Self Practice Paper (SPP)

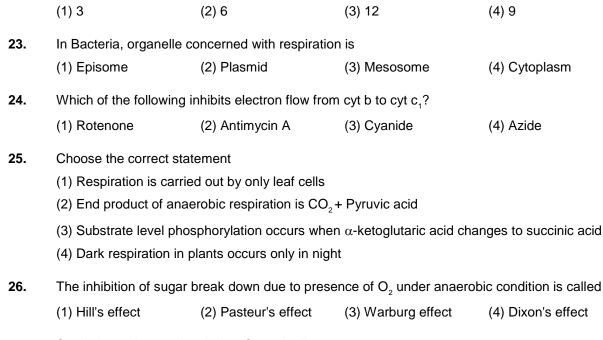
- **1.** Select the wrong pair
 - (1) C₄ cycle Dimorphic Chloroplasts
 - (2) C₃ cycle Chlorella & Scenedesmus
 - (3) Alcoholic fermentation Production of NADH-H⁺
 - (4) Oxidative decarboxylation of pyruvic acid Formation of CO₂ & acetyl CO~A
- **2.** Which one releases CO_2 ?
 - (1) Glycolysis (2) ETS
 - (3) Alcoholic fermentation (4) Lactic acid fermentation
- 3. Select the correct matching of the characteristics in respect of C₃ and C₄ plants

	Characteristic	C₃ plant	C₄ plant		
Α	Primary CO ₂ acceptor	RUBP	PEP		
		Bundle			
В	Occurence of Rubisco	sheath	Mesophyll		
С	Primary CO ₂ fixation product	PGA	OAA		
D	No. of ATP & NADPH·H ⁺ required for the synthesis of 1 molecule of glucose	18 & 12	30 & 12		
1) b,	c, d (2) a, b,c	(3) a, c, d	(4) b & d		

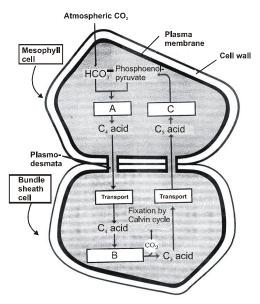
4. When one molecule of pyruvic acid is subjected to anaerobic respiration changed into Lactic acid there is a

5. ATP formation is

(1) Enderogonic (endothermic)	(2) Exerogonic (exothermic)
(3) Conservative	(4) Chemical


- **6.** RQ is measured with Ganong's respiroscope. If in its Hg level remains constant during experiment, the RQ value comes to unit. When it shows rise in Hg level the
 - (1) Value of RQ will be 0 (2) Value of RQ will be <1
 - (3) RQ value will be unity (4) RQ value will be infinity

7. The first action spectrum was suggested by Engelmann by using –


- (1) Chlorella and anaerobic bacteria (2) Spirogyra and anaerobic bacteria
- (3) Cladophora and aerobic bacteria (4) Chlorella and aerobic bacteria
- 8. Among the following, which compound links glycolysis and Kreb's cycle-
 - (1) Acetyl Co.A (2) Pyruvic acid (3) Glucose (4) Oxaloacetic acid

