Exercise-1

Section (A) : Basic definition

A-2. Sol. Extensive properties : The properties of the system which depends upon the quantity of matter contained in it are called extensive properties e.g., mass, volume, energy, heat capacity etc. Intensive properties : The propoerties which are indepedent of the quantity of matter present in it are called intensive properties e.g., temprature, pressure, refractive index, viscosity, specific heat, density, surface tension etc.

Section (B) : First law of thermodynamics, calculations of ΔE , W & Q.

B-1. Sol. According to first law of thermodynamics "Energy can neither be created nor be destroyed, it can only be converted from one form to another"

Mathematically

 $\Delta E \text{ or } \Delta U = q + W$

 ΔU = change in internal energy

q = heat absorbed

W = work done

NOTE: Heat absorbed by the system \rightarrow q = + ve

Heat given out by the system \rightarrow q = – ve Work done on the system \rightarrow W = + ve

Work done by the system W = -ve

- B-2. Sol. Change in internal energy = 0; and the process is reversible. Hence, Work done = heat supplied
- **B-3. Sol.** PV = constant for isothermal proces

 PV^{γ} = constant for adiabatic process so more

value of $\boldsymbol{\gamma},$ more decrease in pressure as volume increases.

- **B-4.** Sol. First law of thermodynamics is the law of conservation of energy.
- **B-5.** Sol. Work done by the gas in the cyclic process = Area bounded (ABCA) = $5P_1V_1$

Section (C) : Calculation of ΔE , ΔH , w and q in different type of physical processes on an idel gas, solid and on liquids

- **C-1. Sol.** The heat exchanged in a chemical reaction at the constant temprature and pressure is known as enthalpy of the reaction.
- **C-2.** Sol. The total heat content of a system is equivalent to the internal energy and work done, at constant pressure

 $\Delta \mathsf{H} = \Delta \mathsf{E} + \mathsf{W}$

C-3. Sol. The fixed quantity of any substance is associated with a definite amount of energy which depends upon chemical nature of the substance and its state of energy. This energy is called Internal energy or intrinic energy(μ). μ is a state function and increases with increase in temprature .

C-4. Sol. From 1st law of thermodynamics $\Delta U = q + W$ Q = +800 J $W = -P(V_2 - V_1)$ $10 dm^3 \times 8.314 J/K mol$ $= -1 (20 - 10) = -10 \text{ dm}^3 \text{ atm} = - \frac{0.08206 \text{ dm}^3/\text{K} \text{ mol}}{1000 \text{ m}^3/\text{K}}$ W = -1013 J $\Delta U = 800 \text{ J} + (-1013 \text{ J}) = -213 \text{ J}$ C-5. Sol. When both P and V are changing $\Delta H = \Delta U + \Delta (PV) = \Delta U + (P_2V_2 - P_1V_1) = 40 + (20 - 3) = 57 \text{ L-atm}$ From I law of thermodynamics $\Delta E = Q + W$ C-6. Sol. where Q = 0 for adiabatic process. C-7. $Zn(s) + 2HCl(aq) \longrightarrow ZnCl_2(aq) + H_2(q)$ Sol. this reaction takes place at constant pressure and leads to expansion (release of H₂(g)). C-8. Sol. When ideal gases mix : temperature remain constant ; no work is done ; process is irreversible

- **C-9. Sol.** When an ideal gas expands in vaccum the work done is zero as in vaccum there is no force of attraction or repulsion.
- **C-10. Sol.** The process carried out in perfect insulation is adiabatic because in this process no heat enters or comes out from the system.
- **C-11.** Sol. In adiabatic process Q = 0 because in this case neither heat enters nor eliminate out from the system hence no heat exchange.

Section (D) : IInd Law of thermodynamics : Basics of entropy, Entropy calculation for different types of physical process on an ideal gas, solid and liquid, chemical reaction

D-1. Sol. Δn_g is + ve

- **D-2.** Sol. $\Delta n_g < 0$ for $3C_2H_2(g) \longrightarrow C_6H_6(\ell)$
- D-3. Sol.

$$n_{C_6H_6} = \frac{117}{78} = 1.5$$

 $\Delta S_{\text{system fudk}} = 1.5 \times 85 \text{ J/K}$

 $\therefore \qquad \Delta S_{surrounding} \ {}_{ifjos'k} = - \ 1.5 \times 85 \ J/K$

Section (E) : ΔG calculation, Spontanity of chemical reaction significance of ΔG and III_{rd} Law of thermodynamics

E-3. Sol. $\Delta G = (\Delta H) - T(\Delta S)$

-ve +ve

Hence spontaneous at all temperatures.

