**Exercise-1** 

>>> Marked Questions are for Revision Questions.

# **ONLY ONE OPTION CORRECT TYPE**

# SECTION - A # Introduction (Early experiments), site of photosynthesis and photosynthetic pigments

| 1.   | Two pigment system theory of photosynthesis was proposed by or concept of evidence for existence two photosystems in photosynthesis was given by |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | ept of evidence for existence of       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------|
|      | (1) Hill                                                                                                                                         | (2) Blackman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3) Emerson                                      | (4) Arnon                              |
| 2.   | Who received the Nobe                                                                                                                            | el Prize for working out th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e early carbon pathway                           | of photosynthesis                      |
|      | (1) Calvin                                                                                                                                       | (2) Krebs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3) Khorana                                      | (4) Watson                             |
| 3.   | The process of photoph                                                                                                                           | nosphorylation was disco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vered by                                         |                                        |
|      | (1) Calvin                                                                                                                                       | (2) Arnon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3) Priestley                                    | (4) Warburg                            |
| 4.   | Most of the plants cor<br>pigment was named ch                                                                                                   | ntain a green colouring<br>lorophyll by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pigment which is respo                           | nsible for photosynthesis. This        |
|      | (1) Melvin Calvin                                                                                                                                | (2) Jean Senebier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (3) Julius Robert Mayer                          | <sup>-</sup> (4) Pelletier Caventou    |
| 5.2  | The scientist who prove                                                                                                                          | ed that bacteria use $H_2S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gas and CO <sub>2</sub> to synthesiz             | ze carbohydrate is                     |
|      | (1) Van Niel                                                                                                                                     | (2) Ruben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3) Jean Senebier                                | (4) Julius Robert Mayer                |
| 6.   | What plant is used in oxygen in photosynthes                                                                                                     | an experiment common<br>sis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ly performed in laborate                         | bry to demonstrate evolution of        |
|      | (1) Sunflower                                                                                                                                    | (2) Hydrilla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3) Croton                                       | (4) Balsam                             |
| 7.2a | Two plants A and B and following plants release                                                                                                  | re supplied with $CO_2$ with $CO_2$ with $O_2$ with $O$ | th $H_2O^{18}$ and $CO_2^{18}$ with prosynthesis | $H_2O$ respectively. Which of the      |
|      | (1) A plant                                                                                                                                      | (2) B plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3) Both (1) and (2)                             | (4) First (1) and then (2)             |
| 8.2  | Isotopes popularly know                                                                                                                          | wn to have been used in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the study of photosynthe                         | sis are -                              |
|      | (1) C <sup>14</sup> and O <sup>18</sup>                                                                                                          | (2) C <sup>11</sup> and C <sup>32</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3) $C^{16}$ and $N^{15}$                        | (4) P <sup>32</sup> andC <sup>15</sup> |
| 9.   | During photosynthesis,                                                                                                                           | the oxygen in glucose c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | omes from                                        |                                        |
|      | (1) Water                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2) Carbon dioxide                               |                                        |
|      | (3) Both from $CO_2$ and v                                                                                                                       | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4) Oxygen in air                                |                                        |
| 10.  | Molls experiment shows                                                                                                                           | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                        |
|      | (1) Unequal transpiration                                                                                                                        | on from two surfaces of le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eaf                                              |                                        |
|      | (2) Relation between tra                                                                                                                         | anspiration and absorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n                                                |                                        |
|      | (3) $CO_2$ is required for $\mu$                                                                                                                 | ntial for photosynthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                        |
|      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                        |
| 11.  | (1) Etiolation                                                                                                                                   | iark snow yellowing leave<br>(2) Chlorosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es and elongated interno<br>(3) Dechlorosis      | (4) Dark effect                        |
|      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                        |

| 12.  | Which of the following r                                    | epresents the correct mo                                                                       | blecular formula of chloro              | phyll-b                                               |
|------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|
|      | (1) $C_{55}H_{72}O_6N_4Mg$                                  | (2) $C_{55}H_{72}O_5N_4Mg$                                                                     | (3) $C_{55}H_{72}O_4N_4Mg$              | (4) $C_{55}H_{70}O_6N_4Mg$                            |
| 13.  | Which organelle contair                                     | n vitamin E and K?                                                                             |                                         |                                                       |
|      | (1) Golgi bodies                                            | (2) ER in nerve cell                                                                           | (3) Chloroplast                         | (4) Mitochondria                                      |
| 14.১ | The role of chlorophyll i                                   | n photosynthesis is                                                                            |                                         |                                                       |
|      | (1) Photolysis of water                                     |                                                                                                | (2) To absorb light                     |                                                       |
|      | (3) Photo Chemical con                                      | version                                                                                        | (4) Dark assimilation                   |                                                       |
| 15.๖ | Which of the following e                                    | equation can be more ap                                                                        | propriate for photosynthe               | esis                                                  |
|      | (1) $6CO_2 + 6H_2O \frac{\text{Light}}{\text{Chlorophy}}$   | $\rightarrow$ C <sub>2</sub> H <sub>12</sub> O <sub>6</sub> + 6O <sub>2</sub>                  | (2) $6CO_2 + 12H_2O \frac{Lig}{Chlore}$ | $\xrightarrow{\text{ht}} C_6H_{12}O_6 + 6H_2O + 6O_2$ |
|      | (3) $12CO_2 + 6H_2O \frac{Lighted{Lighted{Chloro}}{Chloro}$ | $\stackrel{\text{nt}}{\longrightarrow} 2\text{C}_{6}\text{H}_{12}\text{O}_{6} + 6\text{O}_{2}$ | (4) None of these                       |                                                       |
| 16.  | How much percentage                                         | of absorbed water is use                                                                       | d in photosynthesis?                    |                                                       |
|      | (1) 1%                                                      | (2) 5%                                                                                         | (3) 10%                                 | (4) 90%                                               |
| 17.  | The balance between C                                       | $O_2$ and $O_2$ is brought abo                                                                 | ut by                                   |                                                       |
|      | (1) Transpiration                                           | (2) Photosynthesis                                                                             | (3) C <sub>4</sub> Pathway              | (4) Photorespiration                                  |
| 18.১ | During photosynthesis                                       |                                                                                                |                                         |                                                       |
|      | (1) Both CO, and water                                      | get oxidized                                                                                   |                                         |                                                       |
|      | (2) Both CO, and water                                      | get reduced                                                                                    |                                         |                                                       |
|      | (3) Water is reduced an                                     | d CO <sub>2</sub> is oxidized                                                                  |                                         |                                                       |
|      | (4) Carbon dioxide get i                                    | reduced and water get o                                                                        | kidised                                 |                                                       |
| 19.  | Grana refers to                                             |                                                                                                |                                         |                                                       |
| -    | (1) Stacks of thylakoids                                    | in plastids of higher plar                                                                     | nts                                     |                                                       |
|      | (2) A constant in quantu                                    | um equation                                                                                    |                                         |                                                       |
|      | (3) Glycolysis of glucos                                    | е                                                                                              |                                         |                                                       |
|      | (4) By product of photos                                    | synthesis                                                                                      |                                         |                                                       |
| 20.  | Assimilatory power refe                                     | rs to                                                                                          |                                         |                                                       |
|      | (1) Generation of ATP a                                     | and NADPH <sub>2</sub>                                                                         | (2) Reduction of $CO_2$                 |                                                       |
|      | (3) Splitting of water                                      |                                                                                                | (4) Disintegration of pla               | stids                                                 |
| 21.  | Leaves appear green b                                       | ecause they                                                                                    |                                         |                                                       |
|      | (1) Reflect green light                                     |                                                                                                | (2) Absorb green light                  |                                                       |
|      | (3) Both reflect and abs                                    | orb green light                                                                                | (4) None of the above                   |                                                       |
| 22.  | Quantasomes contain                                         |                                                                                                |                                         |                                                       |
|      | (1) 200 chlorophyll mole                                    | ecules                                                                                         | (2) 230 chlorophyll mole                | ecules                                                |
|      | (3) 250 chlorophyll mole                                    | ecules                                                                                         | (4) 300 chlorophyll mole                | ecules                                                |
| 23.১ | Two chief functions of le                                   | eaves are                                                                                      |                                         |                                                       |
|      | (1) Photosynthesis and                                      | respiration                                                                                    | (2) Photosynthesis and                  | transpiration                                         |
|      | (3) Transpiration and re                                    | spiration                                                                                      | (4) Respiration and dige                | estion                                                |
|      |                                                             |                                                                                                |                                         |                                                       |

