosphate	(2) Nicotinamide ade	enosine dinucleotide	
	(3) Nicotinamide ade	enine dinucleotide	(4) Nicotinamide ade	enine diphosphate	
16.	Vinegar is synthesize	ed from the alcohol by			
	(1) Lactobacillus bac	cteria	(2) Bacilli aceti bacte	eria	
	(3) Azotobacter		(4) Rhizobium		
17.	Anaerobic process a	after glycolysis is called			
	(1) TCA	(2) Calvin cycle	(3) Krebs cycle	(4) Fermentation	
18.	The tissue of highes	t respiratory activity is			
	(1) Meristems	(2) Ground tissue	(3) Pholem	(4) Mechanical tissue	
19.১	The high-energy bor	nd of ATP are between			
	(1) C-C	(2) C-O	(3) C-N	(4) O-P	
20.	Which of the following	ng involves the loss of two	protons and two electro	ons	
	(1) Deamination	(2) Dehydrogenation	(3) Carboxylation	(4) None of these	
21.	Which of the following	ng is the first step of glycol	lysis		
	(1) Breakdown of glu	-	(2) Phosphorylation	of glucose	
	(3) Conversion of glu	ucose into fructose	(4) Dehydrogenation	of glucose	
	OFOTION D#A		l :	Kasha ayala Tamalasi	
		•		Krebs cycle, Terminal piratory balance sheet	
	Oxidation, i	•	way, Respiratory (•	
4	When in NADU LU+ r			•	
1.		not formed in Kreb's cycle of oxalosuccinic acid fron			
	, ,	of succinyl Co-A from α -k			
	, ,	of fumaric acid from succ	•		
	` '	of oxaloacetic acid from			
2.	How many molecule	s of ATPs are formed fron	n one Acetyl Co-A throi	ugh Krebs cycle?	
	(1) 15	(2) 12	(3) 8	(4) 4	
3.	How many NADH H	+ are formed from pyruvic	acid		
J.	(1) Two	(2) Three	(3) Four (4) Five		
	. ,	. ,	, ,	(',' ' ' ' '	
4.	•	e phosphorylation are four			
	(1) Endoplasmic retion(3) Mitochondria	Culum	(2) Chloroplast(4) Golgi bodies		
5.		sential for the synthesis o			
J.	(1) TPP	(2) Mg ⁺² & Co- A	(3) Lipoic acid	(4) All the above	
	(.,	(=)g & 00 / ((0) =100.0 0010	(1) / 110 00000	

6.	Which one of the follow	ving enzyme absent in m	itochondria	
	(1) Fumarase		(2) Hexokinase	
	(3) Malic dehydrogenas	se	(4) Aconitase	
7.	Which complex is form	ed by Cyt. a and Cyt.a ₃		
	(1) Complex-I	(2) Complex-II	(3) Complex-III	(4) Complex–IV
8.	(1) Any part of the men	nbrane y particles/oxysomes of ı	m outside of inner memb	rane of mitochondria
9.≽.	Terminal electron acce (1) Cytochrome a - a ₃	•	(3) Cytochrome	(4) Ubiquinone
10.2	Which transfer electron (1) Phytochromes	ns in ETS (2) F ₁ particles	(3) Fe - S	(4) Cytochromes
11.	The last or terminal cyt (1) Cyt b	ochrome in respiratory o	hain is (3) Cyt a	(4) Cyt c
12.3	The enzymes for electron (1) Plastids (3) Ribosomes	on transport system are	located in the (2) Endoplasmic reticul (4) Mitochondria	lum
13.	What is the R.Q. of pro	teins, generally? (2) Less than one	(3) More than one	(4) Infinite
14.	What is the R.Q. of org	anic acids, generally? (2) Less then one	(3) More than one	(4) Zero
15.24	(1) Requirement of O respiration takes p(2) O₂ requirement de	2 increases but due to lace by anaerobic respira	ation ailablity of more O ₂ than	partial replacement of aerobic
16.	R.Q. of germinating section (1) 1	ed of castor is (2) > 1	(3) < 1	(4) 0
17.	R.Q. of malic acid is (1) 0.7	(2) 1	(3) 1.33	(4) 4
18.3	"Mitchell's chemiosmot (1) Krebs cycle (3) Glycolysis	ic theory" belongs to	(2) Oxidative phosphor(4) None of the above	ylation