CHEMISTRY FOR JEE

Section (F) : Thermochemistry : Enthalpy contents and Kirchoff's equation

F-1. Sol. Enthalpy of reaction (Δ H) is defined as heat exchanged during any chemical reaction $\Delta H = H_P - H_R$

for exothermic reaction $H_{\text{P}} < H_{\text{R}}$

- ∴ ∆H is -ve.
- **F-4.** Sol. Enthalpy of formation NH₃ (g) is enthalpy change of the following reaction, $\frac{1}{2} \sum_{N_2} \frac{3}{(g)} + \frac{3}{2} \sum_{H_2} (g) \longrightarrow NH_3 (g)$
- **F-5.** Sol. When one mole of NH₃ is formed from its constituent elements the enthalpy change = -46.0 kJTherefore when one mole of NH₃ decompose to give its constituent elements enthalpy change = 46.0 kJ \Rightarrow When 2 mole NH₃ decompose, enthalpy change = $2 \times 46 = 92.0 \text{ kJ}$
- F-6. Sol. $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(\ell)$ $\Delta n_g = 1 - 3 = -2$ $\Delta H - \Delta E = \Delta n_g RT = -2 RT$
- **F-7** Sol. From Kirchoff's equation : $y x = (C_{P, water} C_{P, ice}) (T_2 T_1) < 0$.

Section (G) : Enthalpy of combustion and neutralisation

G-1. Sol. Combustion reaction of solid boron

$$\begin{split} &\mathsf{B}(\mathsf{s}) + \frac{3}{4} \operatorname{O}_2(\mathsf{g}) \longrightarrow \frac{1}{2} \operatorname{B}_2 \operatorname{O}_3 \\ &\Delta \mathsf{H}^\circ_\mathsf{r} = \Delta \mathsf{H}^\circ_\mathsf{c} \ = \ \frac{1}{2} \Delta \mathsf{H}^\circ_\mathsf{f} \left(\mathsf{B}_2 \operatorname{O}_3, \, \mathsf{s} \right) - \Delta \mathsf{H}^\circ_\mathsf{f} \left(\mathsf{B}, \, \mathsf{s} \right) - \ \frac{3}{4} \Delta \mathsf{H}^\circ_\mathsf{f} \left(\operatorname{O}_2, \, \mathsf{g} \right) \end{split}$$

 ΔH_{f}° of element in stable state of aggregation is assumed to be zero.

$$\Delta H^{\circ}_{c} = \frac{1}{2} \Delta H^{\circ}_{f} (B_{2}O_{3})$$

G-2. Sol. Combustion of benzene can be represented as follows

 $C_6H_6 \, + \, O_2 \, \rightarrow \, 6CO_2 \, + \, H_2O \, + \, 3250 \; kJ$

78 g of C_6H_6 produce 3250 kJ heat

1 g will produce
$$\frac{3250}{78}$$
 kJ heat

3250

 $39 \text{ g will produce} = \frac{78}{30} \times 0.39 \text{ kJ}$

= 16.25 kJ heat is librated

NOTE: Enthalpy of combustion is the amount of heat libreated when one mole of a substance is burnt in excess of air.

G-3. Sol. Enthalpy of neutralization is defined as amount of heat liberated when one mole of a strong acid is completely neutralized by one mole of a strong base. Its value is less in case of weak acid or weak base because small amount of heat is utilized in ionising the weak acid/base.

 ΔH for ionisation of CH₃COOH = Heat of neutralization for CH₃COOH – Heat of neutralization of strong acid