| 24.        | For photosynthesis (i.e.                                                                                            | for synthesis of organic r<br>(2) Chlorophyll        | natter) the green plants i<br>(3) CO_ and water                                                            | need only<br>(4) All of these |  |
|------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------|--|
|            |                                                                                                                     |                                                      | $(0) OO_2$ and water                                                                                       |                               |  |
| 25.১       | <ul> <li>(1) Burning of sugar</li> <li>(3) Photosynthesis by p</li> </ul>                                           | he following except                                  | <ul><li>(2) Respiration in plants</li><li>(4) On heating of limest</li></ul>                               | stone                         |  |
| 26.        | In angiosperms, synthe<br>(1) Phytochrome                                                                           | sis of chlorophyll occurs<br>(2) Light               | in presence of<br>(3) Cytochrome                                                                           | (4) None of the above         |  |
| 27.        | Quantasomes are foun<br>(1) Surface of cristae<br>(3) surface of nuclear m                                          | d in<br>nembrane                                     | <ul><li>(2) surface of plasma m</li><li>(4) surface of thylakoids</li></ul>                                | nembrane<br>S                 |  |
| 28.2       | How many molecules reduced 6 molecules of                                                                           | of water are needed by ${}^{2}CO_{2}$                | ed by a green plant to produce one molecule of hexose                                                      |                               |  |
|            | (1) 6                                                                                                               | (2) 12                                               | (3) 24                                                                                                     | (4) One only                  |  |
| 29.        | Number of thylakoids ir<br>(1) 5-10                                                                                 | n a granum is<br>(2) 2-100                           | (3) 100-150                                                                                                | (4) 150-200                   |  |
| 30.        | Solarization is<br>(1) Formation of chlorophyll<br>(3) Utilization of sunlight                                      |                                                      | <ul><li>(2) Destruction of chlorophyll</li><li>(4) Effects of solar light</li></ul>                        |                               |  |
| 31.        | Which of the following is photophosphorylation<br>(1) Production of ATP from ADP<br>(3) Synthesis of ADP from ATP   |                                                      | (2) Production of NADP<br>(4) Production of PGA                                                            |                               |  |
| 32.<br>33. | Phytol chain is present<br>(1) Carotenoids<br>Chlorophyll a and b sho<br>(1) Blue region<br>(3) Blue and red region | in<br>(2) haemoglobin<br>ows maximum absorption<br>s | <ul> <li>(3) Chlorophyll</li> <li>in</li> <li>(2) Red region</li> <li>(4) Yellow and violet reg</li> </ul> | (4) Phycocyanin<br>gions      |  |
| 34.        | Photosynthetic unit is (1) Glyoxysome                                                                               | (2) Sphaerosome                                      | (3) Microsome                                                                                              | (4) Quantasome                |  |
| 35.≿       | Which pigment is prese<br>(1) Chlorophyll-a                                                                         | ent universally in all greer<br>(2) Chlorophyll-b    | plants<br>(3) Chlorophyll-c                                                                                | (4) Chlorophyll-d             |  |
| 36.24      | Chl a absorbs max of (1) Red light                                                                                  | (2) Blue light                                       | (3) Green light                                                                                            | (4) Yellow light              |  |
| 37.        | In bacteria, photosynthe (1) Cytoplasm                                                                              | etic lamellae are situated<br>(2) Chromoplast        | in<br>(3) Leucoplast                                                                                       | (4) Cell                      |  |
| 38.        | Which of the following ( (1) Violet                                                                                 | colours of light is maximu<br>(2) Red                | m used in photosynthesi<br>(3) Green                                                                       | s?<br>(4) Yellow              |  |
| 39.        | The algae which is use                                                                                              | d in researches of photos                            | synthesis                                                                                                  |                               |  |

2.2

3.2

|     | (1) Chlorella                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2) Fucus                                                                                         | (3) Acetabularia                                                                                                                                                                                                               | (4) Chlamydomonas                                                           |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| 40. | Which of the following p<br>(1) Phytochrome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pigments inhibit the phote<br>(2) Phytohormones                                                   | o-oxidation of chlorophyl<br>(3) Phytocyanin                                                                                                                                                                                   | l<br>(4) Phytocarotene                                                      |  |
| 41. | The bulk fixation of carl (1) Crop plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bon through photosynthe<br>(2) Tropical rain forests                                              | esis takes place in<br>6 (3) Ocean                                                                                                                                                                                             | (4) Both (1) & (2)                                                          |  |
| 42. | The process in which<br>energy released by oxid<br>(1) Photoautotrophism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | organisms do not requi<br>dation of inorganic and o<br>(2) Heterotrophism                         | re light and pigment and<br>rganic substances is<br>(3) Chemosvnthesis                                                                                                                                                         | d synthesize their food utilising<br>(4) Saprophytism                       |  |
| 43. | Which of these is a motion of the set of th | lecule of bacteriochlorop<br>(2) C <sub>55</sub> H <sub>70</sub> O <sub>6</sub> N <sub>4</sub> Mg | hyll -a<br>(3) C <sub>55</sub> H <sub>74</sub> O <sub>6</sub> N <sub>4</sub> Mg                                                                                                                                                | (4) C <sub>55</sub> H <sub>72</sub> O <sub>6</sub> N <sub>4</sub> Mg        |  |
| 44. | Where is phytol group a (1) At 7–C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | attached to chlorophyll?<br>(2) At 5–C                                                            | (3) At 3–C                                                                                                                                                                                                                     | (4) At 9–C                                                                  |  |
| 45. | Carbon dioxide is nece<br>from entering a control<br>(1) Distilled water<br>(3) Calcium oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | essary for photosynthesis<br>apparatus is                                                         | <ul> <li>The chemical used to r</li> <li>(2) Sodium carbonate</li> <li>(4) Potassium hydroxid</li> </ul>                                                                                                                       | remove this gas most effectively<br>le solution                             |  |
| 46. | For normal photosynthe<br>(1) Phycocyanin and ch<br>(3) Phycoerythrin and c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | etic process in red algae<br>hlorophyll –a<br>chlorophyll –a                                      | , the pigments are<br>(2) Phycocyanin and c<br>(4) Phycoerythrin and                                                                                                                                                           | hlorophyll –b<br>chlorophyll –b                                             |  |
| 47. | Match the Column<br><b>Column I</b><br>(Scientists)<br>A. Peter Mitchell<br>B. J. W. Gibbs<br>C. Danial Arnon<br>D. Melvin Calvin<br>(1) $A = s, B = r, C = q, I$<br>(3) $A = s, B = t, C = r, D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D = p<br>D = q                                                                                    | <b>Column II</b><br>(Contributions)<br>P. Steps of dark reaction<br>q. Photosynthetic phose<br>r. Concept of free ener<br>s. Chemiosmotic hypothesis<br>(2) $A = r$ , $B = s$ , $C = p$ ,<br>(4) $A = s$ , $B = r$ , $C = p$ , | on of photosynthesis<br>sphorylation<br>rgy<br>hesis<br>s<br>D = q<br>D = q |  |
|     | SECTION - B # Light reaction and ETS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                                                                                                                                                                                                |                                                                             |  |

1. The first acceptor of electrons from an excited chlorophyll molecule of photosystem II is

| (1) Cytochrome                          | (2) iron -sulphur protein              |
|-----------------------------------------|----------------------------------------|
| (3) Ferredoxin                          | (4) Phaeophytin                        |
| DCMU                                    |                                        |
| (1) Inhibits PS-I                       | (2) Inhibits PS-II                     |
| (3) Destroy chloroplast                 | (4) Inhibits oxidative phosphorylation |
| NADPH <sub>2</sub> is generated through |                                        |

|       | <ol> <li>(1) Glycolysis</li> <li>(3) Non-Cyclic photoph</li> </ol>                                                                     | nosphorylation                                                                                                            | (2) Cyclic photophosph<br>(4) Anaerobic respiration                    | norylation<br>on              |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------|
| 4.    | Photolysis of each wat<br>(1) 2 electrons and 4 p<br>(3)4 electrons and 3 pr                                                           | er molecule in light reacti<br>rotons<br>rotons                                                                           | ion will yield<br>(2) 4 electrons and 4 p<br>(4) 2 electrons and 2 p   | rotons<br>rotons              |
| 5.    | Photosystem-II occurs<br>(1) Stroma<br>(3) On surface of mitod                                                                         | in<br>chondria                                                                                                            | (2) Grana<br>(4) On cytochrome                                         |                               |
| 6.    | Pigment system -I whic<br>(1) Chlorophyll-683                                                                                          | ch receives radiant energ<br>(2) Chlorophyll-673                                                                          | y and releases electron<br>(3) Chlorophyll-695                         | is<br>(4) P-700               |
| 7.    | During photochemical<br>(1) Liberation of oxyge<br>(2) Formation of ATP a<br>(3) Liberation of $O_2$ and<br>(4) Assimilation of $CO_2$ | reactions of photosynthe<br>n takes place<br>and NADPH <sub>2</sub> take place<br>d formation of ATP and N<br>takes place | sis<br>IADPH <sub>2</sub> take place                                   |                               |
| 8.#>  | PS II C                                                                                                                                | $2H_2 \propto 4e^{-2}$<br>$4H^{+}+O_2$<br>c diagram, which is plasto                                                      | ocyanin<br>(3) A                                                       | (4) B                         |
| 9.    | The 'Z' scheme of phot<br>(1) Hill and Bendall                                                                                         | tosynthesis was propose<br>(2) Emerson                                                                                    | d by<br>(3) Arnon                                                      | (4) Rabinowitch and Govind ji |
| 10.๖  | Pigment(s) of PS-II are<br>(1) P <sub>700</sub> , chl 'a' and 'b'<br>(3) P <sub>700</sub> , chl 'a' and car                            | rotenoids                                                                                                                 | (2) P <sub>680</sub> , chl'b' and phy<br>(4) P <sub>680</sub> , chl'a' | rcobilins                     |
| 11.24 | Minerals involved in ph<br>(1) Mn, Cl, Ca                                                                                              | noto oxidation of water is<br>(2) Mg, Fe, Mn                                                                              | (3) Mn, Fe, Ca                                                         | (4) N, P, K                   |
| 12.   | Z-scheme in thylakoid<br>(1) Reduction of NAD                                                                                          | membrane is concerned<br>(2) Reduction of CO <sub>2</sub>                                                                 | with<br>(3) Electron transfer                                          | (4) All of these              |
| 13.æ  | Absorption of radiant e<br>(1) Reduction of chloro<br>(3) Absorption of CO <sub>2</sub>                                                | nergy causes<br>phyll                                                                                                     | (2) Oxidation of chloro<br>(4) Evolution of O <sub>2</sub>             | phyll                         |
|       |                                                                                                                                        |                                                                                                                           |                                                                        |                               |