19.	TPP means (1) Thiamine pyrophos (3) Thymine pentaphos	•	(2) Thymine pyrophos (4) None of these	phate
20.	Cytochrome is related (1) Cellular digestion	to (2) Protein synthesis	(3) Cell division	(4) Cellular respiration
21.๖	Which of the following (1) Oxysome	is the phosphorylating u (2) Mesosome	nit (3) Peroxisome	(4) Mitochondria
22.	The details of tricarbox (1) Meischer	cylic acid path was worke (2) Hans krebs	ed out by (3) Pasteur	(4) None of these
23.	The number of carbon (1) 8	atom in citric acid is (2) 6	(3) 10	(4) 2
24.2	During one Krebs' cycl	le number of CO_2 molect (2) 2	ules released is - (3) 3	(4) 4
25.	FAD is electron accept (1) α - Ketoglutarate — (3) Succinyl CoA → su	•	nich of the following (2) Succinic acid → Form (4) Fumaric acid → m	
26.2	Which one is not corre (1) It is also called citri (2) The intermediate correction (3) It occurs in mitoched (4) It starts with six can	c acid cycle ompound which links gly ondria	colysis with Krebs cycle	is malic acid
27.৯	Krebs' cycle starts with (1) Malic acid and ace (3) Fumaric acid and p		bon compounds by reac (2) Succinic acid and (4) Acetyl CoA and ox	pyruvic acid
28.	Food is converted to e (1) Chloroplast (3) Mitochondria	nergy in	(2) Nucleus (4) None of the above	
29.	 (1) Isocitric acid → Ox (2) Oxalosuccinic acid (3) α - Ketoglutaric acid 	is correct sequence in K alosuccinic acid $\rightarrow \alpha$ - Ke \rightarrow Isocitric acid $\rightarrow \alpha$ - Ked \rightarrow Isocitric acid \rightarrow Oxa Ketoglutaric acid \rightarrow Oxa	etoglutaric acid etoglutaric acid alosuccinic acid	
30.≽⊾	Oxidative phosphoryla (1) Cytochrome	tion and photophosphory (2) Oxygen	ylation both require the e	electron carrier (4) Water
31.	Which of the following acid (1) ADP	energy storing compoun	nd is formed when succir	nyl CoA is converted into succinio

