Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks : 120

Max. Time : 1 Hr.

Important Instructions :

- 1. The test is of 1 hour duration and max. marks 120.
- 2. The test consists 30 questions, 4 marks each.
- **3.** Only one choice is correct **1 mark** will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 4. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.

1.	If $\stackrel{\mathbb{M}}{p} = \hat{i} + \hat{j}, \stackrel{\mathbb{M}}{q} = 4\hat{k} - \hat{j}_{a}$ $\frac{\hat{i} + 2\hat{j} + 2\hat{k}}{\hat{k} - \hat{j}_{a}}$	and $\vec{r} = \hat{i} + \hat{k}$ then the uning $\frac{\hat{i} - 2\hat{j} - 2\hat{k}}{\hat{i} - 2\hat{j} - 2\hat{k}}$	it vector in the direction c $\frac{\hat{i} - 2\hat{j} + 2\hat{k}}{\hat{k}}$	of $3\ddot{p} + \ddot{q} - 2\ddot{r}$ is:
	(1) 3	(2) 3	(3) 3	(4) $i + 2j + 2k$
2.	If P is any point within	a $\triangle ABC$, then $\stackrel{(2)}{PA} + \stackrel{(2)}{CP} =$		
	(1) $AC + CB$	(2) $BC + BA$	(3) $CB + AB$	(4) CB + BA
3.	If the position vectors cos ₂ A is equal to :	of A, B, C are respective	$ely 2\hat{i} - \hat{j} + \hat{k}, \hat{i} - 3\hat{j} - 5\hat{k}$	$\hat{k}_{and} = 3\hat{i} - 4\hat{j} - 4\hat{k}$ in $\triangle ABC$ then
		6	<u>35</u>	
	(1) 0	(2) 41	(3) 41	(4) 1
4.	$\overset{\mathbb{M}}{a} = 2\hat{i} + 2\hat{j} - \hat{k}, \overset{\mathbb{M}}{b} = \alpha\hat{i}$	$+\beta\hat{j}+2\hat{k}_{and} \hat{a}+\hat{b} = \hat{a}-$	b^{α} , then α + β is equal to):
	(1) 2	(2) 1	(3) 0	(4) –1
5.	The value of b such that	at scalar product of the v	ectors $(\hat{i} + \hat{j} + \hat{k})$ with the	unit vector parallel to the sum
	of the vectors $(2\hat{i}+4\hat{j}+4)$	$(5\hat{k})_{and} (b\hat{i}+2\hat{j}+3\hat{k})_{and}$	s 1 is ·	
	(1) –2	(2) –1	(3) 0	(4)1
6.	A, B, C, D are any four		C.AD + CA.BD =	
	(1) 2AB.BC.CD	(2) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$	(3) ⁵ √3	(4) 0
7.	Angle between the vec	tors $\sqrt{3}(\ddot{a} \times \ddot{b})$ and $\ddot{b} - (\dot{a} \times \ddot{b})$	a.b)a	
	π	$\underline{\pi}$		$\frac{\pi}{2}$
	(1) 2	(2) 4	(3) 0	(4) 3