**14.** What is called the red drop

(1) Rapid fall in quantum yield in light of more than 680 nm

(2) Rapid increased in quantum yield in light of less than 700 nm (3) Increase in quantum yield in light of more than 680 nm (4) None of the above 15. From which source charged molecule of P-680 gets the electron (1) From P-700 (3) From NADPH<sub>2</sub> (2) From water (4) None of the above 16.24 Assimilatory power produced during photosynthesis are (1) RuDP and RuMP (2)  $H_2O$  and  $O_2$ (3) ATP and NADPH<sub>2</sub> (4)  $C_6H_{12}O_6$  and PGAL SECTION - C # Dark Reaction  $C_3$ -cycle,  $C_4$  cycle, Photorespiration, **CAM - cycle and Factors** 1.28 Dimorphic chloroplasts are present in (1) Sugarcane (2) Cotton (3) Pea (4) Mango 2. Make suitable pair (A) Emerson effect (p) C<sub>4</sub> cycle (B) Hill reaction (q) Photolysis (C) Calvin's cycle (r)  $C_3$  cycle (D) Hatch and slack cycle (s) Photosystem -I and II (1) Ap, Bq, Cr, Ds (2) Ap,Br,Cs,Dq (3) Ar, Bs, Cp, Dq (4) As, Bq, Cr, Dp 3. Plants adapted to low light intensity have (1) More extended root system (2) Leaves modified to spines (3) Larger photosynthetic unit size than sun plants (4) Higher rate of CO<sub>2</sub> fixation than the sun plants 4.2 The Calvin cycle proceeds in three stages 1. Reduction, during which carbohydrate is formed at the expense of the photochemically made ATP and NADPH<sub>2</sub> 2. Regeneration, during which the carbon dioxide acceptor ribulose-1, 5- biphosphate is formed 3. Carboxylation, during which carbon dioxide combines with ribuolse-1, 5-biphosphate Identify the correct sequence (3) 1 - 2 - 3(1) 3 - 1 - 2(2) 3 - 2 - 1(4) 2 - 1 - 35. First stable product of Calvin cycle has (1) 2 carbon atoms (2) 3 carbon atoms (3) 4 carbon atoms (4) 6 carbon atoms  $\mathrm{CO}_{\scriptscriptstyle 2}$  joins the photosynthetic pathway during 6. (1) Light reaction (2) Dark reaction (3) Photosystem – I (4) Photosystem - II 7. Dark reaction of photosynthesis is called so because (1) It can also occur in dark (2) It does not require light (3) Cannot occur during day time (4) It occurs more rapidly in night The initial enzyme of Calvin cycle is 8.2 (1) Ribulose 1, 5 – diphosphate carboxylase (2) Triose phosphate dehyrogenase

(3) Phosphopentokinase

(4) Cytochrome oxidase

- 9. Calvin cycle occur in
  - (1) Chloroplasts (2) Cytoplasm

(3) Mitochondria

(4) Glyoxysomes

10.#> Choose the correct combinations of labelling of the carbohydrate molecules involved in the Calvin cycle.



| (1) | (i) RuBP | (ii) Triose phosphate | (iii) PGA              |
|-----|----------|-----------------------|------------------------|
| (2) | (i) PGA  | (ii) RuBP             | (iii) Triose phosphate |
| (3) | (i) PGA  | (ii) Triose phosphate | (iii) RuBP             |
| (4) | (i) RuBP | (ii) PGA              | (iii) Triose phosphate |

- 11.How many Calvin cycles form one hexose molecule<br/>(1) 2(2) 6(3) 4(4) 812.Number of carboxylation occur in calvin cycle, is<br/>(1) 0(2) 1(3) 2(4) 3
- **13.** The family in which many plants are  $C_4$  type

|  | (1) Malvaceae | (2) Solanaceae | (3) Crucifereae | (4) Gramineae |
|--|---------------|----------------|-----------------|---------------|
|--|---------------|----------------|-----------------|---------------|

**14.** The first carbon dioxide fixation in  $C_4$  pathway occurs in chloroplasts of

(1) Guard cells (2) Mesophyll cells (3) Bundle sheath cells (4) Epidermal cells

- 15. In photorespiration , what is the role of peroxisome
  - (1) Help in oxidation of glycolate (2) Help in synthesis of serine
  - (3) Help in synthesis of PGA (4) Help in reduction of glyoxylate
- **16.** In  $C_4$  plants, Calvin cycle occurs in
  - (1) Stroma of bundle sheath chloroplast
  - (2) Mesophyll chloroplast
  - (3) Grana of bundle sheath chloroplast
  - (4) Does not occur as  $CO_2$  is fixed mainly by PEP and no  $CO_2$  is left for Calvin cycle
- 17. Photorespiration is characteristic of

| (1) CAM Plants (2) $C_3$ Plants (3) $C_4$ Plants (4) None of the a | (1) CAM Plants | (2) $C_{3}$ Plants | (3) $C_4$ Plants | (4) None of the above |
|--------------------------------------------------------------------|----------------|--------------------|------------------|-----------------------|
|--------------------------------------------------------------------|----------------|--------------------|------------------|-----------------------|

18. Which of the following cycle shows oxaloacetic acid as first stable product(1) Calvin cycle(2) Hatch and Slack cycle

|       | (3) $C_2$ cycle                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    | (4) None of the above                                                         |                                |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------|
| 19.১  | Kranz type of anatomy<br>(1) C. plants                                                                                                                                                                                                                                                                                                                  | is found in<br>(2) C. plants                                                                                       | (3) C. plants                                                                 | (4) CAM plants                 |
| 20. ๖ | <ul> <li>C<sub>4</sub> plants are adapted to</li> <li>(1) Hot and dry climate</li> <li>(3) Cold and dry climate</li> </ul>                                                                                                                                                                                                                              | e                                                                                                                  | <ul><li>(2) Temperate climate</li><li>(4) Hot and humid climate</li></ul>     | ate                            |
| 21.   | Dimorphism of chloropl                                                                                                                                                                                                                                                                                                                                  | ast is found in                                                                                                    |                                                                               |                                |
|       | (1) $C_4$ plants                                                                                                                                                                                                                                                                                                                                        | (2) $C_{3}$ plants                                                                                                 | (3) CAM plants                                                                | (4) All the above              |
| 22.১  | In CAM cycle, during fo<br>(1) Open                                                                                                                                                                                                                                                                                                                     | rmation of malic acid, sto<br>(2) Closed                                                                           | omata remains<br>(3) Semi open                                                | (4) Always closed              |
| 23.๖  | Chloroplasts without gr<br>(1) Bundle sheath cells<br>(3) Bundle sheath cells                                                                                                                                                                                                                                                                           | ana are known to occur i<br>of C <sub>3</sub> plants<br>of C <sub>4</sub> plants                                   | n<br>(2) Mesophyll cells of C<br>(4) Mesophyll cells of a                     | C₄ plants<br>Il plants         |
| 24.   | Which crop utilizes sola<br>(1) Potato                                                                                                                                                                                                                                                                                                                  | ar energy most efficiently<br>(2) Sugarcane                                                                        | ?<br>(3) Wheat                                                                | (4) Rice                       |
| 25.   | Which of the following i (1) Phosphoglycerate                                                                                                                                                                                                                                                                                                           | s the main product in the<br>(2) Phosphoglycolate                                                                  | photorespiration of $C_{3}$ p (3) Glycerate                                   | lants<br>(4) Glycolate         |
| 26.2  | Which of the following p<br>(1) CAM cycle                                                                                                                                                                                                                                                                                                               | process shows light deac (2) $C_3$ cycle                                                                           | idification and night acid (3) $C_4$ cycle                                    | ification<br>(4) All the above |
| 27.   | The first reaction in pho<br>(1) Carboxylation                                                                                                                                                                                                                                                                                                          | otorespiration is<br>(2) Decarboxylation                                                                           | (3) Oxygenation                                                               | (4) Phosphorylation            |
| 28.24 | <ul> <li>Which one is false about Kranz anatomy</li> <li>(1) Bundle sheath have large chloroplast and no intercellular spaces</li> <li>(2) Mesophyll cells have large and more chloroplast</li> <li>(3) It is found in Atriplex, sugarcane, maize</li> <li>(4) Plant having it have better photosynthesizing power than C<sub>3</sub> plants</li> </ul> |                                                                                                                    |                                                                               |                                |
| 29.   | Which factor is not limit<br>(1) Temperature                                                                                                                                                                                                                                                                                                            | ing in normal conditions (2) $CO_2$                                                                                | for photosynthesis?<br>(3) Water                                              | (4) Chlorophyll                |
| 30.   | Compensation point is<br>(1) Where there is neith<br>(2) When rate of photos<br>(3) When entire food sy<br>(4) When there is enou                                                                                                                                                                                                                       | ner photosynthesis nor re<br>synthesis is equal to the r<br>rnthesized in photosynthe<br>gh water just to meet the | spiration<br>rate of respiration<br>esis is utilized<br>requirements of plant |                                |
| 31.2a | Q <sub>10</sub> refers to<br>(1) Quality quotient (Q.<br>(3) Respiratory quotien                                                                                                                                                                                                                                                                        | Q.)<br>t (R.Q.)                                                                                                    | (2) Temperature quotie<br>(4) Quantum constant (                              | ent (T.Q.)<br>(Q.C.)           |