32.	(1) Mitochondrion	e phosphate pathway (PF some and mitochondrion	(2) Cytoplasm on (4) Chloroplast, glyoxysome and mitochondrion					
33.	The value of RQ at cor(1) Unity	mpensation point is (2) Infinity	(3) > 1	(4) Zero				
34.	The respiratory quotien (1) The nature of enzy (3) The amount of carb		on would depend on (2) The nature of the substrate (4) The amount of oxygen utilised					
35.≿⊾	The correct relationshi (1) Glucose > Fats > 0 (3) Fats > Glucose > 0	•	Quotient is (2) Glucose < Fats < Organic acid (4) Fats < Glucose < Organic acid					
36.	R.Q (respiratory quotient) is defined as (1) Volume of CO_2 evolved = volume of O_2 consumed (2) $\frac{\text{Volume of } O_2 \text{ consumed}}{\text{Volume of } CO_2 \text{ evolved}}$ (3) $\frac{\text{Volume of } CO_2 \text{ evolved}}{\text{Volume of } O_2 \text{ consumed}}$ (4) $\frac{\text{Volume of } O_2 \text{ evolved}}{\text{Volume of } CO_2 \text{ consumed}}$							
		MISCELLANEO	US QUESTIONS	<u> </u>				
1.≽.	The pyruvic acid forme	ed in glycolysis is oxidized	to CO ₂ and H ₂ O in a c	ycle called				
	(1) Calvin cycle	(2) Hill reaction	(3) Krebs cycle	(4) Nitrogen cycle				
2.	R.Q. of fatty acids is (1) 1.5	(2) 0.7	(3) 2.8	(4) 3.2				
3.3	In respiration, which of (1) 38 ATP	the following is obtained (2) 38 AMP	from glucose $+6O_2 + 36$ (3) 28 ADP	8ADP + 38 ip (4) 28 AMP				
4.	RQ of sprouting potato (1) 1	o is (2) > 1	(3) < 1	(4) Zero.				
5.	Before combining with (1) Succinic acid	OAA, pyruvic acid is cha (2) Malic acid	nged into (3) Acetyl Co-A	(4) Citric acid				
6.≽.	What is the effect on ra		ne amount of CO ₂ increases (2) Unchanged (4) Firstly increase and finally decrease					
	(3) Respiration will ded	crease	(4) Firstly increase and	d finally decrease				

8.zs	Number of ATP molecu	ules produced by each N	ADH is			
	(1) 3	(2) 2	(3) 1	(4) 5		
9.	Ganong's respiroscope (1) Heat during respira (3) CO ₂ during ferment		strating (2) CO ₂ during aerobic respiration (4) evolution of oxygen during photosynthesis			
10.29.	(2) Increase of ferment	ntation in presence of oxy tation in presence of oxyonation in presence of oxyonation	gen			
11.	R.Q. of anaerobic resp (1) Zero	iration is (2) infinite	(3) 1	(4) > 1		
12.2	Which of the following (1) Acetyl Co-A	is an important intermedi (2) Oxaloacetate	iate formed in all types of (3) Pyruvic acid	f respiration (4) Tricarboxylic acid		
13.	During glycolysis the bisphosphate are (1) 4					
14.	Single turn of cirtic acid (1) 2 FADH ₂ , 2NADH ₂ , (3) 1 FADH ₂ , 3NADH ₂ ,	d cycle yields 2 GTP	(2) 1 FADH ₂ , 2NADH ₂ , 1 GTP (4) 1 FADH ₂ , 4NADH ₂ , 1 GTP			
15.	Enzyme used in conve	rsion of glucose into gluc	cose 6-phosphate is (3) phosphokinase	(4) Phosphohexokinase.		
16.	(1) 1, 3-biphosphoglyce(2) Glucose 6-phospha(3) Succinly Co A →	g substrate level phospheric acid —→ 3-phosphote —→ Fructose 6-phospoucinic acid ic acid —→ pyruvic acid	glyceric acid			
17.	RQ of 4, 1 and 0.7 occ (1) Oxalic acid, carboh (3) Palmitic acid, carbo		(2) Tripalmitin, malic ac (4) Oxalic acid, carboh	•		
18.	Which is product of oxi	dative pentose phosphat (2) Acetyl CoA	te pathway (3) NADH ₂	(4) NADPH		
19.๖	Net gain of ATP molec (1) 12	ules per hexose during a (2) 18	erobic respiration is (3) 30	(4) 36		
20.	Plastocyanin contains (1) Copper	(2) iron	(3) Calcium	(4) Potassium		

Exercise-2

1.> Match the compounds given in Column I with the number of carbon atoms present in them which are listed under Column II. Choose the answer which gives the correct combination of alphabets of the two columns

Column I Column II (A) Oxaloacetate (p) 6-C compound (B) Phosphoglyceraldehyde (q) 5-C compound (C) Isocitrate (r) 4-C compound (D) α-ketoglutarate (s) 3-C compound (t) 2-C compound (A) (B) (C) (D) (1) s t q r (2) r s р q (3) r t р q (4) q t s р