8.	If the vector $3\hat{i} - 4\hat{j} - \hat{k}$ and $2\hat{i} + 3\hat{j} - 6\hat{k}$ represents the diagonals of a rhombus, then the length of the side of the rhombus, is							
			$5\sqrt{3}$	$15\sqrt{3}$				
	(1) 15	(2) ¹⁵ √3	(3) $\frac{3\sqrt{2}}{2}$	(4) $\frac{1000}{2}$				
	M M							
9.	If a and b are two vec	tors such that a.b = 0 an	d $a \times b = 0$ then	2				
	(1) \overline{a} is parallel to \overline{b}		(2) ^a is perpendicular t	ob				
	(3) Either ^{a or b} is a nu	ull vector	(4) None of these					
10.	If $\overset{\boxtimes}{a} = 2\hat{i} + 3\hat{j} - 5\hat{k}$, $\overset{\boxtimes}{b} = n$	$\hat{ni} + \hat{nj} + 12\hat{k}$ and $\hat{a} \times \hat{b}$	= 0, then (m, n) =					
	(-24 36)	(24 -36)	(-24 -36)	(24 36)				
	(1) $\left(\frac{5}{5}, \frac{5}{5} \right)$	(2) $\left(\frac{5}{5}, \frac{5}{5} \right)$	(3) (5, 5)	$(4) \left(\overline{5}, \overline{5} \right)$				
11.	If $\overset{\boxtimes}{a} = \hat{i} - \hat{j}_{and} \overset{\boxtimes}{b} = \hat{j} + \hat{k}$	then a × b ₂ + a b	₂ is equal to :					
	(1) √ ²	(2) 2	(3) $\sqrt{6}$	(4) 4				
40		$-2\hat{i}+\hat{i}+\hat{k}$	$\hat{i} + \hat{i} + \hat{k}$, $\hat{i} - \hat{k}$, $\lambda \hat{i} + \hat{k}$	ς Στου το				
12.	If the four points with points (1) 1	(2) 2	(3) –1	are coplanar, then $\Lambda =$				
	(')'' ⊃î î⊥k	$(-)^{2}$						
13.	If the vectors $2I - J + K$,	$(2) 2$ and $(31 + \lambda) + (2) 2$	be coplanar, then $\lambda = \frac{1}{2}$					
	(1) -1	(2) - 2	(3) -3	(4) -4				
14.	If three vectors $\hat{a} = 12i$	+4j+3k, b = 8i - 12j - 9	$\dot{c} = 33i - 4j - 24k$	are edges of parallelopiped				
	then its volume will be : (1) 616	(2) 308	(3) 154	(4) None of these				
15.	If $a = 1 + j + \kappa, b = 21 + \gamma$	$\kappa_{j} + \kappa_{k}c = 1 - j + 4\kappa$ and a .	$(D \times C) = 10$, then $\lambda =$					
	(1) 6	(2) 7	(3) 9	(4) 10				
	K	$\frac{5\pi}{5\pi}$	₩ ₩ <u>−9</u>	. W .				
16.	The angle between a a	ind b is ⁶ and projection	on of $a ext{ on } b$ is $\sqrt{3}$, ther	n ^a is equal to :				
	(1) 12	(2) 8	(3) 10	(4) 6				
17.	If $ \ddot{a} _{=3}$, $ \ddot{b} _{=4}$, then	n a value of λ for which ${}^{rac{\mathbb{N}}{2}}$	$a^{\mu} + \lambda b^{\mu}$ is perpendicular to	$b^{a} - \lambda b$ is:				
	9	3	3	4				
	(1) 16	(2) 4	(3) 2	(4) 3				
18.	$\hat{AB} \times \hat{AC} = 2\hat{i} - 4\hat{j} + 4\hat{k}$	then the area of AABC is	3.					
	(1) 3	(2) 4	(3) 16	(4) 9				
19.	If $\overset{\boxtimes}{a}$ and $\overset{\boxtimes}{b}$ are the posi	ition vectors of A and B re	espectively, then the pos	ition vector of a point C on AB				
	produced such that AC	$B = 3AB_{is}$:	- · ·	·				
	(1) ^{3a} -b	(2) ^{3D} – a	(3) ^{3a – 2b}	(4) 30 - 2a				
	(1) ^{3ā} -b	(2) $3D - a$ $\hat{i} + 3\hat{i} - 7\hat{k}$	(3) $5\hat{i} - 2\hat{j} + 4\hat{k}$	(4) ^{30 – 24}				

y-axis is :

