Exercise-2

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

PART - I : OBJECTIVE QUESTIONS

..... (i)

PARABOLA

1.	Sol. Given equation						
	$x_2 + 2y - 3x + 5 = 0$						
	$x_2 - 3x + 5 = -2y$						
	9 5 9						
	$x_2 - 3x + \frac{4}{4} + \frac{5}{4} = -2y$						
	$\left(x-\frac{3}{2}\right)^2 = -2y-\frac{11}{4}$						
	$\left(x-\frac{3}{2}\right)^2 = -2\left(y+\frac{11}{8}\right)$						
	$X_2 = -4AY$						
	(3 11)						
	Hence vertex = $\left(\frac{2}{2}, \frac{8}{8}\right)$						
	3 3						
	Axis $x - \frac{3}{2} = 0 \Rightarrow x = \frac{3}{2}$						
	<u>3</u> <u>11</u> 1						
	Focus $\frac{x-2}{2} = 0$, $y + \frac{8}{3} = -\frac{2}{2}$						
	15						
	$v = -\overline{8}$						
	(3 15)						
	$\left[\frac{1}{2}, -\frac{1}{8}\right]$						
	: Focus						
2	Sol Distance of focal chord from $(0, 0)$ is p						
2.	equation of chord ; $2x - (t_1 + t_2)y + 2a t_1 t_2 = 0$						
	$2x - (t_1 + t_2)y - 2a = 0$						
	so perpendicular length from $(0, 0)$						

3. Sol. $\ell x + my = -n$

$$\frac{\ell x + my}{-n} = 1$$

MATHEMATICS

Conic Section

Homogenizing, we get $y^2 = 4ax \left(\frac{\ell x + my}{-n}\right)$ or $4a\ell x^2 + ny^2 + 4amxy = 0$ If the lines of above pair are at right angles, we must have coeff. of x^2 + coeff. of $y^2 = 0$ $\therefore 4a\ell + n = 0$

4. Sol. ∵ From property of parabola, tangents at the extremities of a focal chord of a parabola intersect on the directrix.

5. Sol.

$$p(\alpha, \beta)$$

$$Q(h,k)$$

$$S(a, 0)$$

$$h = \frac{a + \alpha}{2}, k = \frac{\beta}{2}$$

$$\Rightarrow \alpha = 2h - a, \beta = 2k$$

$$(\alpha, \beta) \text{ satisfies the parabola}$$

$$\therefore \beta^{2} = 4a\alpha$$

$$4k^{2} = 4a(2h - a)$$

$$y^{2} = a(2x - a)$$

$$y^{2} = 2a \left(x - \frac{a}{2}\right)$$

6. Sol.

- 7. Sol. Points of intersection of $x_2 = 4y$ and $y_2 = 4x$ are (0, 0) and (4, 4)
 - \Rightarrow Length of common chord = $4\sqrt{2}$
- 8. Sol. Point of intersection of parabola $y_2 = 4x$ and $x_2 + y_2 = 5$ are (1, 2) and (1, -2) \Rightarrow length of common chord = 4
- 9. Sol.

Equation of circle with PS as diameter is $(x - a) (x - at^2) + y(y - 2at) = 0$ Since length of perpendicular from centre of circle.

 $\frac{a(1+t^2)}{2}$

$$\left(\frac{a(1+t^2)}{2}, at\right)$$

 $\begin{pmatrix} 2 \\ \end{pmatrix}$ to the line x = 0 (tangent at vertex) is = which is equal to radius of circle so the tangent at vertex touches to circle.

10. Sol.

From property of parabola, a circle described on any focal chord of the parabola as its diameter will touch the directrix of the parabola.

ELLIPSE

 $\frac{20}{36}=\frac{2}{3}$ $\frac{2a}{e} = \frac{2 \times 6}{2} \times 3 = 18$ Sol. e = 11. 12. Sol. 2ae = 10 a = 8 ⇒ $\left(1-\frac{25}{64}\right)$ $b^2 = 64$ $b^2 = 39$ and $2b^2$ 39 4 а :. length of latus rectum = а e - ae = 813. Sol. $\mathbf{a}\left[2-\frac{1}{2}\right]=8$ $\frac{3}{2}a = 8$ 16 a = 3 ÷ $b^2 = a^2 (1 - e^2)$ $b^2 = \left(\frac{16}{3}\right)^2 \left(1 - \frac{1}{4}\right)$ ÷ $b^2 = \frac{64}{3}$ $\sqrt{3}$ ⇒ 14. By definition of ellipse Sol. $PS + PS' = 2b = 2 \times 4 = 8$ b>a ⇒ ÷ focus $S \equiv (\sqrt{7}, 0)$ Centre \equiv (0, 3) 15. Sol. radius = BS = 4 \therefore its equation is $x^2 + (y - 3)^2 = 4^2$