- 2. Production of glucose from amino acids, fatty acids and glycerol is called
 - (1) Glycogenesis

(2) gluconeogenesis

(3) Glycogenolysis

- (4) Glycolysis
- 3. Why do fishes in an aquarium thrive better if green plants are growing there because they
 - (1) Inhale oxygen released by green plants
 - (2) Inhale carbon dioxide released by green plants
 - (3) Can feed on them
 - (4) Like green surrounding
- 4. In alcohol fermentation
 - (1) Oxygen is the electron acceptor
 - (2) NADH+H+ is the electron donor while acetaldehyde is the electron acceptor
 - (3) Triose phosphate is the electron donor while pyruvic acid is the electron acceptor
 - (4) There is no electron donor
- **5.** All of the following are four carbon compounds except

(NSEB 2011-2012)

(1) Malic acid

(2) Succinic acid

(3) Pyruvic acid

- (4) Oxaloacetic acid
- **6.** Hydrogen cyanide causes irreversible inhibition of cytochrome oxidase. If this compound is added to a preparation of intact mitochondria, which of the following would be expected?

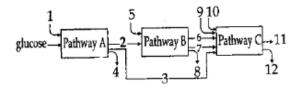
(NSEB 2009-2010)

(1) Fall in hydrogenation of molecular oxygen

(2) Rise in electrochemical gradient

(3) No change in ATP synthesis

(4) Inactivation of ATP synthetase


Exercise-3

PART - I: NEET / AIPMT QUESTION (PREVIOUS YEARS)

1.	Two names referring to	same thing are			(AIPMT-2003)
	(1) Krebs cycle and Ca	ılvin cycle	(2) Tricarboxylic acid c	ycle and citric a	acid cycle
	(3) Citric acid cycle and	d Calvin cycle	(4) Tricarboxlic acid an	d urea cycle.	
2. 🕾	In glycolysis, during ox (1) ATP (3) NAD+	idation electrons are rem	noved by (2) glyceraldehyde-3-p (4) molecular oxygen	(AIPMT-2004)	
3.		n warm weather become n dioxide from atmosphe	. •.	se of	(AIPMT-2004)
4.	Enzyme of TCA which prokaryotes is (1) Lactate dehydroge (3) Isocitrate dehydrog		nitochondrial membrane (2) Malate dehydrogen (4) Succinate dehydrog	ase	s and cytosol in (AIPMT-2007)
5.	Overall goal of glycolys (1) ATP in small stepw (3) Sugars	sis, Krebs cycle and elec	tron transport system is t (2) ATP in one large ox (4) Nucleic acid		(AIPMT-2007)
6.	A competitive inhibitor (1) α -ketoglutarate	of succinic dehydrogena (2) Malate	se is (3) Malonate	(4) Oxaloace	(AIPMT-2008) tate.
7.	Aerobic respiratory pat (1) Anabolic	hway is appropriately ter (2) Catabolic	med (3) Parabolic	(4) Amphiboli	(AIPMT-2009)
8.3	The energy-releasing acceptor is called (1) Fermentation	metabolic process in w (2) Aerobic respiration		ed without an (4) Glycolysis	(AIPMT-2010)
9.	The most common sub	estrate used in distilleries (2) Soya meal	for the production of eth (3) Ground gram	anol is (F (4) Molasses	re. AIPMT-2011)
10.	Ethanol is commerciall (1) Saccharomyces	y produced through a pa (2) Clostridium	rticular species of: (3) Trichoderma	(P) (4) Aspergillu	r e. AIPMT-2011) s
11.	In mitochondria, protor (1) Outer membrane (3) Intermembrane spa		(2) Inner membrane (4) Matrix	(AIP	MT Mains-2011)

- 12. Which one of the following is a wrong matching of a microbe and its industrial product, while the remaining three are correct? (AIPMT Mains-2011)
 - (1) Yeast statins

- (2) Acetobacter aceti Acetic acid
- (3) Clostridium butyricum lactic acid
- (4) Aspergillus niger citric acid
- 13.# The three boxes in this diagram represents the three major biosynthetic pathways in aerobic respiration and arrows represent net reactants or products. (NEET-2013)

Arrows numbered 4, 8 and 12 can all be:

- (1) ATP
- (2) H₂O
- (3) FAD+ or FADH₂
- (4) NADH
- **14.** In which one of the following processes CO₂ is not released?

