
Additional Problems For Self Practice (APSP)

PART-I: PRACTICE TEST PAPER

Max. Marks : 120

Important Instructions :

- 1. The test is of 1 hour duration and max. marks 120.
- 2. The test consists 30 questions, 4 marks each.
- 3. Only one choice is correct 1 mark will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 4. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.
- 1. A fixed mass of ideal gas undergoes changes of pressure and volume starting at L, as shown in Figure.

2. A fixed mass of an ideal gas undergoes the chage represented by XYZX below (Fig.). Which one of the following sets could describe these of changes ?

	XY	YZ	ZX
(1)	isothermal	adiabatic	comperssion at
	expansion	comperssion	constant pressure
(2)	adiabatic	isothermal	pressure reduction
	expansion	comperssion	constant volume
(3)	isothermal	adiabatic	comperssion at
	comperssion	expansion	constant pressure
(4)	adiabatic	isothermal	comperssion at
	comperssion	expansion	constant pressure

Max. Time : 1 Hr.

Pressure

0

0

Х

Volume

Ζ

KTG & Thermodynamics

<u>KIU</u>				
4.		ork done to increase the ondition $V \propto T^{2/3}$ (R = 8.3		ble of ideal gas by 30ºC. if it is
	(1) 16.62 J	(2) 166.2 J	(3) 1662 J	(4) 1.662 J
	$\left(P\right)^{0.33}$			
5.		is constant. It is a,		
	(1) isothermal process	(2) adiabatic process	(3) isochoric process	(4) isobaric process
6.	increased, it gradually is that at high temperat	increases and approache tures	es 3.5 R. The most appro	arly 2.5 R. As the temperature is opriate reason for this behaviour
	(1) oxygen does not be(3) the molecules collic	•	(2) oxygen molecules o (4) molecular vibration	dissociate in atoms gradually become effective
7.		thermals and AD and B	C are adiabatics (see fig	.) then
	the temperatures of (1) B and C are same (3) B and D are same		re same ure of A is more than tha	t of D
			8	V
8.		compressed adiabatical	ly to $\frac{3}{27}$ of its original vo	blume. The rise in temperature is
	$\left(\gamma = \frac{5}{3}\right)_{\pm}$			
			/	[AIPMT_1999]
	(1) 475°C	(2) 402°C	(3) 275°C	(4) 375°C
9.	The degrees of freedor (1) 2	m a molecule of a triatom (2) 4	ic gas are : (3) 6	(4) 8
10.	-	olecules each molecule	possessing f degrees	of freedom, then the value of
	$\gamma = \frac{C_P}{C_V}$ is equal to :			
		$1 + \frac{2}{5}$, f	, 1
	(1) f	(2) $^{1+}\overline{f}$	(3) $1 + \frac{f}{2}$	(4) $f + \frac{1}{2}$
11.	The gases carbon-more the gases carbon-more the gases carbon the set of the s	–	n at the same temperatu	re have kinetic energies E_1 and
	(1) $E_1 = E_2$ (3) $E_1 < E_2$		(2) $E_1 > E_2$ (4) E_1 and E_2 cannot b	e compared
12.	-	-		K. If the temperature of source is temperature of the sink will be :
	(1) 600 K	(2) 500 K	(3) 400 K	(4) 100 K
13.		ne operates in a Carnot on the amount of heat (in kca	-	d 127ºC. It absorbs 6 kcal at the
	(1) 1.6	(2) 1.2	(3) 4.8	(4) 3.5
14.	-		-	of work adiabatically. If the ratio e is 5/3, the final temperature of