| 32.24  | The isotope of carbon (1) C <sup>14</sup>                                                                                                | used extensively for stud<br>(2) C <sup>16</sup>                                               | ies on photosynthesis is<br>(3) C <sup>13</sup>                           | (4) C <sup>15</sup>          |
|--------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------|
| 33.    | The C <sub>4</sub> plants are differ<br>(1) In consumption of A<br>(2) In first product<br>(3) The substrate that a<br>(4) All the above | rent from the C <sub>3</sub> plants w<br>ATP molecules<br>accept CO <sub>2</sub> in carbon ass | ith reference to the                                                      |                              |
| 34.æ   | CO <sub>2</sub> fixing enzyme in (<br>(1) PEP carboxylase                                                                                | C <sub>4</sub> plants is<br>(2) RUDP carboxylase                                               | (3) RUDP oxidase                                                          | (4) Hydrogenase              |
| 35.>   | Reducing agent for CC                                                                                                                    | ), fixation in bacterial pho                                                                   | otosvnthesis is                                                           |                              |
|        | (1) NADH <sub>2</sub>                                                                                                                    | (2) NADPH <sub>2</sub>                                                                         | (3) FMNH <sub>2</sub>                                                     | (4) All of these             |
| 36.2   | In photorespiration, rel                                                                                                                 | ease of CO <sub>2</sub> occurs in                                                              |                                                                           |                              |
|        | (1) Mitochondria                                                                                                                         | (2) Chloroplasts                                                                               | (3) Peroxisomes                                                           | (4) All of these             |
| 37.    | Inhibition of photosynth                                                                                                                 | nesis at high concentratio                                                                     | n of $O_2$ is called                                                      |                              |
|        | (1) Warburg effect                                                                                                                       | (2) Kutusky effect                                                                             | (3) Pasteur effect                                                        | (4) Emerson effect           |
| 38.    | Number of carboxylatio                                                                                                                   | on in photosynthesis in So<br>(2) 2                                                            | orghum and Maize is                                                       | (4) 4                        |
| 30     | Where CO is fixed an                                                                                                                     | ain in Cuplants                                                                                | (-) -                                                                     |                              |
| 55.    | (1) Bundle sheath cell                                                                                                                   | s (2) Phloem cells                                                                             | (3) Mesophyll cells                                                       | (4) All the above            |
| 40 ๖   | Which of these can be                                                                                                                    | rform photosynthesis effe                                                                      | ctively at high temperatu                                                 | re and low CO. concentration |
| -v. (3 | (1) $C_3$ plant                                                                                                                          | (2) $C_4$ plant                                                                                | (3) Both of above                                                         | (4) None of these            |
| 41.    | The process in whicl<br>peroxisome and oxidis                                                                                            | h excess molecule of g<br>ed, is called-                                                       | glycolate passes out of                                                   | the chloroplast and enter in |
|        | (1) Respiration                                                                                                                          | (2) Photosynthesis                                                                             | (3) Photorespiration                                                      | (4) All of the above         |
|        |                                                                                                                                          | MISCELLANEO                                                                                    | US QUESTIONS                                                              |                              |
| 1.     | Maximum photosynthe                                                                                                                      | sis takes place in                                                                             |                                                                           |                              |
|        | (1) Phytoplanktons                                                                                                                       | (2) Zooplanktons                                                                               | (3) Marshy plants                                                         | (4) Woody plants             |
| 2.     | Products of photosynth                                                                                                                   | nesis are                                                                                      |                                                                           |                              |
|        | (1) ATP                                                                                                                                  | (2) NADPH <sub>2</sub>                                                                         | (3) O <sub>2</sub>                                                        | (4) All the above            |
| 3.     | In Maize, mesophyll ce                                                                                                                   | ells perform photosyntheti                                                                     | c cycle                                                                   |                              |
|        | (1) C <sub>4</sub>                                                                                                                       | (2) C <sub>3</sub>                                                                             | (3) C <sub>2</sub>                                                        | (4) C <sub>1</sub>           |
| 4.     | Green plants do not gi                                                                                                                   | ve out CO <sub>2</sub> during day tim                                                          | ne because they                                                           |                              |
|        | <ul><li>(1) Store the same</li><li>(3) Do not respire</li></ul>                                                                          |                                                                                                | <ul><li>(2) Respire very slowly</li><li>(4) Consume it in photo</li></ul> | osynthesis.                  |

| 5.2  | Light energy performs f<br>(1) Photolysis of water<br>(3) Formation of ATP                       | ollowing function in PS-                                                                | II<br>(2) Excitation of chlorop<br>(4) Formation of NADP                                                                                                                     | bhyll<br>H <sub>2</sub>                          |
|------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 6.   | During light reaction, It (1) Electron transfer                                                  | does not takes place<br>(2) Liberation of O <sub>2</sub>                                | (3) Photolysis of water                                                                                                                                                      | (4) Liberation of H <sub>2</sub>                 |
| 7.   | Calvin cycle was discov<br>(1) Spirogyra                                                         | vered in which plant<br>(2) Volvox                                                      | (3) Chlamydomonas                                                                                                                                                            | (4) Chlorella                                    |
| 8.24 | Electron acceptor of PS<br>(1) Cyt b                                                             | S-II is<br>(2) FRS                                                                      | (3) PQ                                                                                                                                                                       | (4) NADP+                                        |
| 9.   | How many molecules o<br>(1) One                                                                  | f glycine are required to<br>(2) Two                                                    | release one molecule of<br>(3) Three                                                                                                                                         | CO <sub>2</sub> in photorespiration?<br>(4) Four |
| 10.๖ | Which one is a CAM pla<br>(1) Maize                                                              | ant<br>(2) Pineapple                                                                    | (3) Onion                                                                                                                                                                    | (4) Pea                                          |
| 11.๖ | Respiration initiated in chloroplasts and occurri<br>(1) Aerobic respiration<br>(3) Fermentation |                                                                                         | ng in light is called<br>(2) Anaerobic respiration<br>(4) Photorespiration                                                                                                   |                                                  |
| 12.  | Which one is a $C_4$ PLA                                                                         | NT?                                                                                     |                                                                                                                                                                              |                                                  |
|      | (1) Potato                                                                                       | (2) Mustard                                                                             | (3) Onion                                                                                                                                                                    | (4) Wheat.                                       |
| 13.  | Solarisation is<br>(1) Formation of chlorophyll<br>(3) Utilisation of sunlight                   |                                                                                         | <ul><li>(2) Destruction of chlorophyll</li><li>(4) Effect of solar light.</li></ul>                                                                                          |                                                  |
| 14.  | Carbon assimilation oc                                                                           | curs in bundle sheath cel                                                               | lls of<br>(3) Caplants                                                                                                                                                       | (4) All the above                                |
| 15   | How much ovurgen is fo                                                                           | $(2) \circ_4 \cdot iante$                                                               | and 216 g of H O                                                                                                                                                             |                                                  |
| 15.  | (1) 96 g                                                                                         | (2) 216 g                                                                               | (3) 264 g                                                                                                                                                                    | (4) 192 g.                                       |
| 16.  | CAM plants belong to fa<br>(1) Malvaceae                                                         | amily<br>(2) Crassulaceae                                                               | (3) Trapaceae                                                                                                                                                                | (4) Orchidaceae.                                 |
| 17.æ | DCMU inhibits<br>(1) PSII<br>(3) Destroys chloroplas                                             | t                                                                                       | (2) PSI<br>(4) Inhibits oxidative ph                                                                                                                                         | osphorylation.                                   |
| 18.  | Chlorophyll a and chlorophyll has -CHO g<br>(1) $CH_3$ in chl a and CH<br>(3) Chl a had both CHC | prphyll b is distinguished proup and which has $CH_3$ (O in chl. b, D) and $CH_3$ group | <ul> <li>ed by the presence of -CHO and -CH<sub>3</sub> group. White group?</li> <li>(2) CHO in chl a and CH<sub>3</sub> in chl. b</li> <li>(4) None of the above</li> </ul> |                                                  |

Exercise-2

| <ul> <li>(1) Inner membrane of chloroplast</li> <li>(3) Thylakoid membrane</li> <li>2. In an experimental setup, a group of C<sub>3</sub> and double the amount of CO<sub>2</sub> concentration. Wh</li> </ul>                                                                                                    | <ul> <li>(2) Thylakoid space</li> <li>(4) Stroma</li> <li>a group of C<sub>4</sub> plants</li> <li>ich group of plants with</li> <li>(2) C<sub>4</sub> plants will be</li> <li>(4) None of these</li> </ul>                                                                                                  | e<br>were grown in an environment with<br>ould grow better and be more water<br>(FINBO) |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| <b>2.</b> In an experimental setup, a group of $C_3$ and double the amount of $CO_2$ concentration. Wh                                                                                                                                                                                                            | a group of $C_4$ plants<br>ich group of plants we<br>(2) $C_4$ plants will be<br>th (4) None of these                                                                                                                                                                                                        | were grown in an environment with<br>ould grow better and be more water<br>(FINBO)      |  |  |  |  |  |  |  |
| efficient?                                                                                                                                                                                                                                                                                                        | (2) $C_4$ plants will be                                                                                                                                                                                                                                                                                     |                                                                                         |  |  |  |  |  |  |  |
| (1) $C_3$ plants will be better than $C_4$ plants                                                                                                                                                                                                                                                                 | (1) $C_3$ plants will be better than $C_4$ plants (2) $C_4$ plants will be better than<br>(3) Both $C_3$ and $C_4$ plants will show equal growth (4) None of these                                                                                                                                           |                                                                                         |  |  |  |  |  |  |  |
| (3) Both $C_{_3}$ and $C_{_4}$ plants will show equal growth (4) None of these                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                              |                                                                                         |  |  |  |  |  |  |  |
| <ul> <li>Rubisco is an enzyme required for photosynth (i) C<sub>3</sub> Plants</li> <li>(ii) C<sub>4</sub> Plants</li> <li>(iii) CAM (Crassulacean Acid Metabolism) plants</li> </ul>                                                                                                                             | Rubisco is an enzyme required for photosynthesis in which of the following plants<br>(i) $C_3$ Plants<br>(ii) $C_4$ Plants                                                                                                                                                                                   |                                                                                         |  |  |  |  |  |  |  |
| (1) (i) only                                                                                                                                                                                                                                                                                                      | (2) (i) and (ii) only                                                                                                                                                                                                                                                                                        |                                                                                         |  |  |  |  |  |  |  |
| (3) (i), (ii) and (iii)                                                                                                                                                                                                                                                                                           | (4) Neither (i), (ii) a                                                                                                                                                                                                                                                                                      | (4) Neither (i), (ii) and (iii)                                                         |  |  |  |  |  |  |  |
| 4. Which of the following are found in C, plants?                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                              | (4 <sup>th</sup> ABO)                                                                   |  |  |  |  |  |  |  |
| (i) Stomata (ii) The enzyme Rubis                                                                                                                                                                                                                                                                                 | co(iii) Bundle sheath cells                                                                                                                                                                                                                                                                                  |                                                                                         |  |  |  |  |  |  |  |
| (1) (i) only (2) (iii) only                                                                                                                                                                                                                                                                                       | (3) (i) and (ii) only                                                                                                                                                                                                                                                                                        | (4) (i), (ii) and (iii)                                                                 |  |  |  |  |  |  |  |
| 5. The graph represents an                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                              | (1 <sup>st</sup> NSEB)                                                                  |  |  |  |  |  |  |  |
| Chlo                                                                                                                                                                                                                                                                                                              | rophyll b<br>irotenoids<br>hlorophyll a                                                                                                                                                                                                                                                                      |                                                                                         |  |  |  |  |  |  |  |
| (1) Absorption spectrum                                                                                                                                                                                                                                                                                           | (2) Action spectrum                                                                                                                                                                                                                                                                                          |                                                                                         |  |  |  |  |  |  |  |
| (3) Interference pattern                                                                                                                                                                                                                                                                                          | (4) Spectroscope                                                                                                                                                                                                                                                                                             |                                                                                         |  |  |  |  |  |  |  |
| 6. The pigment found outside the chloroplast is                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                              | (NSEB 2010-2011)                                                                        |  |  |  |  |  |  |  |
| (1) anthocyanin (2) xanthophyll                                                                                                                                                                                                                                                                                   | (3) chlorophyll                                                                                                                                                                                                                                                                                              | (4) phycoerythrin                                                                       |  |  |  |  |  |  |  |
| <ul> <li>7. Carotenoids are generally long chain unsa correlate/s with the structures.</li> <li>i. They can absorb light of higher wavelength</li> <li>ii. It allows carotenoids to transfer energy to ch</li> <li>iii. To reduce free radicals</li> <li>iv. Long hydrocarbon chain allows carotenoids</li> </ul> | Carotenoids are generally long chain unsaturated hyrocarbons. Which of the following function/s correlate/s with the structures. (NSEB 2010-2011)<br>i. They can absorb light of higher wavelength<br>ii. It allows carotenoids to transfer energy to chlorophyll a molecule<br>iii. To reduce free radicals |                                                                                         |  |  |  |  |  |  |  |
| excess light energy.<br>(1) Only i (2) iii and iv                                                                                                                                                                                                                                                                 | (3) Only ii                                                                                                                                                                                                                                                                                                  | (4) i and iii                                                                           |  |  |  |  |  |  |  |