- 4 focal distance = $a \pm ex_1 = 5 \pm \frac{5}{9} y_1$ 16. Sol. 17. By Definition Sol. $\frac{x^2}{r^2 - r - 6} + \frac{y^2}{r^2 - 6r + 5} = 1$ Sol. 18. (i) $r^2 - r - 6 > 0$ (r-3)(r+2) > 0 $(-\infty, -2) \cup (3, \infty)$ (ii) $r^2 - 6r + 5 > 0$ (r-1)(r-5) > 0(-∞, 1) ∪ (5, ∞) (iii) Since in ellipse $e^2 = 1 - \overline{a^2}$ e < 1 r^2-6r+5 $0 < 1 - r^{2} - r - 6 < 1$ ÷ r ∈ (5, ∞) for above equation to be ellipse :. r ∈ (5, ∞) *:*.. $\frac{x^2}{8} + \frac{y^2}{2} = 1$ 19. Sol. ...(i) $y^2 = 4x$...(ii) let m be the slope of common tangent equation of tangent of slope m to parabola $y^2 = 4x$ 1 \therefore y = mx + m ...(iii) since this is also tangent to ellipse (1)² (m) $= 8m^2 + 2$ $\Rightarrow 1 = 8m^4 + 2m^2 - 1 = 0$ $\Rightarrow 8m^4 + 2m^2 - 1 = 0$ 1 1 $m^4 + \frac{1}{4}m^2 - \frac{1}{8} = 0$ $\left(m^2+\frac{1}{2}\right)\left(m^2-\frac{1}{4}\right)$ = 0 1 $\therefore m = \pm \overline{2}$ $\therefore m^2 = \overline{4}$ 2+2 $\therefore 2y - x = 4$ v = $y = -\frac{1}{2} - 2$ $\therefore 2y + x + 4 = 0$
- **20.** Sol. (3, 5) lies out side the ellipse $3x^2 + 5y^2 = 32$ and (3, 5) lies on $25x^2 + 9y^2 = 450$ number of real tangents = 0

Sol. $\frac{x^2}{16} + \frac{y^2}{25} = 1$ 21. $e = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$ be = $\frac{3}{5} \times 5 = 3$ \Rightarrow $\frac{2a^2}{b} = \frac{2 \times 16}{5} = \frac{32}{5}$ $\frac{x^2}{25} + \frac{y^2}{9} = 1$ reflected ray thus will be line joining $\left(3, \frac{12}{5}\right)_{\&}$ (4, 0) Sol. 22. -12 y-0 = 5 (x-4)5y = -12x + 48 or line joining the points $\left(3, \frac{-12}{5}\right)$ & (4, 0) y-0 = 5 (x-4) \Rightarrow 12x-5y-48 = 0 Here $\frac{x^2}{9} + \frac{y^2}{5} = 1$ 23. (1) Sol. director circle is **.**.. $x^2 + y^2 = 9 + 5 = 14$ Here b > a (2) $SP + S_1P = 2b = 12$ It is lies on tangent at vertex (3) 24. **Sol.** Centre is intersection point of axes x + y - 1 = 0x - y + 2 = 0 $\frac{1}{x = -\frac{1}{2}, y = \frac{3}{2}}$ 25. Sol. Doing partial differentiation w.r.t .x $10x-2y+8 = 0 \Rightarrow 5x-y+4 = 0$ (1) w.r.t .y $10y-2y+8 = 0 \Rightarrow 5y-x+4 = 0$ (2) solving (1) & (2) centre is (-1,-1) **HYPERBOLA** Eccentricity of ellipse 26. Sol.

 $e = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}$ let the equation of hyperbola be $\frac{x^2}{\ell^2} - \frac{y^2}{m^2} = 1$ distance between foci $2\ell \cdot e_h = 2 \times 5 \times \frac{4}{5}$ $\Rightarrow \qquad \ell = 2$