	4	5		
	(1) ^{√162}	(2) √162	(3) –5	(4) 11
21.	Angle between the line	$\overset{\bowtie}{\mathbf{r}} = (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}) + \lambda(\hat{\mathbf{i}} - \hat{\mathbf{j}} + 1)$	\hat{k}) and the normal to the	plane $\vec{r}.(2\hat{i}-\hat{j}+\hat{k}) = 4$ is
	$\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$	$\cos^{-1}\left(\frac{2\sqrt{2}}{3}\right)$	$\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)$ (3)	$\cot^{-1}\left(\frac{2\sqrt{2}}{3}\right)$
22.	The position vector of the	ne point in which the line	joining the points $\hat{i} - 2\hat{j}$	$+\hat{k}$ and $3\hat{k}-2\hat{j}$ cuts the plane
	through the origin and t	he points $4^{\hat{j}}$ and $2\hat{i} + \hat{k}$	is :	
	(1) $\hat{6i} - 10\hat{j} + 3\hat{k}$	(2) $\frac{1}{5}(6\hat{i}-10\hat{j}+3\hat{k})$	(3) $\frac{-6\hat{i}+10\hat{j}-3\hat{k}}{\hat{i}-\hat{i}-\hat{i}-\hat{i}-\hat{i}-\hat{i}-\hat{i}-$	(4) None of these
23.	The position vectors of the plane through Q and	two points P and Q are d perpendicular to PQ is	$3I + J + 2k_{and} I - 2J - 4k$	respectively. The equation of
	(1) $\vec{r}.(2i+3j+6k) = 28$	1	(2) $\vec{r}.(2i+3j+6k) = 32$	
	(3) $\vec{r}.(2\hat{i}+3\hat{j}+6\hat{k})+28\hat{j}$	= 0	(4) None of these	
24.	If $\overset{\boxtimes}{a} = \hat{i} + \hat{j}_{and} \overset{\boxtimes}{b} = 2\hat{i} - \hat{k} \cdot \hat{k} \cdot \hat{k} = \hat{a} \cdot \hat{b} \cdot \hat{k}$ is :	\hat{k} are two vectors, then	the point of intersection of	of two lines $\overset{\boxtimes}{\mathbf{r}} \times \overset{\boxtimes}{\mathbf{a}} = \overset{\boxtimes}{\mathbf{b}} \times \overset{\boxtimes}{\mathbf{a}}$ and
	(1) $\hat{i} + \hat{j} - \hat{k}$	$(2) \hat{i} - \hat{j} + \hat{k}$	(3) $3\hat{i} + \hat{j} - \hat{k}$	$(4) 3\hat{i} - \hat{j} + \hat{k}$
25.	If the equation of a line	through a point $\overset{a}{a}$ and p	arallel to $\ddot{\mathbf{b}}$ is $\ddot{\mathbf{r}} = \ddot{\mathbf{a}} + \lambda \ddot{\mathbf{b}}$	(where λ is parameter) then its
	perpendicular distance (1) $ (\overset{\square}{c} - \overset{\square}{b}) \times \overset{\square}{a} \div \overset{\square}{a} $	from the point \vec{c} is : (2) $ (\vec{c} - \vec{a}) \times \vec{b} \div \vec{b} $	(3) $ (\overset{\boxtimes}{a}-\overset{\cong}{b})\times\overset{\boxtimes}{c} \div \overset{\boxtimes}{c} $	(4) $ (\overset{\square}{a} - \overset{\square}{b}) \times \overset{\square}{c} \div \overset{\square}{a} + \overset{\square}{c} $
26.	If $\overset{\mathbb{M}}{a} = 2\hat{i} - \hat{j} - m\hat{k}_{and}$ (1) -7	$\hat{D} = \frac{4\hat{i}}{7} - \frac{2\hat{j}}{7} + 2\hat{k}$ are collin (2) -1	ear, then the value of m (3) 2	is equal to : (4) 7
27	If two vertices of a trian	ale are $\hat{i} - \hat{j}$ and $\hat{j} + \hat{k}$	then the third vertex can	he
21.	(1) $\hat{i} + \hat{k}$	(2) $\hat{i} - 2\hat{j} - \hat{k}$	(2) $\hat{i} - \hat{k}$	
28.	The volume of the tetra	hedron position vectors (of whose vertices are giv	en by the vectors
	$-\hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \hat{j} + \hat{k}$ and \hat{i}	$\hat{i} + \hat{j} - \hat{k}$ with reference to	the fourth vertex as orig	in. is :
	5	<u>2</u>	<u>3</u>	
	(1) ³ cubic unit	(2) ³ cubic unit	(3) ⁵ cubic unit	(4) None of these
20	$\overset{\mathbb{X}}{a} = 2\hat{i} - 3\hat{j} + 6\hat{k}$	$\hat{\mathbf{x}}_{and}$	$-\hat{k}$ then projection of v	vector a on vector b
29.	3	7	, then '	
	(1) 7	(2) 3	(3) 3	(4) 7
30.	The moment of a force	represented by $\overset{\mathbb{W}}{F} = \hat{i} + 2\hat{j}$	$\hat{j} + 3\hat{k}$ about the point $2\hat{i}$	$-\hat{j}+\hat{k}$ =
	(1) $5\hat{i} - 5\hat{j} + 5\hat{k}$	(2) $5\hat{i} + 5\hat{j} - 5\hat{k}$	(3) $-5\hat{i}+5\hat{j}+5\hat{k}$	(4) $-5\hat{i} - 5\hat{j} + 5\hat{k}$

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

Practice Test (JEE-Main Pattern) OBJECTIVE RESPONSE SHEET (ORS)