gas will be : (1) (T + 2.4) K (2) (T - 2.4) K (3) (T + 4) K (4) (T - 4) K

KTG	& Thermodynamics			
15.		or 5g of oxygen at a pres	ssure P and temperature	T, when occupying a volume V,
	will be : (1) PV = (5/32) RT		(2) PV = 5RT	
	(3) $PV = (5/2) RT$		(4) $PV = (5/16) RT$	
16.		s (γ = 1.4) at a pressure 27ºC to 927ºC. The press (2) 68.7atm	•	npressed adiabatically so that its ate is : (4) 8 atm
17.	The kinetic energy of o .The value of E'/E is :	ne mole gas at 300 K ter	nperature, is E. At 400 K	temperature kinetic energy is E'
		(4)	16	
	(1) 1.33	(2) $\sqrt{\left(\frac{4}{3}\right)}$	(3) ¹⁶ / ₉	(4) 2
18.	If temperature become	es triple, the root mean so	nuare velocity of das mo	ecules will be :
10.	(1) $v\sqrt{2}$	(2) $\upsilon / \sqrt{3}$	(3) $\sqrt{3}$ v	(4) same
	. ,	are velocity of gas molec		(4) Same
19.	When temperature of a	and in increased than w	which of the following stat	romonto io aluvovo truo 2
19.	(1) Work is done on the	a gas is increased then w e gas	(2) Heat is supplied to	-
	(3) Internal energy of g	as is increased	(4) pressure of gas rer	nains unchanged.
20.	An increase in pressu	re required to decrease t	he 200 liters volume of a	liquid by 0.004% in pipa is
	(Bulk modulus of the lie			
	(1) 188 kPa	(2) 8.4 kPa	(3) 18.8 kPa	(4) 84 kPa
21.	-			Id be added to it to double the
	pressure? (Specific he (1) 1638 J	eat of helium = 3 J/gm K) (2) 1019 J	(3) 1568 J	(4) 836 J
22.		ning hot coffee is shaken,	•	coffee will :
		(2) increase	. ,	
	(4) decrease if tempera	ature is below 4°C and in	crease if temperature is	equal to or more than 4°C
23.	At what temperature vo	olume of an ideal gas at (0°C becomes triple ?	
	(1) 546⁰C	(2) 182ºC	(3) 819⁰C	(4) 646°C
24.	When temperature of a from 400 m/s to v_s . The		increased from 27°C to	227ºC, its rms speed is changed
	(1) 516 m/s	(2) 450 m/s	(3) 310 m/s	(4) 746 m/s
25.		hed on in a closed room.	The air in the room is	
	(1) cooled(2) heated			
	(3) maintains its tempe			
	(4) heated or cooled de	epending on the atmosph	neric pressure	

26. The root mean square and most probable speed of the molecules in a gas are

KTG & Thermodynamics

(1) same

٠

(3) cannot say

(2) different

(4) depends on nature of the gas

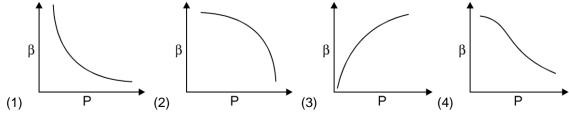
27.Boiling water is changing into steam. Under this condition, the specific heat of water is
(1) zero(2) one(3) Infinite(4) less than one

28. Two sample A and B are initially kept in the same state. The sample A is expanded through an adiabatic process and the sample B through an isothermal process upto the same final volume. The final pressures in A and B are p_A and p_B respectively.

- (1) $p_A > p_B$ (2) $p_A = p_B$ (3) $p_A < p_B$
- (4) The relation between p_A and p_B cannot be deduced.
- 29. Let T_a and T_b be the final temperature of the samples A and B respectively in the previous question then

(1)
$$T_a < T_b$$
 (2) $T_a = T_b$ (3) $T_a > T_b$

- (4) The relation between T_a and T_b cannot be deduced.
- **30.** Let ΔW_a and ΔW_b be the work done by the systems A and B respectively in the previous question then (1) $\Delta W_a > \Delta W_b$ (2) $\Delta W_a = \Delta W_b$ (3) $\Delta W_a < \Delta W_b$
 - (4) The relation between W_{a} and W_{b} cannot be deduced


-		-		-	-		· · ·	-			
-				DADT		CTICE		TIONE			
				PARI	II : PR/		QUE3	TIONS			
1.	Τv	vo balloon	s are fille	l one wit	n pure He	das and	he other	ov air res	oectively	If the pre	ssure and
	te	nperature	of these b	, alloons ar	e same, th	en the nui	nber of mo	lecules pe	er unit volu	me is	
	(1	more in t	ne He fille	l balloon		(2) క	ame in bo	th balloon	5		
	(3) more in a	air filled ba	lioon		(4) i	h the ratio	of 1:4			

2. Two containers of equal volume contain the same gas at pressure p₁ and p₂ and absolute temperature T₁ and T₂ repectively. On joining the vessels the gas reaches a common pressure p and common temperature T. The ratio p/T is equal to

(1) $\frac{p_1}{T_1} + \frac{p_2}{T_2}$	(2) $\frac{p_1 T_1 + p_2 T_2}{(T_1 + T_2)^2}$
$p_1T_2 + p_2T_1$	<u>p₁ p₂</u>
(3) $(T_1 + T_2)^2$	(4) $2T_1 + 2T_2$

Q

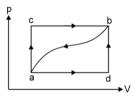
- **3.** If a diatomic gas is supplied heat Q in a process, it performs work ⁴. What is molar heat capacity of the gas in this process.
 - (1) $\frac{2}{5}$ R (2) $\frac{5}{2}$ R (3) $\frac{10}{3}$ R (4) $\frac{6}{7}$ R
- 4. Which of the following graphs correctly represents the variation of $\beta = -(dV/dP)/V$ with P for an ideal gas at constant temperature ?