9.	 Which of the following statement is correct? (1) Cyclic photophosphorylation produces neither oxygen nor NADPH. (2) The site of the light reactions is the stroma of the chloroplast. (3) Light is absorbed by chlorophyll during Calvin Cycle. (4) FADH and ATP are generated during the Light reaction to power the Calvin Cycle. 							
10.	Importance of day leng (1) Lemna.	th in flowering of plants v (2) Tobacco	was first shown in – (3) Cotton	(4) Petunia				
11.	Statements: (i) Z scheme of light rea (ii) Only PS I is function (iii) Plastocyanin is elec	action takes place in pres al in cyclic photophosph	orylation. electron transport chain					
12.	Which of the following I (1) auxin	normones can replace ve (2) cytokinin	ernalisation? (3) gibberellin	(4) ethylene				
13.	Which is incorrect pair (1) Auxin – xylem differ (3) Zeatin – Cell divisio		(2) Gibberellins – Bolting in beet & cabbage (4) ABA – Adenine derivatives					
14.	Exponential growth is maximum in(1) tissue culture cells(2) embryo(3) unicellular organisms(4) multicellular organisms							
15.	Bidirectional translocati (1) Xylem	on of minerals takes plac (2) Phloem	ce through (3) Parenchyma	(4) Cambium				
16.	Anaerobic process afte (1) TCA	r glycolysis is called (2) Calvin cycle	(3) Krebs cycle	(4) Fermentation				
17.	Minerals involved in ph (1) Mn, Cl, Ca	oto oxidation of water is (2) Mg, Fe, Mn	(3) Mn, Fe, Ca	(4) N, P, K				
18.	Phytochrome becomes (1) Green light	active in (2) Blue light	(3) Red light	(4) None of these				
19.	The growth hormones ((1) Auxins	responsible for bolting ar (2) Kinetin	e (3) Coumarins	(4) Gibberellins				
20.	Weedcide 2, 4 - D is (1) Pesticide (3) Auxin		(2) Growth inhibitor hor (4) Insecticide	mone				
21.	Enzyme absent in mito (1) Aconitase	chondrion (2) Fumarase	(3) Hexokinase	(4) Malic dehydrogenase				

22. How many ATP are formed in ETS from reduced NAD generated in one turn cycle of Kreb's Cycle?

27.# Study the pathway given below C_4 cycle diagram

In which of the following options correct words for all the three blanks A, B and C are indicated?

	Α	В	С
(1)	Carboxylation	Decarboxylation	Reduction
(2)	Decarboxylation	Reduction	Regeneration
(3)	Fixation	Transamination	Regeneration
(4)	Fixation	Decarboxylation	Regeneration

28.	The products of light reaction are-							
	(1) ATP, NADH +H⁺		(2) NADPH+H⁺, ATF	(2) NADPH+H ⁺ , ATP, CO_2				
	(3) Glucose, ATP, O ₂		(4) O ₂ , NADPH+H ⁺ , <i>J</i>	(4) O_2 , NADPH+H ⁺ , ATP				
29.	Chemiosmotic theory of ATP synthesis in chloroplasts and mitochondria is based on							
	(1) Membrane poter	ntial	(2) accumulation of I	Na⁺ ions				
	(3) Accumulation of K⁺ions		(4) Proton gradient					
30.	When yeast ferment	s glucose, the products a	are					
	(1) $C_2H_5OH+CO_2 +$	Energy	(2) C ₂ H ₅ OH+ Energy	1				
	(3) $CO_2 + H_2O + Energy$	ergy	(4) $CH_{3} OH + H_{2}O +$	Energy				
31.	In how many steps is CO_2 produced in aerobic respiration							
	(1) 1	(2) 2	(3) 3	(4) 6				
32.	Upon oxidation of 1 molecule of pyruvic acid in mitochondrial respiration the molecules of ATP generated are							
	(1) 38	(2) 30	(3) 8	(4) 15				
33.	How much energy is	s conserved as ATP per r	nole of O_2 reduced into H	H ₂ O?				
	(1) 36		(2) 38	(2) 38				
	(3) 6		(4) 36 in eukaryotes	(4) 36 in eukaryotes and 38 in prokaryotes.				
34.	In kreb's cycle							
	(1) Acetyl coenzyme A undergoes 4 oxidation and 2 decarboxylation							
	(2) Pyruvic acid undergoes 4 oxidation and 2 decarboxylation							
	(3) TCA undergoes 4 oxidation and 2 decarboxylation							
	(4) OAA undergoes 4 oxidation and 2 decarboxylation.							
35.	Wavelength of PAR	is						
	(1) 200 – 400 nm	(2) 400 – 700 nm	(3) 700 – 900 nm	(4) 100 – 200 nm				
36.	3 PGA is first stable	product of						
	(1) Carbon oxidation	n cycle	(2) Carbon reduction	(2) Carbon reduction cycle				
	(3) Reductive amina	tion	(4) Malic acid synthe	(4) Malic acid synthesis				

37. Match the column

38.

39.

40.

41.