(AIPMT-2014)

- (1) Aerobic respiration in plants
- (2) Aerobic respiration in animals

(3) Alcoholic fermentation

- (4) Lactate fermentation
- 15. Which of the following biomolecules is common to respiration-mediated breakdown of fats, carbohydrates and proteins? (NEET-2013, NEET-II-2016)
 - (1) Acetyl CoA

- (2) Glucose-6-phosphate
- (3) Fructose 1,6-bisphosphate
- (4) Pyruvic acid

16. Oxidative phosphorylation is

(NEET-II-2016)

- (1) formation of ATP by energy released from electrons removed during substrate oxidation
- (2) formation of ATP by transfer of phosphate group from a substrate to ADP.
- (3) oxidation of phosphate group in ATP
- (4) addition of phosphate group to ATP
- 17. Which statement is wrong for Krebs' cycle?

(NEET-2017)

- (1) there are three points in the cycle where NAD+ is reduced to NADH+H+
- (2) There is one point in the cycle where FAD+ is reduced to FADH2
- (3) During conversion of succinyl CoA to succinic acid, a molecule of GTP is synthesised
- (4) The cycle starts with condensation of acetyl group (acetyl CoA) with pyruvic acid yield citric acid
- **18.**_ Which of these statements is **incorrect**?

(NEET-2018)

- (1) Enzymes of TCA cycle are present in mitochondrial matrix.
- (2) Oxidative phosphorylation takes place in outer mitochondrial membrane.
- (3) Glycolysis operates as long as it is supplied with NAD+ that can pick up hydrogen atoms.
- (4) Glycolysis occurs in cytosol.

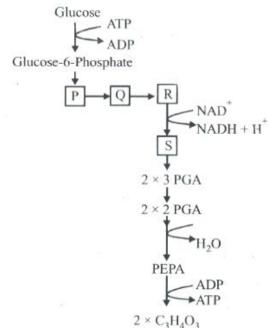
19	What is the role of NAD+ in cellular respiration?								
	(1) It functions as a	ın enzyme.							
	(2) It is the final ele	ctron acceptor for anaerobio	c respiration.						
	(3) It is a nucleotide	e source for ATP synthesis.							
	(4) It functions as a	in electron carrier.							
20.	Conversion of gluc	Conversion of glucose to glucose-6-phosphate, the first irreversible reaction of gly							
	by:			(NEE	T-1-2019)				
	(1) Phosphofructok	inase	(2) Aldolase						
	(3) Hexokinase		(4) Enolase						
21.	Respiratory Quotie	nt (RQ) value of tripalmitin is	s:	(NEE	T-1-2019)				
	(1) 0.09	(2) 0.9	(3) 0.7	(4) 0.07					
22.	Which of the follow	ing statements regarding m	itochondria is incorr	ect? (NEE	T-1-2019)				
	(1) Mitochondrial m	natrix contains single circula	r DNA molecule and	d ribosomes.					
	(2) Outer membran	e is permeable to monomer	s of carbohydrates,	fats and proteins.					
	(3) Enzymes of ele	ctron transport are embedde	ed in outer membra	ne. '					
	(4) Inner membran	e is convoluted with infolding	gs.						
23.	Where is the respir	atory electron transport syst	tem (ETS) located in	n plants? (NEE	T-2-2019)				
	(1) Mitochondrial m	natrix	(2) Outer mitocho	ondrial membrane					
	(3) Inner mitochono	drial membrane	(4) Intermembrar	ne space					
	DADT	- II : AIIMS QUEST	ION (DDEVIC	IIIS VEVDS I					
	- ANI	- II . AIIIIO QOLOI		- TEARO					
1.	Which one is the la	st electron acceptor over E	TC in oxidative phos	sphorylation	(AIIMS-2002)				
	(1) H ₂	(2) Cyt a ₃	(3) Cyt b	(4) CO ₂					
2.	Which of the follow	ing is the connecting link be	tween glycolysis an	nd Krebs cycle?	(AIIMS-2007)				
	(1) acetyl Co-A	(2) oxalosuccinic acid	(3) pyruvic acid	(4) citric acid					
3.≽.	Which of the follow	ing is true regarding the give	en electron transpo	rt chain?	(AIIMS-2009)				
	$CoQ \rightarrow Cyt c \rightarrow Cy$	$vt aa_3 \rightarrow O_2$							
	(1) $CoQ \rightarrow Cyt c is$	H ⁺ absorbing site							
	(2) $aa_3 \rightarrow O_2$, H ⁺ yie	elding site							
	(3) $CoQ \rightarrow Cyt c is$	H^+ yielding site and $aa_3 \rightarrow C$	D₂is H⁺ absorbing si	ite					
	(4) no H⁺is absorbe	ed or released							