KTG & Thermodynamics

A mono-atomic ideal gas is compressed from volume V to V/2 through various process. For which of the following processes final pressure will be maximum :
 (1) isobaric
 (2) isothermal
 (3) adiabatic
 (4) PV² = constant

6. An ideal gas initially at a state (P_1 , V_1) is allowed to expand isothermally to a state (P_2 , V_2). Then the gas is compressed adiabatically to its initial volume V_1 . Let the final pressure be P_3 and the work done

by the gas during the whole process be W, then	
(1) $P_3 > P_1$ and $W < 0$	(2) $P_3 > P_1$ and $W > 0$
(3) $P_3 < P_1$ and $W > 0$	(4) $P_3 < P_1$ and $W < 0$


- An ideal gas is filled in a closed rigid and thermally insulated container. A coil of 100Ω resistor carrying current 1A for 5 minutes supplies heat to the gas. The change in internal energy of the gas is
 (1) 10 KJ
 (2) 20 KJ
 (3) 30 KJ
 (4) 0 KJ
- **8.** If E is translation kinetic energy per unit volume of an ideal gas than pressure of the gas is given by relation:

3		2E	E
(1) P = 2^{-1} E	(2) P = 3E	(3) $P = 3$	(4) $P = \overline{3}$

- 9. 4 moles of H₂ at 500 K is kept in an adiabatic rigid container. After some time it was found that 1 mole of the gas dissociated into H atoms. The dissociation energy per mole of H₂ gas is 2000 cal,Let the new temperature of the gas be 100T. The integral value of T is : (Use R= 2cal/mole-K) (1) 3 (2) 4 (3) 5 (4) 6
- **10.** Which of the following is correct for the molecules of a gas in thermal equilibrium ? (1) All have the same speed
 - (2) All have different speeds which remain constant
 - (3) They have a certain constant average speed
 - (4) They do not collide with one another.

Comprehension # 1

When a system is taken from state 'a' to state 'b' along the path 'acb', it is found that a quantity of heat Q = 200 J is absorbed by the system and a work W = 80 J is done by it. Along the path 'adb', Q = 144 J.

11. 12.	The work done along t (1) 6J The work done on the	he path 'adb' is (2) 12 J system along the curved	(3) 18 J path 'ba' is 52J, heat ab	(4) 24 J osrbed is
	(1) – 140 J	(2) – 172 J	(3) 140 J	(4) 172 J
13.	Ua = 40J, value of Ubw (1) – 50 J	ill be (2) 100 J	(3) – 120 J	(4) 160 J
14.	U₅ = 88 J, heat absorb (1) – 72 J	ed for the path 'db' is (2) 72 J	(3) 144 J	(4) – 144 J

Comprehension # 2A

A monoatomic ideal gas is filled in a nonconducting container. The gas can be compressed by a movable nonconducting piston. The gas is compressed slowly to 12.5% of its initial volume.

15.🖎	The percentage	increase in the temperatu	ire of the gas is	
	(1) 400%	(2) 300%	(3) – 87.5%	(4) 0%

16. The ratio of the initial adiabatic bulk modulus of the gas to the final value of adiabatic bulk modulus of the gas is :

KTG	& Thermodynamics			
	(1) 32	(2) 1	(3) 1/32	(4) 4
17.	The ratio of work done	by the gas to the change	e in internal energy of the	e gas is
	(1) 1	(2) –1	(3) ∞	(4) 0

	AP	SP	Ans	wer	′s)≡								
						P/	ART-I						
1.	(2)	2.	(4)	3.	(4)	4.	(2)	5.	(3)	6.	(4)	7.	(4)
8.	(4)	9.	(3)	10.	(2)	11.	(1)	12.	(3)	13.	(2)	14.	(4)
15.	(1)	16.	(3)	17.	(1)	18.	(3)	19.	(3)	20.	(4)	21.	(1)
22.	(2)	23.	(1)	24.	(1)	25.	(2)	26.	(2)	27.	(3)	28.	(3)
29.	(1)	30.	(3)										
						PA	RT - II						
1.	(2)	2.	(4)	3.	(3)	4.	(1)	5.	(4)	6.	(1)	7.	(3)
8.	(3)	9.	(2)	10.	(3)	11.	(4)	12.	(2)	13.	(4)	14.	(2)
15.	(2)	16.	(3)	17.	(2)								