= - 50.6 - (- 55.9) kJ / mol = + 5.3 kJ / mol

Section (H) : Bond Enthalpies and Resonance Energy

H-1. Sol. Given $H_2(g) \longrightarrow HCl(g);$ ∆H = 104 kcal ...(1) $Cl_2(g) \longrightarrow 2Cl(g);$ $\Delta H = 58 \text{ kcal}$...(2) $HCl(g) \longrightarrow H(g) + Cl(g);$ ∆H = 103 kcal ...(3) Heat of formation for HCI $\frac{1}{2}$ H₂ (g) + $\frac{1}{2}$ Cl₂ (g) \longrightarrow HCl (g) ; Δ H = ? Divide equation (1) and (2) by 2, and then add 1 $\frac{1}{2}$ H₂(g) + $\frac{1}{2}$ Cl₂(g) \longrightarrow H(g) + Cl(g) ; Δ H = 81 kcal ...(4) Subtracting equation (3) from equation (4) $HCI (g) \longrightarrow H(g) + CI(g);$ ∆H = 103 kcal ...(3) _ 1 $\frac{1}{2} \frac{1}{H_2(g)} + \frac{1}{2} \frac{1}{Cl_2(g)} \longrightarrow HCl(g); \qquad \Delta H = -22.0 \text{ kcal}$ 1 Enthalpy of formation of HCl gas = – 22.0 kcal *.*.. $\dot{\overline{2}}$ A - A + $\dot{\overline{2}}$ B - B \rightarrow AB Δ H = - 100 KJ/mole Sol. H-2. 1 $\frac{1}{2} x + \frac{1}{2} (0.5x) - x = -100 \implies \frac{2}{2} + 0.25x - x = -100$ \Rightarrow \Rightarrow 0.75 x = - 100 0.25 x = -100100 $x = \frac{25}{100} \times 100$ \Rightarrow \Rightarrow x = 400 kJ/mol Exercise-2 1. Sol. ΔG for $3Fe(s) + 2O_2(g) \longrightarrow Fe_3O_4(s)$ can be obtained by taking $[(2) + 4 \times (1)] \times \frac{3}{3}$ Hence we get $\Delta G_f = [-19 + 4 \times (-177)] \times \frac{3}{2} = -242.3 \text{ k cal for 1 mole Fe}_{3}O_4$

- 2. Sol. $CS_2(\ell) + 3O_2(g) \longrightarrow CO_2(g) + 2SO_2(g)$ $\Delta H = -256$ Kcal Let $\Delta H_f(CO_2, g) = -4 \times \text{and} \Delta H_f(SO_2, g) = -3 \times$ $\Delta H_{reaction} = \Delta H_f(CO_2, g) + 2 \Delta H_f(SO_2.g) - \Delta H_f(CS_2, \ell)$ $-265 = -4 \times -6 \times -26$ $\times = + 23.9$ ∴ $\Delta H_f(SO_2, g) = 3 \times = -71.7$ Kcal / mol.
- **3. Sol.** For freezing of water the temperature should be kept below freezing point to absorb latent heat of fusion of water.
- $S + O_2 \longrightarrow SO_2$ Sol. $\Delta H = -298.2 \text{ KJ/mole}$ 4. $SO_2 + 2 O_2 \longrightarrow SO_3 \qquad \Delta H = -98.7 \text{ KJ/mole}$ ΔH = – 130.2 KJ/mole $SO_3 + H_2O \longrightarrow H_2SO_4$ $H_2 + \overline{2} O_2 \longrightarrow H_2O$ ΔH = – 287.3 KJ/mole 5. Sol. Given energy = 1560 1560×50 ¹⁰⁰ = 7800 kJ Utilised energy = 44 kJ Utilised energy = 18 gram 18 780 kJ Utilised energy = 44×780 = 319 am *:*. 6. $AB_2(\ell) + 3X_2(g) \rightleftharpoons AX_2(g) + 2BX_2$ Sol. ΔH = - 270 Kcal $\Delta H_{F^{\circ}}(AX_{2}) + 2 \Delta H_{F^{\circ}}(BX_{2}) - \Delta H_{F^{\circ}}(AB_{2}) = -270$ $\Delta H_{F^{\circ}}(AX_{2}) + 2 \Delta H_{F^{\circ}}(BX_{2}) = -240$ \Rightarrow 4x - 6x = -240 \Rightarrow -2x = -240 \Rightarrow x = 120 $\Delta H_{F^{\circ}}$ (AX₂) = 4 × 120 = **480 Kcal/mole** $K_p = K_c (RT)^{\Delta ng}$ $\Delta n_g = 0$ So $K_p = K_c$ $nCH_2 = CH_2 \longrightarrow (-CH_2 - CH_2 -)_n \qquad \Delta H = -100 \text{ KJ/mole}$ 7. Sol. $n [C = C] + n[C - H]4 - n [C - H]4 - n[C - C] \times 2 = -100$ n[C = C] - 2n[C - C] = -100 \Rightarrow [C = C] - 2[C - C] = -100+ 600 - 2[C - C] = - 100 \Rightarrow - 2 [C - C] = - 700 KJ/mole \Rightarrow (C - C) = - 350 \Rightarrow (1) $\Delta G^{200} = \Delta H^{200} - T \Delta S^{200}$ 8. Sol. $\Delta H^{200} = 20 - 4 = 16 \text{ kJ/mol}$ $\Delta H^{T_2} = \Delta H^{T_1} + \Delta C_p [T_2 - T_1]$