	PART - II : PRACTICE QUESTIONS									
🖻 Marl	ked questions may hav	e for revision question	IS.							
1.	A(3, -1, 2), B(5, 2, 4), C(-1, -1, 6) are vertices of \triangle ABC and D is midpoint of AC. If $2\overrightarrow{BD} = \overrightarrow{BE}$ and A ₁ A ₂ are areas of \triangle ABD and quadilatral ABCE, then A ₁ : A ₂ is equal to (1) 12 : 1 (2) 1 : 6 (3) 1 : 24 (4) 1 : 4									
2.🛋	ABCD is an isosceles t AB such that AE : EB = $A_1 : A_2$ is equal to	trapezium with $\overrightarrow{AB} = 2$ 3: 2. If A ₁ and A ₂ are ar	$2\hat{i} + 10\hat{j} + 11\hat{k}_{and} \stackrel{\text{wave}}{AD} = -\frac{1}{2}$	$-\hat{i} + 2\hat{j} + 2\hat{k}$. If E is point on side and \triangle CDE respectively, then						
	(1) $\frac{29}{15}$	(2) $\frac{74}{29}$	(3) $\frac{37}{29}$	(4) $\frac{43}{37}$						
3. 🖻	A variable plane passe of the point common to a b c	s through a fixed point (a the planes through A, B X V Z	a, b, c) and meets the co , C and parallel to coordi	ordinate axes in A, B, C. Locus nate planes, is a b c						
	(1) $\frac{x^{+} - x^{+} - z^{-}}{x^{-} - z^{-}}$	(2) $a^{-+\frac{3}{b}+-=1}$	(3) ax + by + cz = 1	(4) $\frac{x^{-}}{x^{-}} = 1$						
4.	If the vectors $\stackrel{a}{a}$, $\stackrel{b}{b}$ & $\stackrel{a}{c}$ (1) $\stackrel{a}{a}$, $\stackrel{b}{b}$ + $\stackrel{b}{b}$, $\stackrel{c}{c}$ + $\stackrel{c}{c}$, $\stackrel{a}{a}$ (3) $\stackrel{a}{a}$, $\stackrel{b}{b}$ = $\stackrel{b}{b}$, $\stackrel{a}{c}$ = $\stackrel{a}{c}$, $\stackrel{a}{a}$	form the sides BC, CA 8	AB respectively of a tria (2) $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$ (4) $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{c}$	ngle ABC, then : $a^{\times}_{xa} = 0^{\times}_{0}$						
5.	Let the vectors $\begin{bmatrix} a & b \\ c & b \end{bmatrix}$, $\begin{bmatrix} a & b \\ c & b \end{bmatrix}$ pairs of vectors $\begin{bmatrix} a & b \\ c & b \end{bmatrix}$	$ \overset{\overset{}_{\scriptstyle{0}}}{\overset{_{\scriptstyle{0}}}{c}}, \overset{\overset{_{\scriptstyle{0}}}{d}}{\overset{_{\scriptstyle{0}}}{respectively. Ther}} $	$\left(\begin{array}{c} \overset{\boxtimes}{\mathbf{c}} \times \overset{\boxtimes}{\mathbf{d}} \end{array} \right)_{=} \overset{\cong}{0}_{. \text{ Let } P_{1} \& 0_{. \text{ the angle between } P_{1} a \end{array}$	P_2 be planes determined by the nd P_2 is:						
	(1) 0	(2) $\frac{\pi}{4}$	(3) $\frac{\pi}{3}$	(4) $\frac{\pi}{2}$						
6.	If a, b, c, a are unit copl	lanar vectors, then the so	calar triple product $\left[2a^{\mathbb{N}}\right]$	$\begin{bmatrix} b & 2b - c & 2c - a \end{bmatrix} =$						
	(1) 0	(2) 1	(3) − ^{√3}	(4) ^{√3}						
7. 🖻	If, $\overset{a}{=}$, $\overset{b}{=}$ and $\overset{a}{=}$ are unit (1) 4	vectors, then $ \overset{\boxtimes}{a} - \overset{\cong}{b} _2 + $ (2) 9	$ \overset{\overset{\scriptstyle}{\scriptstyle 0}}{\overset{\scriptstyle}{\scriptstyle -c}}_{ _{2}} + \overset{\overset{\scriptstyle}{\scriptstyle 0}}{\overset{\scriptstyle}{\scriptstyle -a}}_{ _{2}} \text{ does} $ (3) 8	NOT exceed (4) 6						
8.	Let $\overset{\mathbb{W}}{a} = \overset{\mathbb{W}}{i} - \overset{\mathbb{W}}{k}$, $\overset{\mathbb{W}}{b} = x\overset{\mathbb{W}}{i} + \overset{\mathbb{W}}{j} + (1 - x)\overset{\mathbb{W}}{k}$ and $\overset{\mathbb{W}}{c} = y\overset{\mathbb{W}}{i} + x\overset{\mathbb{W}}{j} + (1 + x - y)\overset{\mathbb{W}}{k}$. Then $\begin{bmatrix} \overset{\mathbb{W}}{a} & \overset{\mathbb{W}}{c} \end{bmatrix}$ depends on (1) only x (2) only y (3) Neither x nor y (4) both x and y									
9.	If $a_{\&}b_{are two unit vec}$	ctors such that $a_{+2}b_{8}$	$a_5 a_{-4} b_{are perpendicular}$	ular to each other then the angle						
	between ä _{&} b _{is:} (1) 45°	(2) 60°	(3) cos -1 (1/3)	(4) cos -1 (2/7)						