Column-I	Column	-11		
(a) Carboxylation	(i) Oxyge	en evolution		
(b) Photolysis of wate	r (ii) Photo	prespiration		
(c) Phosphoglycolate	(iii) Rubi	sco		
(d) Nitrosomonas	(iv) Chei	nosynthesis		
(e) Photophosphoryla	tion. (v) ATP			
(1) (a) – i (b) – ii (c) –	iii (d) – iv (e) – v			
(2) (a) – iii (b) – i (c) –	ii (d) – v (e) – iv			
(3) (a) – iii (b) – ii (c) -	- v (d) – iv (e) –i			
(4) (a) – v (b) – iii (c) -	- iv (d) – ii (e) –i			
Germination of peanu	t seed is initiated by	/		
(1) GA	(2) Cytokinin	(3) IBA	(4) Ethylene	
with correct combinati		Column-II		
Column-I		Column-II		
(Phytohormones)		(Function)		
(A) Auxins		(p) Breaking seed dorm		
(B) Gibberellins		(q) inducing fruit ripenir	-	
(C) Cytokinins		(r) Formation of absciss	sion layer	
(D) Ethylene		(s) Root initiation		
(1) A = r, B = s, C = p,		(t) Chioroplast develop (2) A = p, B = r	ment and chlorophyll synthesis	
		(2) А = р, В = 1 (4) А = s, В = р		
(3) $A = s, B = t, C = r,$	D=q	(4) $A = 5, D = p$	$\mathbf{y}, \mathbf{U} = \mathbf{i}, \mathbf{D} = \mathbf{q}$	
Read the following sta	•			
(a) Photorespiration p energy.	protects the plant fr	om photo oxidative dar	nage by dissipating excess of excitat	ion
(b) Above 40°C the ra	ate of respiration be	come high		
(c) Substrate level ph	osphorylation gene	erates 8 ATP in Glycoly	sis	
(d) Retting of stem fit	ores is carried out w	ith the help of bacteria	fermentation of softer tissues	
pick up the correct sta	tements			
(1) b & d	(2) a & c	(3) a & d	(4) b & c	
How many molecules	of glycine are requ	ired to release one mol	ecule of CO ₂ in photorespiration?	
(1) One	(2) Two	(3) Three	(4) Four	

42. A hormone involved in low temperature effect on flowering is

	(1) Florigen	(2) Vernalin	(3) dormin	(4) Anthesin
43.	Which of the following	is not a function of auxin		
	(1) To increase the rate	e of respiration	(2) To increase the rate	e of photosynthesis
	(3) To increase the pla	sticity of cell wall	(4) To increase the upt	ake of water by cells
44.	Which of the following	are day neutral plants		
	(1) Mirabilis, Lycopersi	<i>icum esculentum</i> and Pis	sum sativum	
	(2) Glycine max and M	lirabilis		
	(3) Lycopersicum escu	lentum and Beta vulgari	S	
	(4) Glycine max and P	isum sativum		
45.	In plants, substrate lev	el phosphorylation in a k	reb cycle produces	

(1) 2ATP	(2) 4 ATP	(3) no ATP	(4) 1 ATP
(1) ZATE	(Z) 4 ATP	(3) 110 AT P	(4) I A I P

	SP	ΡΑ	nsw	/ers									
1.	(3)	2.	(3)	3.	(3)	4.	(2)	5.	(1)	6.	(2)	7.	(3)
8.	(1)	9.	(1)	10.	(2)	11.	(1)	12.	(3)	13.	(4)	14.	(1)
15.	(2)	16.	(4)	17.	(1)	18.	(3)	19.	(4)	20.	(3)	21.	(3)
22.	(4)	23.	(3)	24.	(2)	25.	(3)	26.	(2)	27.	(4)	28.	(4)
29.	(4)	30.	(1)	31.	(3)	32.	(4)	33.	(3)	34.	(1)	35.	(2)
86.	(2)	37.	(2)	38.	(4)	39.	(4)	40.	(3)	41.	(2)	42.	(2)
43.	(2)	44.	(1)	45.	(4)								