- 4. All enzymes of TCA cycle are located in the mitochondrial matrix except one which is located in inner mitochondrial membrane in eukaryotes and in cytosol of prokaryotes. This enzyme is (AIIMS-2012)
 - (1) Succinate dehydrogenase
- (2) Lactate dehydrogenase

(3) Isocitrate dehydrogenase

- (4) Malate dehydrogenase
- 5.> In the electron transport chain during terminal oxidation, the cytochrome, which donates electrons to O₂ is (AIIMS-2012)
 - (1) Cytochrome-b
- (2) Cyt-c
- (3) Cyt-a₃
- (4) Cyt-f

6. $2(C_{51}H_{98}O_6) + 145 O_2 \rightarrow 102 CO_2 + 98 H_2O + Energy$


(AIIMS-2013)

The RQ of above reaction is

(1) 1

- (2) 0.7
- (3) 1.45
- (4) 1.62
- 7. Wine and beer are produced directly by fermentation whereas brandy and whisky require both fermentation and distillation. This is because (AIIMS-2014)
 - (1) fermentation is inhibited at an alcohol level of 10 18%
 - (2) distillation prolongs storage
 - (3) distillation improves quality
 - (4) distillation purifies the beverage
- **8.** Refer the figure and answer the question.

(AIIMS-2015)

	Р	Q	R	S
(1)	1,3 di PGA	3 PGALD	Fr. 1,6 di P	Fr. 6 P
(2)	3 PGALD	1,3 di PGA	Fr. 1,6 di P	Fr. 6 P
(3)	Fr. 1,6 di P	Fr. 6 P	3 PGALD	1,3 di PGA
(4)	Fr. 6 P	Fr. 1,6 di P	3 PGALD	1,3 di PGA

- 9. The chemiosmotic coupling hypothesis of oxidative phosphorylation proposes that adenosine triphosphate (ATP) is formed because (AIIMS-2016)
 - (1) A proton gradient forms across the inner mitochondrial membrane
 - (2) There is a change in the permeability of the inner mitochondrial membrane towards adenosine diphosphate (ADP)
 - (3) High energy bonds are formed in mitochondrial proteins
 - (4) ADP is pumped out of the matrix into the intermembrane space
- **10.** Which one is correct sequence occuring in glycolysis?