10.🖎	Let $\vec{\nabla} = 2\hat{i} + \hat{j} - \hat{k}$	& $\tilde{W} = \hat{i} + 3\hat{k}$. If \tilde{U} is a	a unit vector, then the ma	aximum value of the scalar triple
	product U V W	is:		
	(1) – 1	(2) $\sqrt{10} + \sqrt{6}$	₍₃₎ √59	(4) ^{√60}
11.	Let $\overset{a}{a} = \hat{i} + 2 \hat{j} + \hat{k}$,	$\dot{b}_{=} \hat{i}_{-} \hat{j}_{+} \hat{k}$ and $\ddot{c}_{=} \hat{i}_{-}$	$\hat{j} = \hat{k}$. A vector in the pla	ane of $\frac{a}{a}$ and $\frac{b}{b}$ whose projection
	⊴			
	on c is $\sqrt{3}$, is	. î î î		
	(1) 4 [†] – ^J + 4 ^K	(2) 3 [†] + ^j – 3 ^K	$(3) 2^{\dagger} + ^{-} - 2^{K}$	$(4) 4^{\dagger} + ^{J} - 4^{K}$
12.	Let P, Q, R and S	be the points on the	plane with position ve	ectors $-2\hat{i}-\hat{j}$, $4\hat{i}$, $3\hat{i}+3\hat{j}$ and
	$-3^{\hat{i}} + 2^{\hat{j}}$ respectively	. The quadrilateral PQRS	S must be a	
	(1) parallelogram, whi(2) square	ch is neither a mombus r	ior a rectangle	
	(3) rectangle, but not a	a square		
42 8			re eiven by	
13.12	$2\hat{i} + 10\hat{i} + 11\hat{k}$	a parallelogram ABCD a $-\hat{i} + 2\hat{i} + 2\hat{k} =$		
	AB = 217103777	and AD = ''''''''''''''''''''''''''''''''''	he side AD is rotated by AD' makes a right angle y	an acute angle α in the plane of with the side AB then the cosine
	of the angle α is given	by		
	8	$\frac{\sqrt{17}}{2}$	$\frac{1}{2}$	$\frac{4\sqrt{5}}{2}$
	(1) ⁹	(2) 9	(3) 9	(4) 9
14.	Let $\overset{a}{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k},\hat{k}$	$\ddot{\mathbf{b}} = \mathbf{b}_1 \hat{\mathbf{i}} + \mathbf{b}_2 \hat{\mathbf{j}} + \mathbf{b}_3 \hat{\mathbf{k}}_{and} \ddot{\mathbf{c}} = \mathbf{c}_1 \hat{\mathbf{i}}_{and}$	$\mathbf{\hat{j}} + \mathbf{c}_2 \mathbf{\hat{j}} + \mathbf{c}_3 \mathbf{\hat{k}}$ be three non-z	zero vectors such that $\overset{^{\scriptsize extsf{w}}}{C}$ is a unit
				$\begin{vmatrix} a_1 & a_2 & a_3 \end{vmatrix}^2$
	vector perpendicular t	a and b if the end	\mathbb{A} and \mathbb{B} is $\frac{\pi}{6}$	$\begin{bmatrix} D_1 & D_2 & D_3 \\ C_1 & C_2 & C_3 \end{bmatrix}$
	(1) 0		(2) 1	
	$\frac{1}{4}(a_1^2 + a_2^2 + a_3^2)(b_1^2)$	$+b_{2}^{2}+b_{3}^{2}$)	$\frac{3}{4}$ $(a_1^2 + a_2^2 + a_3^2)$ (b)	$(a_1^2 + b_2^2 + b_3^2) (c_1^2 + c_2^2 + c_3^2)$
	(3) - (1) 2 37 (1)		(4) - (4) - 2 37 (
15.	If the vectors $ai + j$	+ k, $i + b j + k$ and $i + b j + k$	^{j + ck} (a ≠ b ≠ c ≠ 1)	are coplanar, then the value of
	$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$	oqual to		
	(1) 1	(2) -1	(3) 0	(4) 2
16	The vectors $\hat{a} = -4\hat{i}$	$-2\hat{k} \stackrel{\square}{D} = 1\hat{4}\hat{i} + 2\hat{j} = 5$	Coro op initial The year	a
10.	The vectors $\simeq = -4^{\circ}$	+3%, = 147 + 27 - 57	$\sqrt{6}$ is	or a which is disecting the angle
	(1) $\hat{j}_{\perp} \hat{j}_{\perp} \hat{k}$	(2) $\hat{i} - \hat{j} + 2\hat{k}$	(3) $\hat{i} + \hat{j} - 2\hat{k}$	(4) $2\hat{i} - \hat{j} + 2\hat{k}$
	(')'T TZ"	(_)	(\mathbf{J})	(7) 4