## PLANT PHYSIOLOGY - II

| 8.  | A plant biochemist received a specimen from a fellow scientist who noticed that the plant's stomata are closed during the day. The biochemist observed that radioactive carbon supplied in the form of carbon dioxide fed to the plant at night was first found in organic acids that accumulated in the vacuole. During the day: the label moved to sugars being manufactured in the chloroplast. What was the conclusion of |                             |                                                                   |                                                                        |                                     |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------|--|--|--|--|
|     | the day; the label move<br>the biochemist?                                                                                                                                                                                                                                                                                                                                                                                    | ed to sugars being man      | utactured in the chloropla                                        | ast. What was the<br>(NSE                                              | E conclusion of <b>B 2010-2011)</b> |  |  |  |  |
|     | (1) It is a CAM plant                                                                                                                                                                                                                                                                                                                                                                                                         |                             | (2) It is a $C_4$ plant                                           |                                                                        |                                     |  |  |  |  |
|     | (3) It is a $C_{_3}$ plant                                                                                                                                                                                                                                                                                                                                                                                                    |                             | (4) It is a plant showing                                         | g pentose phosph                                                       | ate pathway                         |  |  |  |  |
| 9.  | A student wants to test the correct order:                                                                                                                                                                                                                                                                                                                                                                                    | t the presence of starch    | in a leaf. Select the requ                                        | a leaf. Select the required steps and arrange them in (NSEB 2010-2011) |                                     |  |  |  |  |
|     | (i) Boiling the leaf in eth                                                                                                                                                                                                                                                                                                                                                                                                   | nanol (90%)                 | (ii) Keeping the plant in                                         | n dark                                                                 |                                     |  |  |  |  |
|     | (iii) Washing the leaf w                                                                                                                                                                                                                                                                                                                                                                                                      | ith hot water               | (iv) Addition of iodine s                                         | olution                                                                |                                     |  |  |  |  |
|     | (1) (ii) $\rightarrow$ (i) $\rightarrow$ (iii) $\rightarrow$ (iv                                                                                                                                                                                                                                                                                                                                                              | )                           | (2) (ii) $\rightarrow$ (i) $\rightarrow$ (iv) $\rightarrow$ (i    | ii)                                                                    |                                     |  |  |  |  |
|     | (3) (ii) $\rightarrow$ (iii) $\rightarrow$ (iv) $\rightarrow$ (                                                                                                                                                                                                                                                                                                                                                               | (i)                         | (4) (iii) $\rightarrow$ (i) $\rightarrow$ (ii) $\rightarrow$ (iv) |                                                                        |                                     |  |  |  |  |
| 10. | Of the following pigments found in plants which one are not concerned with photosynthesis?                                                                                                                                                                                                                                                                                                                                    |                             |                                                                   |                                                                        |                                     |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                   | (NSE                                                                   | EB 2011-2012)                       |  |  |  |  |
|     | (1) chlorophylls .                                                                                                                                                                                                                                                                                                                                                                                                            | (2) anthocyanins            | (3) phycobilins                                                   | (4) carotenoids                                                        |                                     |  |  |  |  |
| 11. | During photosynthesis,                                                                                                                                                                                                                                                                                                                                                                                                        | light energy :              |                                                                   |                                                                        | (KVPY 2007)                         |  |  |  |  |
|     | (1) Is converted to cher                                                                                                                                                                                                                                                                                                                                                                                                      | nical energy                | (2) Is converted to kine                                          | tic energy                                                             |                                     |  |  |  |  |
|     | (3) Is the catalyst                                                                                                                                                                                                                                                                                                                                                                                                           |                             | (4) Dissociates CO <sub>2</sub> dir                               | ectly                                                                  |                                     |  |  |  |  |
| 12. | On a normal sunny day                                                                                                                                                                                                                                                                                                                                                                                                         | v, rate of photosynthesis   | (per unit time) is maximu                                         | ım during:                                                             | (KVPY 2007)                         |  |  |  |  |
|     | (1) Early morning                                                                                                                                                                                                                                                                                                                                                                                                             |                             | (2) Between late morning to before noon                           |                                                                        |                                     |  |  |  |  |
|     | (3) Midday                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | (4) Late evening                                                  |                                                                        |                                     |  |  |  |  |
| 13. | The amount of $CO_2$ in p                                                                                                                                                                                                                                                                                                                                                                                                     | plant is greater at night t | han during the day becau                                          | ISE:                                                                   | (KVPY 2008)                         |  |  |  |  |
|     | (1) The rate of respirati                                                                                                                                                                                                                                                                                                                                                                                                     | on is higher at night.      |                                                                   |                                                                        |                                     |  |  |  |  |
|     | (2) More CO <sub>2</sub> is produc                                                                                                                                                                                                                                                                                                                                                                                            | ed because it is colder o   | during the night.                                                 |                                                                        |                                     |  |  |  |  |
|     | (3) Photosynthesis duri                                                                                                                                                                                                                                                                                                                                                                                                       | ing the day uses up som     | ne of the CO, produced by                                         | v respiration.                                                         |                                     |  |  |  |  |
|     | (4) More glucose is ava                                                                                                                                                                                                                                                                                                                                                                                                       | ailable for respiration du  | ring the night                                                    |                                                                        |                                     |  |  |  |  |
| 14  | Which one of the follow                                                                                                                                                                                                                                                                                                                                                                                                       | ing colors is the LEAST     | useful for plant life?                                            |                                                                        | (KVPY 2011)                         |  |  |  |  |
|     | (1) red                                                                                                                                                                                                                                                                                                                                                                                                                       | (2) blue                    | (3) green                                                         | (4) violet                                                             |                                     |  |  |  |  |

|       | <b>Exercise</b>                                                                                                                      | .3                                                                              |                                                                       |                                    |                                         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------|-----------------------------------------|
|       | PART - I : N                                                                                                                         | <br>EET / AIPMT QUI                                                             | ESTION (PREVIO                                                        |                                    | 5)                                      |
| 1.24  | For fixing one molecule<br>(1) 3 ATP + 1 NADPH <sub>2</sub>                                                                          | e of CO <sub>2</sub> in Calvin cycle, a<br>$_2$ (2) 3 ATP + 2NADPH <sub>2</sub> | are required<br>(3) 2ATP + 3NADPH <sub>2</sub>                        | (4) 3 ATP + 3                      | (AIPMT-2000)<br>NADPH <sub>2</sub>      |
| 2.    | First reaction in photos<br>(1) Photolysis of water<br>(3) Formation of ATP                                                          | ynthesis is                                                                     | (2) Excitation of chlorop<br>(4) Fixation of CO <sub>2</sub>          | (AIPMT-2000)                       |                                         |
| 3.    | Energy from light react<br>(1) ADP                                                                                                   | ion is transferred to dark<br>(2) ATP                                           | reaction is the one that is (3) Chlorophyll                           | s absorbed by<br>(4) RuBP          | (AIPMT-2002)                            |
| 4.    | Which fractions of the<br>higher plants<br>(1) Blue & green                                                                          | visible spectrum of solar<br>(2) Green & red                                    | radiations are primarily<br>(3) Red & violet                          | absorbed by ca<br>(4) Violet & blu | arotenoids of the<br>(AIPMT-2003)<br>Je |
| 5.24  | Stomata of CAM plants<br>(1) Are always open<br>(3) Open during night a                                                              | s<br>and close during day                                                       | (2) Open during day an<br>(4) Never open.                             | d close at night                   | (AIPMT-2003)                            |
| 6.24  | Which one of the follow<br>(1) ADP + AMP <u>Light</u>                                                                                | ving concerns photophos<br><sup>energy</sup> → ATP                              | phorylation<br>(2) ADP + Inorganic PC                                 | $D_4$ Lightenergy $\rightarrow$    | <b>(AIPMT-2003)</b><br>ATP              |
|       | (3) ADP + Inorganic PC                                                                                                               | $D_4 \longrightarrow ATP$                                                       | (4) AMP + Inorganic PC                                                | D <sub>4</sub> Lightenergy         | ATP                                     |
| 7.    | Which one is wrong in<br>(1) It occurs in chloropl<br>(3) It is characteristic o                                                     | photorespiration<br>lasts<br>f C <sub>4</sub> plants                            | (2) It occurs in day time<br>(4) It is characteristic o               | (AIPMT-2003)                       |                                         |
| 8.    | Which element is locate<br>(1) Calcium                                                                                               | ed at the centre of the po<br>(2) Magnesium                                     | rphyrin ring in chlorophy<br>(3) Potassium                            | ll<br>(4) Manganes                 | <b>(AIPMT-2003)</b><br>e                |
| 9.    | In sugarcane plant <sup>14</sup> C                                                                                                   | O <sub>2</sub> is fixed in malic acid,                                          | during which the enzyme                                               | e that fixes CO <sub>2</sub>       | is                                      |
|       | (1) RUBP carboxylase<br>(3) Ribulose phosphate                                                                                       | e kinase                                                                        | (2) PEP carboxylase<br>(4) Fructose phosphata                         | ase                                | (AIPMT-2003)                            |
| 10. 🕿 | The first step in dark re<br>(1) Formation of ATP<br>(2) Attachment of carbo<br>(3) Excitement of an el-<br>(4) Ionisation of water. | (AIPMT-2004)                                                                    |                                                                       |                                    |                                         |
| 11.   | In $C_3$ plants, the first st                                                                                                        | able product of photosyn                                                        | thesis during the dark re                                             | action is                          | (AIPMT-2004)                            |
| 16    | <ul><li>(1) Malic acid</li><li>(3) 3-phosphoglyceric a</li></ul>                                                                     | acid                                                                            | <ul><li>(2) Oxaloacetic acid</li><li>(4) Phosphoglyceraldel</li></ul> | hyde                               |                                         |
| 12.   | In chloroplasts, chlorop                                                                                                             | onyll is present in                                                             |                                                                       |                                    | (AIPMT-2004)                            |