(AIIMS-2017)

(AIIMS-I-2018)

- (1) G-6-P \rightarrow PEP \rightarrow 3-PGAL \rightarrow 3-PGA
- (2) G-6-P \rightarrow 3-PGAL \rightarrow 3-PGA \rightarrow PEP
- (3) G-6-P \rightarrow PEP \rightarrow 3-PGA \rightarrow 3-PGAL
- (4) G-6-P \rightarrow 3-PGA \rightarrow 3-PGAL \rightarrow PEP
- 11._ Glycolysis is
 - (1) Anaerobic

- (2) Aerobic
- (3) Anaerobic and Aerobic both
- (4) None
- **12.**_ Which is required in glycolysis

(AIIMS-IV-2018)

- (1) ATP, ADP, NAD+, Glucose, cytoplasmic enzymes
- (2) FAD+, ADP, ATP, Glucose, cytoplasmic enzymes
- (3) NADP+, ATP, GTP, Glucose, cytoplasmic enzymes
- (4) NAD+, NADP+, ATP, Glucose, cytoplasmic enzymes
- **13.** Which is correct link reaction

(AIIMS-IV-2018)

- (1) Pyruvic acid + NAD+ + Co-A $\xrightarrow{\text{Pyruvate dehydrogenase}}$ Acetyl Co-A + NADH.H+ + CO₂
- (2) Pyruvic acid + FAD+ + Co-A $\xrightarrow{\text{Pyruvate dehydrogenase}}$ Acetyl Co-A + FADH.H+ + CO₂
- (3) Pyruvic acid + NADP+ + Co-A $\xrightarrow{\text{Pyruvate dehydrogenase}}$ Acetyl Co-A + NADPH.H+ + CO₂
- (4) Pyruvic acid + NAD⁺ + Co-A $\xrightarrow{\text{Pyruvate dehydrogenase}}$ Acetyl Co-A + NADH.H⁺

Answers

						EXER	CISE -	· 1					
SECT	ION - A	\											
1. 8. 15.	(4) (2) (3)	2. 9. 16.	(4) (4) (2)	3. 10. 17.	(3) (3) (4)	4. 11. 18.	(3) (3) (1)	5. 12. 19.	(3) (1) (4)	6. 13. 20.	(3) (1) (2)	7. 14. 21.	(2) (2) (2)
SECT	ION - B	}											
1. 8. 15. 22. 29. 36.	(3) (2) (1) (2) (1) (3)	2. 9. 16. 23. 30.	(2) (2) (3) (2) (1)	3. 10. 17. 24. 31.	(3) (4) (3) (2) (4)	4. 11. 18. 25. 32.	(3) (2) (2) (2) (2)	5. 12. 19. 26. 33.	(4) (4) (1) (2) (4)	6. 13. 20. 27. 34.	(2) (2) (4) (4) (2)	7. 14. 21. 28. 35.	(4) (3) (1) (3) (4)
				M	ISCEL	LANE	OUS Q	UESTI	ONS				
1. 8. 15.	(3) (1) (1)	2. 9. 16.	(2) (2) (2)	3. 10. 17.	(1) (1) (1)	4. 11. 18.	(1) (2) (4)	5. 12. 19.	(3) (3) (4)	6. 13. 20.	(3) (3) (1)	7. 14.	(3) (3)
						EXER	CISE -	- 2					
1.	(2)	2.	(2)	3.	(1)	4.	(2)	5.	(3)	6.	(1)		
						EXER	CISE -	- 3					
						P	ART- I						
1. 8. 15. 20.	(2) (1) (1) (3)	2. 9. 16. 21.	(3) (4) (1) (3)	3. 10. 17. 22.	(2) (1) (4) (3)	4. 11. 18. 23.	(4) (3) (2) (3)	5. 12. 19.	(1) (3) (4)	6. 13.	(3) (1)	7. 14.	(4) (4)
						PA	ART- II						
1. 8.	(2) (4)	2. 9.	(1) (1)	3. 10.	(3) (2)	4. 11.	(1) (1)	5. 12.	(3) (1)	6. 13.	(2) (1)	7.	(1)