- **17.** Let two non-collinear unit vectors \hat{a} and \hat{b} form an acute angle. A point P moves so that at any time t the position vector $\stackrel{\text{OP}}{OP}$ (where O is the origin) is given by $\hat{a} \cos t + \hat{b} \sin t$. When P is farthest from origin O, let M be the length of $\stackrel{\text{OP}}{OP}$ and \hat{u} be the unit vector along $\stackrel{\text{OP}}{OP}$. Then,
 - $\begin{array}{l} (1) \ \hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|} \text{ and } M = (1 + \hat{a} \cdot \hat{b})_{1/2} \\ (3) \ \hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (3) \ \hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (4) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (4) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (5) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (4) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (4) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (5) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (5) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (5) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (5) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (5) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (5) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (5) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (5) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2} \\ (5) \ \hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|} \text{ and } M = (1 + 2 \ \hat{a} \cdot \hat{b})_{1/2}$

18. Length of chord made by sphere $x^2 + y^2 + z^2 - 4x + 2y - 8z + 5 = 0$ on line $\frac{3}{3} = \frac{2}{2} = \frac{3}{2}$ (1) 2 (2) $2\sqrt{5}$ (3) $\sqrt{6}$ (4) $4\sqrt{3}$

19. If a, b, c are different real numbers $a\hat{i} + b\hat{j} + c\hat{k}$, $b\hat{i} + c\hat{j} + a\hat{k}$ and $c\hat{i} + a\hat{j} + b\hat{k}$, and are position vectors of three non-collinear points A, B and C, then

$$= ABC \text{ is } \frac{a+b+c}{3} \left(\hat{i} + \hat{j} + \hat{k}\right)$$

- (1) centroid of triangle ABC is $\frac{3}{1000}$
- (2) $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the three vectors
- (3) perpendicular from the origin to the plane of triangle ABC meet at centroid
- (4) all of these

1

20. A variable plane at a distance of 1 unit from the origin cuts the co-ordinate axes at A, B and C. If the

centroid D (x, y, z) of triangle ABC satisfies the relation $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = K$, then the value of k is (1) 9 (2) 3 (3) 1 (4) 1/3

21. If the distance between the plane Ax - 2y + z = d and the plane containing the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \text{ and } \frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5} \text{ is } \sqrt{6} \text{, then } |\mathsf{d}| \text{ is } (2) 2 \qquad (3) 5 \qquad (4) 6$$

22. The point P is the intersection of the straight line joining the points Q(2,3,5) and R(1, -1, 4) with the plane 5x - 4y - z = 1. If S is the foot of the perpendicular drawn from the point T(2, 1,4) to QR, then the length of the line segment PS is

(1)
$$\sqrt{2}$$
 (2) $\sqrt{2}$ (3) 2 (4) 2 $\sqrt{2}$

23. ▲ A mirror and a source of light are situated at the origin O and at a point on OX (x-axis) respectively. A ray of light from the source strikes the mirror and is reflected. If the Drs of the normal to the plane are 1, -1, 1, then DCs of the reflected ray are

24. If the planes x - cy - bz = 0, cx - y + az = 0 and bx + ay - z = 0 pass through a straight line, then the value of $a_2 + b_2 + c_2 + 2abc$ is :

(1) 1 (2) 7 (3)
$$\frac{7}{2}$$
 (4) $\frac{8}{3}$
The shortest distance between the z-axis and the line $x + y + 2z - 3 = 0$ $2x + 3y$

25. The shortest distance between the z-axis and the line, x + y + 2z - 3 = 0, 2x + 3y + 4z - 4 = 0 is :

	(1) 1	(2) 2	(3) 3	(4) 4
•	T I	La construcción de l	$\sqrt{3} - 1$	$-\sqrt{3}$ -1 + - $\sqrt{3}$ -1 $\sqrt{3}$ -1

- **26.** Three non-concurrent coplaner lines with direction ratios 1, 1, 2; $\sqrt{3} 1$, $-\sqrt{3} 1$, 4 and $-\sqrt{3} 1$, $\sqrt{3} 1$, 4 make (1) equilateral triangle (2) isosceles triangle
 - (3) right angle triangle (4) obtuse angled triangle
- **27.*** In R₃, consider the planes P₁ : y = 0 and P₂ : x + z = 1. Let P₃ be a plane, different from P₁ and P₂, which passes through the intersection of P₁ and P₂. If the distance of the point (0, 1, 0) from P₃ is 1 and the distance of a point (α , β , γ) from P₃ is 2, then which of the following relation is (are) true ?