|       | (1) outer membrane                                                                                                                                                                                                                                                                                      | (2) inner membrane                                          | (3) thylakoids                                                                  | (4) stroma                           |                                       |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|--|--|--|
| 13.   | As compared to sun pla<br>(1) High rate of CO <sub>2</sub> fix<br>(3) More extended root                                                                                                                                                                                                                | ants, plants adapted to lo<br>ation<br>system               | w light intensity possess<br>(2) Larger photosynthe<br>(4) Spiny leaves.        | (AIPMT-2004)                         |                                       |  |  |  |
| 14.æ  | During photo respiratio<br>(1) Stroma of chloropla<br>(3) Stroma of chloropla                                                                                                                                                                                                                           | n oxygen consuming read<br>sts<br>sts and peroxisomes       | ction (s) occur in<br>(2) Stroma of chloropla<br>(4) Grana of chloroplas        | <b>(AIPMT-2005)</b><br>ndria<br>mes. |                                       |  |  |  |
| 15.   | Carbohydrates, the mo<br>(1) Some bacteria, alga<br>(3) All bacteria, fungi an                                                                                                                                                                                                                          | st abundant biomolecules<br>ae and green plants<br>nd algae | s on earth are produced<br>(2) Fungi, algae and gro<br>(4) Viruses, fungi and b | by<br>een plants<br>acteria.         | (AIPMT-2005)                          |  |  |  |
| 16.   | Malic acid is formed in                                                                                                                                                                                                                                                                                 | $C_4$ plants in the cells of                                |                                                                                 |                                      | (AIPMT-2007)                          |  |  |  |
|       | (1) Epidermis                                                                                                                                                                                                                                                                                           | (2) Bundle sheath                                           | (3) Phloem                                                                      | (4) Mesophyll                        |                                       |  |  |  |
| 17.   | In leaves of C <sub>4</sub> plants n<br>(1) Bundle sheath<br>(3) Guard cells                                                                                                                                                                                                                            |                                                             | (AIPMT-2008)                                                                    |                                      |                                       |  |  |  |
| 18.๖  | The $C_4$ plants are photo<br>(1) The $CO_2$ efflux is no<br>(2) They have more chi<br>(3) The $CO_2$ compensation<br>(4) CO_2 compensation                                                                                                                                                             | se                                                          | (AIPMT-2008)                                                                    |                                      |                                       |  |  |  |
|       | (4) $CO_2$ generated duri                                                                                                                                                                                                                                                                               | ng photorespiration is tra                                  | pped and recycled throu                                                         | gn PEP carboxy                       | lase.                                 |  |  |  |
| 19.   | Electrons from excited (1) Quinone                                                                                                                                                                                                                                                                      | chlorophyll molecule of p<br>(2) Cytochrome-b               | hotosystem II are accept<br>(3) Ferredoxin                                      | ted first by<br>(4) Cytochrom        | <b>(AIPMT-2008)</b><br>e-f            |  |  |  |
| 20.১  | Cyclic photophosphory<br>(1) ATP                                                                                                                                                                                                                                                                        | lation results in the forma<br>(2) NADPH                    | ation of<br>(3) ATP and NADPH                                                   | (4) ATP, NADI                        | (AIPMT-2009)<br>PH and O <sub>2</sub> |  |  |  |
| 21.24 | <ul> <li>C<sub>4</sub> plants are more efficient in photosynthesis than C<sub>3</sub> plants due to</li> <li>(1) Presence of larger number of chloroplasts in the leaf cells</li> <li>(2) Presence of thin cuticle</li> <li>(3) Lower rate of photorespiration</li> <li>(4) Higher leaf area</li> </ul> |                                                             |                                                                                 |                                      |                                       |  |  |  |
| 22.   | PGA as the first CO <sub>2</sub> fix                                                                                                                                                                                                                                                                    | kation product was discov                                   | vered in photosynthesis of                                                      | of                                   | (AIPMT-2010)                          |  |  |  |
|       | (1) Gymnosperm                                                                                                                                                                                                                                                                                          | (2) Angiosperm                                              | (3) Alga                                                                        | (4) Bryophyte                        |                                       |  |  |  |
| 23.2  | Kranz anatomy can be (1) Sorghum                                                                                                                                                                                                                                                                        | observed in leaves of<br>(2) Spinach                        | (3) Mustard                                                                     | (4) Tulip                            | (AIPMT-2011)                          |  |  |  |
| 24.   | Light reaction in stroma                                                                                                                                                                                                                                                                                | a lamellae of the chloropla<br>(2) ATP + NADPH              | ast results in the formatic                                                     | on of<br>(4) O                       | (AIPMT-2011)                          |  |  |  |
| 25.   | In leaves of $C_4$ plants m                                                                                                                                                                                                                                                                             | ··/ ···2                                                    | (AIPMT-2011)                                                                    |                                      |                                       |  |  |  |

### PLANT PHYSIOLOGY - II

|       | (1) Bundle sheath                                                                                                                                                                                                                                                                  | (2) Mesophyll                                         | (3) Epidermis                                        | (4) Guard cells                                                         |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| 26.   | Of the total incident sol<br>(1) About 70%                                                                                                                                                                                                                                         | ar radiation the proportio<br>(2) About 60%           | n of PAR is:<br>(3) Less than 50%                    | (AIPMT Pre2011)<br>(4) More than 80%                                    |  |  |  |  |
| 27. ๖ | In Kranz anatomy, the I<br>(1) Thin walls, many int<br>(2) Thick walls, no inter<br>(3) Thin walls, no inter<br>(4) Thick walls, many in                                                                                                                                           | (AIPMT mains-2011)                                    |                                                      |                                                                         |  |  |  |  |
| 28.   | Which one of the follow<br>(1) Manganese                                                                                                                                                                                                                                           | lysis of water?<br>(3) Copper                         | (AIPMT mains-2011)<br>(4) Boron                      |                                                                         |  |  |  |  |
| 29.   | CAM helps the plants in<br>(1) Conserving water<br>(3) Disease resistance                                                                                                                                                                                                          | n:                                                    | (2) Secondary growth<br>(4) Reproduction             | (AIPMT Pre2011)                                                         |  |  |  |  |
| 30.১  | Best defined function o (1) Photolysis of water                                                                                                                                                                                                                                    | f Manganese in green pla<br>(2) Calvin cycle          | ants is:<br>(3) Nitrogen fixation                    | (AIPMT-2012)<br>(4) Water absorption                                    |  |  |  |  |
| 31.   | A process that makes i<br>(1)Transpiration                                                                                                                                                                                                                                         | mportant difference betw<br>(2) Glycolysis            | een $C_3$ and $C_4$ plants is:<br>(3) Photosynthesis | (AIPMT-2012) (4) Photorespiration                                       |  |  |  |  |
| 32.১  | Anoxygenic photosyntl<br>(1) <i>Rhodospirillum</i>                                                                                                                                                                                                                                 | nesis is characteristic of:<br>(2) <i>Spirogyra</i>   | (3) Chlamydomonas                                    | <b>(AIPMT-2014)</b><br>(4) <i>Ulva</i>                                  |  |  |  |  |
| 33.24 | A few normal seedling become white- coloure                                                                                                                                                                                                                                        | of tomato were kept in<br>d like albions, which of th | a dark room.After few<br>te following terms will you | days they were found to have<br>u use to describe them?<br>(AIPMT-2014) |  |  |  |  |
|       | (1) Mutated                                                                                                                                                                                                                                                                        | (2) Embolised                                         | (3) Etiolated                                        | (4) Defoliated                                                          |  |  |  |  |
| 34.   | Chromatophores take p<br>(1) Growth<br>(3) Respiration                                                                                                                                                                                                                             | part in :                                             | (2) Movement<br>(4) Photosynthesis                   | (Re-AIPMT-2015)                                                         |  |  |  |  |
| 35.   | The oxygen evolved during photosynthesis comes from water molecules. Which one of the follow pairs of elements is involved in this reaction? (Re-AIPMT-201<br>(1) Manganese and Potassium (2) Magnesium and Molybdenum<br>(3) Magnesium and Chloring (4) Manganese and Chloring    |                                                       |                                                      |                                                                         |  |  |  |  |
| 36.   | Photosynthesis the ligh<br>(1) Photosystem-I                                                                                                                                                                                                                                       | take place at :<br>(3) Stromal matrix                 | <b>(Re-AIPMT-2015)</b><br>(4) Thylakoid lumen        |                                                                         |  |  |  |  |
| 37.   | A plant in your garden avoids photorespiratory losses, has improved water use efficiency, shows high rates of photosynthesis at high temperatures and has improved efficiency of nitrogen utilisation. In which of the following physiological groups would you assign this plant? |                                                       |                                                      |                                                                         |  |  |  |  |
|       | (1) Nitrogen fixer                                                                                                                                                                                                                                                                 | (2) C <sub>3</sub>                                    | (3) C <sub>4</sub>                                   | (4) CAM                                                                 |  |  |  |  |
| 38.   | Emerson's enhanceme<br>(1) Oxidative phosphor                                                                                                                                                                                                                                      | nt effect and Red drop h                              | ave been instrumental in                             | the discovery of:<br>(NEET-I-2016)                                      |  |  |  |  |