 $m^2 = \ell^2 (4 - 1)$

 \Rightarrow m² = 12 .: Equation of hyperbola is x² $3x^2 - y^2 - 12 = 0$ 4 12 27. **Sol.** 7x + 13y - 87 = 05x - 8y + 7 = 0On solving we get (5,4) Now let hyperbola $\frac{x^2}{a^2}$ $-\frac{y^2}{b^2}=1$ 25 16 Passes (5,4) $\therefore \overline{a^2}^- \overline{b^2}$ ÷ = 1(i) $2b^2$ $32\sqrt{2}$ а 5 Also, =(ii) 25 By (i), (ii) we get $a^2 = \frac{1}{2}$, $b^2 = 16$. 28. Sol. (1), (2), (3) are hyperbola. While option (4) is pair of straight lines. $\frac{(x-1)^2}{16} - \frac{(y+1)^2}{9} =$ Hyperbola can be written in the form 29. Sol. $2b^2$ 9 9 Length of latus rectum = $\overline{a} = 2x\overline{4} = \overline{2}$ 30. Sol. Given Hyperbola $9(x^2 + 2x + 1) - 16(y^2 - 2y + 1)$ = 151 + 9 - 16 $\underline{(x+1)^2} \quad \underline{(y-1)^2}$ 16 _ 9 = 1 \Rightarrow foci (4, 1), (-6, 1) b^2 b² = 12 We have, a = 3 and a = 431. ⇒ Sol. <u>y</u>² \mathbf{x}^2 Hence, the equation of the hyperbola is $\frac{1}{9} = \frac{1}{12}$ = 1 ⇒ $4x^2 - 3y^2 = 36$ $\overline{5} = \overline{5\cos^2 \alpha} = 1$ $e^{2}H = 1 + \cos^{2} \alpha$ 32. Sol. :. x² y^2 $\overline{25\cos^2\alpha}$ + $\overline{25}$ = 1 & *:*. $eE^2 = 1 - \cos^2 \alpha$ $eH^2 = 3eE^2$ given $1 + \cos^2 \alpha = 3 - 3 \cos^2 \alpha$ *:*.. $4 \cos^2 \alpha = 2$:. 1 $\cos^2 \alpha = 2$ \therefore one of the value of α is 4 ÷

Ends of L.R of $\frac{x^2}{a^2} - \frac{y^2}{b^2}$ = –1 be Sol. 33. $\left(\pm\frac{a^2}{b},be\right)$ $2a^2$ b ÷ length of L.R. $\frac{x^2}{b^2}$ = 1 passes through $(\pm ae, 0)$ Sol. 34. a²e² b^2 = 1 :. b^2 $e^2 = \overline{a^2}$:. $1 - \frac{b^2}{a^2} = \frac{b^2}{a^2}$ $\frac{b^2}{a^2} = \frac{1}{2}$:. $e_{H} = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{3}$ ÷ $\frac{(x-1)^2}{9} - \frac{(y-2)^2}{16} = 1$ 35. Sol. $e = \sqrt{1 + \frac{16}{9}} = \frac{5}{3}$ $S(1+5, 2) \equiv (6, 2)$ *.*.. 36. Sol. $h^2 - ab = 4 - 1 = 3 > 0$ $A\left(ct_{1},\frac{c}{t_{1}}\right), B\left(ct_{2},\frac{c}{t_{2}}\right)C\left(ct_{3},\frac{c}{t_{3}}\right)$ 37. Sol. Let, then orthocentre be $\left(\frac{-c}{t_1t_2t_3}, -ct_1t_2t_3\right)$ H which lies on $xy = c^2$

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : ASSERTION/REASONING

 A-1.
 Ans. (3)
 [Parabola, E]

 Sol.
 STATEMENT-1 is false since here t² = 4
 [Parabola, E]

 ∴
 the normal subtends a right angle at the focus (not on the vertex)

 STATEMENT-2 true (A standared result)

A-2. Ans. (3)

- Sol. Standard result
- A-3. Ans. (3)

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT

 $y^2 = 4x$, the other end of focal chord will be (1, -2) and this satisfy options (A) (B) & (D)

C-2. Sol. $3(x-3)^2 + 4(y+2)^2 = C$ if C = 0 a point if C > 0 ellipse if C < 0 no locus.

C-3. Sol.
$$2ae = \frac{2b^2}{a} \Rightarrow a^2e = b^2 \Rightarrow e = \frac{b^2}{a^2} = 1 - e^2 \Rightarrow e^2 + e - 1 = 0$$

$$e = \frac{-1 \pm \sqrt{5}}{2} (\because 0 < e < 1) \Rightarrow e = \frac{\sqrt{5} - 1}{2}$$

MATHEMATICS

Conic Section

C-4.	. Sol. Given Hyperbola $9(x^2 + 2x + 1) - 16(y^2 - 2y)$						
			$(x + 1)^2$	$(y - 1)^2$			
	= 151	+9-16 ⇒	16	_ 9	= 1 ⇒ foci	(4, 1), (-6, 1)	