 $(1) \ 2\alpha + \beta + 2\gamma + 2 = 0 \quad (2) \ 2\alpha - \beta + 2\gamma + 4 = 0 \quad (3) \ 2\alpha + \beta - 2\gamma - 10 = 0 \ (4) \ 2\alpha - \beta + 2\gamma - 8 = 0$

28.* In R₃, let L be a straight line passing through the origin. Suppose that all the points on L are at a constant distance from the two planes $P_1 : x + 2y - z + 1 = 0$ and $P_2 : 2x - y + z - 1 = 0$. Let M be the locus of the feet of the perpendiculars drawn from the points on L to the plane P₁. Which of the following points lie(s) on M?

$$(1) \begin{pmatrix} 0, -\frac{5}{6}, -\frac{2}{3} \end{pmatrix}$$

$$(2) \begin{pmatrix} -\frac{1}{6}, -\frac{1}{3}, \frac{1}{6} \end{pmatrix}$$

$$(3) \begin{pmatrix} -\frac{5}{6}, 0, \frac{1}{6} \end{pmatrix}$$

$$(4) \begin{pmatrix} -\frac{1}{3}, 0, \frac{2}{3} \end{pmatrix}$$

$$(4) \begin{bmatrix} -\frac{1}{3}, 0, \frac{2}{3} \end{bmatrix}$$

29.* Let ΔPQR be a triangle. Let a = QR, b = RP and C = PQ. If |a| = 12, $|b| = 4\sqrt{3}$ and b = 24, then which of the following is(are) true?

	$\frac{ c ^2}{ a =12}$	$\frac{ c ^2}{ c ^2} + a = 30$
(1)	2	(2) 2
. ,	$ \mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{a} = 48\sqrt{3}$	$a \dot{b} = -72$
(3)		(4) (4) (4) (4)

30.* Consider a pyramid OPQRS located in the first octant ($x \ge 0$, $y \ge 0$, $z \ge 0$) with O as origin, and OP and OR along the x-axis and the y-axis, respectively. The base OPQR of the pyramid is a square with OP = 3. The point S is directly above the mid point T of diagonal OQ such that TS = 3. Then

3

15

- (1) the acute angle between OQ and OS is $\overline{3}$
- (2) the equation of the plane containing the triangle OQS is x y = 0
- (3) the length of the perpendicular from P to the plane containing the triangle OQS is $\sqrt{2}$
- (4) the perpendicular distance from O to the straight line containing RS is $\sqrt{2}$
- **31.** The equation of plane containing lines and $x = \frac{y+4}{2} = \frac{10-z}{4}$ and $\frac{4-x}{2} = -(y+2) = \frac{z}{5}$ (1) x + y - z + 7 = 0(2) 4x + 2y + 2z - 7 = 0(4) 2x + y + z - 6 = 0

COMPREHENSION

Comprehension (32 to 34)

Consider the lines

L₁: $\frac{x+1}{3} = \frac{y+2}{1} = \frac{z+1}{2}$ L₂: $\frac{x-2}{1} = \frac{y+2}{2} = \frac{z-3}{3}$