|     | <ul> <li>(2) Photophosphorylation and non-cyclic electron transport</li> <li>(3) Two photosystems operating simultaneously</li> <li>(4) Photophosphorylation and cyclic electron transport</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                           |                                                         |                               |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|-------------------------------|--|--|--|--|--|
| 39. | <ul><li>(4) Photophosphory</li><li>In a chloroplast the h</li><li>(1) Antennae completion</li><li>(3) Lumen of thylako</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ation and cyclic electron<br>highest number of proton<br>ex<br>ids | (2) Stroma<br>(4) Inter membrane s                        | are found in:<br>(2) Stroma<br>(4) Inter membrane space |                               |  |  |  |  |  |
| 40. | The process which n (1) respiration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nakes major difference b<br>(2) glycolysis                         | etween $C_3$ and $C_4$ plants (3) Calvin cycle            | is<br>(4) photores                                      | (NEET-II-2016)                |  |  |  |  |  |
| 41. | Oxidative phosphorylation is (NEET-II-2016)<br>(1) formation of ATP energy released from electrons removed during substrate oxidation<br>(2) formation of ATP by transfer of phosphate group from a substrate to ADP.<br>(3) oxidation of phosphate group in ATP<br>(4) addition of phosphate group to ATP                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                           |                                                         |                               |  |  |  |  |  |
| 42  | Phosphoenol pyruva<br>(1) C₃ plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | te (PEP) is the primary (<br>(2) C4 plants                         | CO <sub>2</sub> acceptor in:<br>(3) C <sub>2</sub> plants | (4) C₃ and C                                            | (NEET-2017)<br>4 plants       |  |  |  |  |  |
| 43  | <ul> <li>With reference to factors affecting the rate of photosynthesis, which of the following statements is not correct? (NEET-2017)</li> <li>(1) Light saturation for CO<sub>2</sub> fixation occurs at 10% of full sunlight.</li> <li>(2) Increasing atmospheric CO<sub>2</sub> concentration up to 0.05% can enhance CO<sub>2</sub> fixation rate</li> <li>(3) C<sub>3</sub> plants respond to higher temperatures with enhanced photosynthesis while C<sub>4</sub> plants have much lower temperature optimum.</li> <li>(4) Tempto is a greenbourge group which can be grown in CO<sub>3</sub> enriched atmosphere for higher yield</li> </ul> |                                                                    |                                                           |                                                         |                               |  |  |  |  |  |
| 44  | Which of the followin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g is <i>not</i> a product of ligh                                  | t reaction of photosynthe                                 | sis?                                                    | (NEET-2018)                   |  |  |  |  |  |
| 45  | <ul> <li>(1) ATF</li> <li>Oxygen is <i>not</i> prodution</li> <li>(1) Green sulphur bat</li> <li>(3) <i>Cycas</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ced during photosynthes                                            | (3) NADPH<br>sis by<br>(2) Chara<br>(4) Nostoc            | (4) NADU                                                | (NEET-2018)                   |  |  |  |  |  |
|     | PART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - II : AIIMS QUES                                                  |                                                           | S YEARS )                                               |                               |  |  |  |  |  |
| 1.  | Chemical which abso<br>(1) Xanthophyll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | orbs light energy and cha<br>(2) Chlorophyll a                     | anges it to chemical ener<br>(3) Chlorophyll b            | gy is<br>(4) Chloroph                                   | <b>(AIIMS-2000)</b><br>yll c. |  |  |  |  |  |
| 2.  | Photorespiration in C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_{_3}$ plants starts from                                        |                                                           |                                                         | (AIIMS-2003)                  |  |  |  |  |  |

(1) phosphoglycerate (2) phosphoglycolate (3) glycerate (4) glycine
 3. Hill reaction occurs in (AIIMS-2003)
 (1) high altitude plants (2) total darkness
 (3) absence of water (4) presence of ferricyanide

4. Which one of the following categories of organisms do not evolve oxygen during photosynthesis?

(AIIMS-2004)

|       | (1) red algae<br>(3) $C_4$ plants with Kranz anatomy                                                                                                                                                                                                                             |                                                                  |                                                               |                                                         | ıy                                                                                                                                                                                                           | <ul><li>(2) photosynthetic bacteria</li><li>(4) blue green algae</li></ul>                        |                            |                              |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------|------------------------------|--|
| 5.    | What i<br>(1) 200                                                                                                                                                                                                                                                                | s PAR ra<br>0 nm - 80                                            | ange?<br>00 nm                                                | (2) 400                                                 | ) nm - 700 nm                                                                                                                                                                                                | (3) 350 nm - 550 nm                                                                               | (4) 600 nm - 1             | <b>(AIIMS-2007)</b><br>00 nm |  |
| 6.    | What i<br>(1) Ab<br>(3) Sto                                                                                                                                                                                                                                                      | s commo<br>ility to m<br>prage of a                              | on betwe<br>ultiply a f<br>starch, p                          | en chlor<br>fission-lil<br>roteins a                    | roplasts, chromo<br>ke process<br>and lipids                                                                                                                                                                 | noplasts and leucoplasts(AIIMS-200(2) Presence of pigments(4) Possession of thylakoids and grana. |                            |                              |  |
| 7.    | Which<br>(1) It is<br>(2) Th<br>(3) PS<br>(4) PS                                                                                                                                                                                                                                 | of the fo<br>s active o<br>e reactio<br>-I is redu<br>-I is invo | ollowing i<br>only upto<br>n centre<br>uced by t<br>lved in n | s the ch<br>680 nm<br>of PS- I<br>he elect<br>on-cyclio | aracteristic of PS<br>of light<br>is P680<br>rons released in<br>c photophosphoi                                                                                                                             | S-I.<br>photolysis of water<br>rylation.                                                          |                            | (AIIMS-2009)                 |  |
| 8.    | <ul> <li>The enzyme decarboxylase catalyses the following step</li> <li>(1) conversion of citric acid to cis aconitic acid</li> <li>(2) fumaric acid to malic acid</li> <li>(3) oxalosuccinic acid to α-ketoglutaric acid</li> <li>(4) malic acid to oxaloacetic acid</li> </ul> |                                                                  |                                                               |                                                         |                                                                                                                                                                                                              |                                                                                                   |                            | (AIIMS-2009)                 |  |
| 9.24  | Match the columns.<br>Column I (Scientists)<br>A. Stephen Hales<br>B. Ingen Housz<br>C. Von Mohl<br>D. Sach                                                                                                                                                                      |                                                                  |                                                               |                                                         | (AIIMS-2<br>Column II (Discoveries)<br>i. Importance of light and chlorophyll<br>ii. Presence of chlorophyll in plants<br>iii. Product of photosynthesis is starch<br>iv. Air and light control plant growth |                                                                                                   |                            |                              |  |
| 10 >= | (1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                         | A<br>iv<br>iii<br>ii<br>iv                                       | B<br>i<br>ii<br>iii<br>iii                                    | C<br>ii<br>iv<br>ii                                     | D<br>iii<br>iv<br>i<br>i                                                                                                                                                                                     |                                                                                                   |                            | (AIIMS-2010)                 |  |
| 10.24 | (1) PS                                                                                                                                                                                                                                                                           | І                                                                | losphory                                                      | (2) PS                                                  | ll                                                                                                                                                                                                           | (3) PS I and PS II                                                                                | (4) P <sub>680</sub>       | (AIIIVI3-2010)               |  |
| 11.   | The first stable product of Calvin<br>(1) 3-phosphoglycerate<br>(3) glyceraldehyde - 3 phosphat                                                                                                                                                                                  |                                                                  |                                                               |                                                         | n cycle is<br>te                                                                                                                                                                                             | (2) 1, 3 biphosphoglyc<br>(4) ribulose - 5- phosp                                                 | erate<br>hate              | (AIIMS-2010)                 |  |
| 12.   | Photos<br>(1) pig<br>(3) Bo                                                                                                                                                                                                                                                      | synthetic<br>ment sys<br>th (1) an                               | : bacteria<br>stem I<br>d (2)                                 | a have                                                  |                                                                                                                                                                                                              | (2) pigment system II<br>(4) some other kind of                                                   | pigments, B <sub>890</sub> | (AIIMS-2011)                 |  |
| 13.   | Consid<br>(A) AT                                                                                                                                                                                                                                                                 | der the fo<br>P forma                                            | ollowing<br>tion durir                                        | statemei<br>ng photo                                    | nts regarding phosynthesis is term                                                                                                                                                                           | otosynthesis.<br>ned as photophosphoryl                                                           | ation.                     | (AIIMS-2015)                 |  |

|     | (B) Kranz anatomy pertains to leaf |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                        |                   |  |  |  |  |
|-----|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|-------------------|--|--|--|--|
|     | (C) Reduction of NAD               | P⁺ to NADPH occurs du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ring Calvin cycle.           |                        |                   |  |  |  |  |
|     | (D) In a chlorophyll mc            | ecule magnesium is pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | esent in phytol tail. Of the | e above statemer       | nts               |  |  |  |  |
|     | (1) A and B are correct            | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2) C and D are corre        | ct                     |                   |  |  |  |  |
|     | (3) A and C are correc             | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4) A and D are corre        | ct                     |                   |  |  |  |  |
| 14. | How much portion of the            | ne Photosynthetically A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ctive Radiation (PAR) is o   | captured by the p      | lants?            |  |  |  |  |
|     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                        | (AIIMS-2016)      |  |  |  |  |
|     | (1) 5-10 %                         | (2) 7-10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3) 8-10 %                   | (4) 2-10%              |                   |  |  |  |  |
| 15. | Photosynthesis in $C_4$ p          | lants is relatively less lir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mited by atmospheric CC      | $D_{2}$ levels because |                   |  |  |  |  |
|     |                                    | ertains to leaf<br>DP+ to NADPH occurs during Calvin cycle.<br>nolecule magnesium is present in phytol tail. Of the above statements<br>ct (2) C and D are correct<br>ect (4) A and D are correct<br>the Photosynthetically Active Radiation (PAR) is captured by the plants?<br>(AIIMS-2016)<br>(2) 7-10% (3) 8-10% (4) 2-10%<br>plants is relatively less limited by atmospheric CO <sub>2</sub> levels because<br>(AIIMS-2016)<br>pumping of CO <sub>2</sub> into bundle sheath cells<br>ants has higher affinity for CO <sub>2</sub><br>e the primary initial CO <sub>2</sub> fixation products<br>on of CO <sub>2</sub> mediated <i>via</i> PEP carboxylase<br>powing complex, proton is pumped to reach ATP synthase, to participate in ATP |                              |                        |                   |  |  |  |  |
|     | (1) There is effective p           | umping of CO <sub>2</sub> into bun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dle sheath cells             |                        |                   |  |  |  |  |
|     | (2) RuBisCO in $C_4$ plar          | nts has higher affinity for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r CO <sub>2</sub>            |                        |                   |  |  |  |  |
|     | (3) 6-carbon acids are             | the primary initial CO <sub>2</sub> f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ixation products             |                        |                   |  |  |  |  |
|     | (4) The primary fixation           | n of CO <sub>2</sub> mediated <i>via</i> P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EP carboxylase               |                        |                   |  |  |  |  |
| 16. | By which of the follow             | ving complex, proton is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s pumped to reach ATP        | synthase, to pa        | articipate in ATP |  |  |  |  |