32.	The unit vector perpendic $\frac{-\hat{i} + 7\hat{j} + 7\hat{k}}{\sqrt{99}}$	cular to both L ₁ and L ₂ is $\frac{-\hat{i} - 7\hat{j} + 5\hat{k}}{5\sqrt{3}}$	s (2) $\frac{-\hat{i}+7\hat{j}+5\hat{k}}{5\sqrt{3}}$	(4) $\frac{7\hat{i}-7\hat{j}-\hat{k}}{\sqrt{99}}$					
		(2)	(3)	(4)					
33.	The shortest distance be	etween L1 and L2 is	41	17					
	(1) 0	(2) $\overline{\sqrt{3}}$	(3) 5/3	(4) $\overline{5\sqrt{3}}$					
34.	The distance of the point is perpendicular to both t	(1, 1, 1) from the plane the lines L1 and L2 is	passing through the poi	nt $(-1, -2, -1)$ and whose normal					
	(1) $\frac{2}{\sqrt{75}}$	(2) $\frac{7}{\sqrt{75}}$	(3) $\frac{13}{\sqrt{75}}$	(4) $\frac{23}{\sqrt{75}}$					
DIREC	TIONS (Q. NO. 35 TO 38)	:							
	(1) Both the statements a(3) Statement-I is false, b	noices (1), (2), (3) and are true. but Statement-II is true.	 (2) Statement-I is true, (4) Both the statement 	but Statement-II is false. s are false.					
35.🖻	STATEMENT 1 : If $\hat{\mathbf{u}}$, $\hat{\mathbf{v}}$, $\hat{\mathbf{w}}$ be three non-coplanar unit vectors with angles between $\hat{\mathbf{u}} \otimes \hat{\mathbf{v}}$ is α ,								
	between $\hat{V} \& \hat{W}$ is β and between $\hat{W} \& \hat{U}$ is y. If $\overset{\square}{a}, \overset{\square}{b}, \overset{\square}{c}$ are the unit vectors along angle bisectors								
	of α , β , γ respectively, th	$\operatorname{hen} \begin{bmatrix} \mathbf{a} \times \mathbf{b} \cdot \mathbf{b} \times \mathbf{c} \cdot \mathbf{c} \times \mathbf{a} \\ \mathbf{a} \times \mathbf{b} \cdot \mathbf{b} \times \mathbf{c} \cdot \mathbf{c} \times \mathbf{a} \end{bmatrix}$	$=\frac{1}{16}\left[\hat{\mathbf{u}}\hat{\mathbf{v}}\hat{\mathbf{w}}\right]^{2}\mathrm{sec}_{2}$	$\left(\frac{\alpha}{2}\right)_{\text{SeC}_2} \left(\frac{\beta}{2}\right)_{\text{SeC}_2} \left(\frac{\gamma}{2}\right)_{\text{SeC}_2}$					
	STATEMENT 2 :	b b×c c×a]_[a b							
36.	STATEMENT 1 : If the in	ncident ray on a surface	is along the unit vector	\hat{v} , the reflected ray is along the					
	unit vector \hat{W} and the no	ormal is along unit vecto	or ^â outwards. Then ŵ	$\hat{v} = \hat{v} - 2^{(a \cdot v)} \hat{a}$					
	STATEMENT 2 : If the ir	ncident ray on a surface	is along the unit vector	V, the reflected ray is along the $(\hat{a}, \hat{u}) \hat{c}$					
37	unit vector W and the no	ormal is along unit vector -6y - 2z = 15 and $2x + 15$	or a outwards. Then W $y = 2z = 5$	= V _(a. v) a					
011	STATEMENT - 1 : The p x = 3 + 14t, $y = 1 + 2t$, $z =because$	arametric equations of = 15t.	the line of intersection c	of the given planes are					
	STATEMENT - 2 : The v	vector $14\hat{i} + 2\hat{j} + 15\hat{k}$ is	parallel to the line of int	erseciton of given planes.					
38.🖻	Consider three planes $P_{1}: x = y + z = 1$								

 $\begin{array}{l} P_1:x-y+z=1\\ P_2:x+y-z=-1\\ P_3:x-3y+3z=2\\ \text{Let }L_1,L_2,L_3 \text{ be the lines of intersection of the planes }P_2 \text{ and }P_3 \text{ , }P_3 \text{ and }P_1 \text{ , }P_1 \text{ and }P_2 \text{, respectively.}\\ \text{STATEMENT -1}: \text{ At least two of the lines }L_1,L_2 \text{ and }L_3 \text{ are non-parallel.}\\ \textbf{and}\\ \text{STATEMENT-2}: \text{ The three planes do not have a common point.} \end{array}$

	APS	5P /	Answ	/er	s)===								
						РА	RT - I						
1.	(1)	2.	(4)	3.	(3)	4.	(2)	5.	(4)	6.	(4)	7.	(1)
8.	(3)	9.	(3)	10.	(3)	11.	(4)	12.	(1)	13.	(4)	14.	(4)
15.	(1)	16.	(4)	17.	(2)	18.	(1)	19.	(4)	20.	(2)	21.	(2)
22.	(2)	23.	(3)	24.	(3)	25.	(2)	26.	(1)	27.	(4)	28.	(2)
29.	(2)	30.	(2)										
						PA	RT - II						
1.	(4)	2.	(2)	3.	(1)	4.	(2)	5.	(1)	6.	(1)	7.	(2)
8.	(3)	9.	(2)	10.	(3)	11.	(1)	12.	(1)	13.	(2)	14.	(3)
15.	(1)	16.	(1)	17.	(1)	18.	(2)	19.	(4)	20.	(1)	21.	(4)
22.	(1)	23.	(4)	24.	(1)	25.	(2)	26.	(1)	27.	(2,4)	28.	(12)
29.	(1,3,4)	30.	(2,3,4)	31.	(4)	32.	(2)	33.	(4)	34.	(3)	35.	(1)
36.	(2)	37.	(3)	38.	(3)								