- synthesis?
- (1) Cytochrome  $b_6 f$  (2) Cytochrome c oxidase
- (3) Cytochrome  $a a_3$  (4) Cytochrome bc

(AIIMS-2016)

| <b>Answers</b>                              |                                                                                                       |                                             |                                                                                                       |                                              |                                                                                                       |                                       |                                                                                                       |                                              |                                                                                                       |                                       |                                                                                          |                                       |                                                                             |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------|
|                                             |                                                                                                       |                                             |                                                                                                       |                                              |                                                                                                       | FXFR                                  |                                                                                                       | . 1                                          |                                                                                                       |                                       |                                                                                          |                                       |                                                                             |
| SECTION - A                                 |                                                                                                       |                                             |                                                                                                       |                                              |                                                                                                       |                                       |                                                                                                       |                                              |                                                                                                       |                                       |                                                                                          |                                       |                                                                             |
| 1.<br>8.<br>15.<br>22.<br>29.<br>36.<br>43. | <ul> <li>(3)</li> <li>(1)</li> <li>(2)</li> <li>(2)</li> <li>(2)</li> <li>(2)</li> <li>(3)</li> </ul> | 2.<br>9.<br>16.<br>23.<br>30.<br>37.<br>44. | <ul> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> <li>(2)</li> <li>(1)</li> <li>(1)</li> </ul> | 3.<br>10.<br>17.<br>24.<br>31.<br>38.<br>45. | <ul> <li>(2)</li> <li>(3)</li> <li>(2)</li> <li>(4)</li> <li>(1)</li> <li>(2)</li> <li>(4)</li> </ul> | 4.<br>11.<br>25.<br>32.<br>39.<br>46. | <ul> <li>(4)</li> <li>(1)</li> <li>(4)</li> <li>(3)</li> <li>(3)</li> <li>(1)</li> <li>(3)</li> </ul> | 5.<br>12.<br>19.<br>26.<br>33.<br>40.<br>47. | <ol> <li>(1)</li> <li>(4)</li> <li>(1)</li> <li>(2)</li> <li>(3)</li> <li>(4)</li> <li>(1)</li> </ol> | 6.<br>13.<br>20.<br>27.<br>34.<br>41. | <ul> <li>(2)</li> <li>(3)</li> <li>(1)</li> <li>(4)</li> <li>(4)</li> <li>(3)</li> </ul> | 7.<br>14.<br>21.<br>28.<br>35.<br>42. | (1)<br>(3)<br>(1)<br>(2)<br>(1)<br>(3)                                      |
| SECT                                        | ION - B                                                                                               | •                                           | ( <b>0</b> )                                                                                          | •                                            | (0)                                                                                                   |                                       | ( 4 )                                                                                                 | -                                            |                                                                                                       | •                                     | ( 4 )                                                                                    | -                                     | ( <b>0</b> )                                                                |
| 1.<br>8.<br>15.                             | (4)<br>(2)<br>(2)                                                                                     | 2.<br>9.<br>16.                             | (2)<br>(1)<br>(3)                                                                                     | 3.<br>10.                                    | (3)<br>(4)                                                                                            | 4.<br>11.                             | (4)<br>(1)                                                                                            | 5.<br>12.                                    | (2)<br>(3)                                                                                            | ь.<br>13.                             | (4)<br>(2)                                                                               | 7.<br>14.                             | (3)<br>(1)                                                                  |
| SECT                                        | ION - C                                                                                               |                                             |                                                                                                       |                                              |                                                                                                       |                                       |                                                                                                       |                                              |                                                                                                       |                                       |                                                                                          |                                       |                                                                             |
| 1.<br>8.<br>15.<br>22.<br>29.<br>36.        | (1)<br>(1)<br>(1)<br>(1)<br>(4)<br>(1)                                                                | 2.<br>9.<br>16.<br>23.<br>30.<br>37.        | <ul> <li>(4)</li> <li>(1)</li> <li>(1)</li> <li>(3)</li> <li>(2)</li> <li>(1)</li> </ul>              | 3.<br>10.<br>17.<br>24.<br>31.<br>38.        | <ul> <li>(3)</li> <li>(4)</li> <li>(2)</li> <li>(2)</li> <li>(2)</li> <li>(2)</li> </ul>              | 4.<br>11.<br>18.<br>25.<br>32.<br>39. | <ul> <li>(1)</li> <li>(2)</li> <li>(2)</li> <li>(4)</li> <li>(1)</li> <li>(1)</li> </ul>              | 5.<br>12.<br>19.<br>26.<br>33.<br>40.        | (2)<br>(2)<br>(3)<br>(1)<br>(4)<br>(2)                                                                | 6.<br>13.<br>20.<br>27.<br>34.<br>41. | (2)<br>(4)<br>(1)<br>(3)<br>(1)<br>(3)                                                   | 7.<br>14.<br>21.<br>28.<br>35.        | (2)<br>(2)<br>(1)<br>(2)<br>(1)                                             |
|                                             |                                                                                                       |                                             |                                                                                                       | Ν                                            | NISCEL                                                                                                | LANE                                  | OUS Q                                                                                                 | UESTI                                        | ONS                                                                                                   |                                       |                                                                                          |                                       |                                                                             |
| 1.<br>8.<br>15.                             | (1)<br>(3)<br>(4)                                                                                     | 2.<br>9.<br>16.                             | (4)<br>(2)<br>(2)                                                                                     | 3.<br>10.<br>17.                             | (1)<br>(2)<br>(1)                                                                                     | 4.<br>11.<br>18.                      | (4)<br>(4)<br>(1)                                                                                     | 5.<br>12.                                    | (2)<br>(3)                                                                                            | 6.<br>13.                             | (4)<br>(2)                                                                               | 7.<br>14.                             | (4)<br>(2)                                                                  |
|                                             |                                                                                                       |                                             |                                                                                                       |                                              |                                                                                                       | EXER                                  | CISE -                                                                                                | - 2                                          |                                                                                                       |                                       |                                                                                          |                                       |                                                                             |
| 1.<br>8.                                    | (3)<br>(1)                                                                                            | 2.<br>9.                                    | (2)<br>(1)                                                                                            | 3.<br>10.                                    | (3)<br>(2)                                                                                            | 4.<br>11.                             | (4)<br>(1)                                                                                            | 5.<br>12.                                    | (1)<br>(3)                                                                                            | 6.<br>13.                             | (1)<br>(3)                                                                               | 7.<br>14.                             | (2)<br>(3)                                                                  |
|                                             |                                                                                                       |                                             |                                                                                                       |                                              |                                                                                                       | EXER                                  | CISE -                                                                                                | 3                                            |                                                                                                       |                                       |                                                                                          |                                       |                                                                             |
|                                             |                                                                                                       |                                             |                                                                                                       |                                              |                                                                                                       | PA                                    | ART- I                                                                                                |                                              |                                                                                                       |                                       |                                                                                          |                                       |                                                                             |
| 1.<br>8.<br>15.<br>22.<br>29.<br>36.<br>43. | (2)<br>(2)<br>(1)<br>(3)<br>(1)<br>(3)<br>(3)                                                         | 2.<br>9.<br>16.<br>23.<br>30.<br>37.<br>44. | (2)<br>(2)<br>(4)<br>(1)<br>(1)<br>(3)<br>(4)                                                         | 3.<br>10.<br>17.<br>24.<br>31.<br>38.<br>45. | (2)<br>(2)<br>(3)<br>(4)<br>(3)<br>(1)                                                                | 4.<br>11.<br>18.<br>25.<br>32.<br>39. | <ul> <li>(4)</li> <li>(3)</li> <li>(2)</li> <li>(2)</li> <li>(1)</li> <li>(3)</li> </ul>              | 5.<br>12.<br>19.<br>26.<br>33.<br>40.        | <ul> <li>(3)</li> <li>(3)</li> <li>(1)</li> <li>(3)</li> <li>(3)</li> <li>(4)</li> </ul>              | 6.<br>13.<br>20.<br>27.<br>34.<br>41. | (2)<br>(2)<br>(1)<br>(2)<br>(4)<br>(1)                                                   | 7.<br>14.<br>21.<br>28.<br>35.<br>42. | <ul> <li>(3)</li> <li>(1)</li> <li>(1)</li> <li>(4)</li> <li>(2)</li> </ul> |
|                                             |                                                                                                       | •                                           |                                                                                                       | •                                            |                                                                                                       | PA                                    | ART- II                                                                                               | -                                            |                                                                                                       | •                                     |                                                                                          | -                                     |                                                                             |
| 1.<br>8.<br>15.                             | (2)<br>(3)<br>(4)                                                                                     | 2.<br>9.<br>16.                             | (2)<br>(1)<br>(1)                                                                                     | 3.<br>10.                                    | (4)<br>(1)                                                                                            | 4.<br>11.                             | (2)<br>(1)                                                                                            | 5.<br>12.                                    | (2)<br>(4)                                                                                            | ь.<br>13.                             | (1)<br>(1)                                                                               | 7.<br>14.                             | (4)<br>(4)                                                                  |