	20×200	
	$\Delta H^{400} = \Delta H^{200} + 1000$ kJ/ mol = 16 + 4 = 20 kJ/mol.	
9.	Sol. $W = - Pext (V_2 - V_1) = -1 atm (1 L)$	
10.	Sol. $\Delta n_g = 0 \Rightarrow \Delta H^o = \Delta U^o$	
	For 2 mole $\Delta U^{\circ} = -370$ kJ.	
11.	Sol. A (g) $$ B (g) $P_B = \overline{4} P_A$ $P_A = 4P_B$	
	$\frac{P_{B}}{P_{A}} = \frac{P_{A}/4}{P_{A}} = \frac{1}{4}$	
	$K_p = \Lambda = \Lambda = 4$ At equilibrium $\Delta G = 0$.	
	$\Delta G^{o} = -RT \ell n K_{P} = -RT l n K_{P}$	
12	Sol AS = nCy ln $\left(\frac{I_f}{T_i}\right)_+$ nB ln $\left(\frac{V_f}{V_i}\right)$	
12.		
13	Solution C_{2} $(C_{2}, C_{2}) \rightarrow C_{2}(q) \rightarrow AH = -0.4.0 \text{ km/s}$	
10.	301. CDiamond + O_2 / $CO_2(g)$, $\Delta H = -94.0$ Real	
10.	$C_{\text{Graphite}} + O_2 \longrightarrow CO_2(g) ; \Delta H = -97.6 \text{ kcal}$	
10.	$C_{\text{Graphite}} + O_2 \longrightarrow CO_2(g) ; \Delta H = -97.6 \text{ kcal}$ $C_{\text{Diamond}} \longrightarrow C_{\text{Graphite}} \Delta H = 3.6 \text{ kcal}$	
10.	$C_{Graphite} + O_2 \longrightarrow CO_2(g) ; \Delta H = -97.6 \text{ kcal}$ $C_{Diamond} \longrightarrow C_{Graphite} \Delta H = 3.6 \text{ kcal}$ Heat required to convert 12 gram diamond to graphite = 3.6	
10.	Sol. CDiamond + O ₂ \rightarrow CO ₂ (g) ; $\Delta H = -97.6$ kcal C _{Graphite} + O ₂ \longrightarrow CO ₂ (g) ; $\Delta H = -97.6$ kcal C _{Diamond} \longrightarrow C _{Graphite} $\Delta H = 3.6$ kcal Heat required to convert 12 gram diamond to graphite = 3.6 $\frac{3.6}{12}$	
10.	Sol. CDiamond + O ₂ \rightarrow CO ₂ (g); $\Delta H = -97.6$ kcal C _{Graphite} + O ₂ \longrightarrow CO ₂ (g); $\Delta H = -97.6$ kcal C _{Diamond} \longrightarrow C _{Graphite} $\Delta H = 3.6$ kcal Heat required to convert 12 gram diamond to graphite = 3.6 \therefore Heat required to convert 1 gm diamond to graphite = $\frac{3.6}{12} = 0.3$	
10.	Graphite + O ₂ → CO ₂ (g); ΔH = - 97.6 kcal C _{Graphite} + O ₂ → CO ₂ (g); ΔH = - 97.6 kcal C _{Diamond} → C _{Graphite} ΔH = 3.6 kcal Heat required to convert 12 gram diamond to graphite = 3.6 ∴ Heat required to convert 1 gm diamond to graphite = $\frac{3.6}{12} = 0.3$	
10.	Sol. $C(s) C(g) \longrightarrow cover 1 gm diamond to graphite = \frac{3.6}{12} = 0.3$ Sol. $C(s) C(g) \longrightarrow can be obtained as \Delta H = \Delta H_1 - \Delta H_2 - \frac{1}{2} \Delta H_3 + \Delta H_3$.H4
14.	Sol. $C(s) C(g) \rightarrow CO_2(g)$; $\Delta H = -97.6$ kcal $C_{Graphite} + O_2 \longrightarrow CO_2(g)$; $\Delta H = -97.6$ kcal $C_{Diamond} \longrightarrow C_{Graphite} \Delta H = 3.6$ kcal Heat required to convert 12 gram diamond to graphite = 3.6 \therefore Heat required to convert 1 gm diamond to graphite = $\frac{3.6}{12} = 0.3$ Sol. $C(s) C(g) \longrightarrow$ can be obtained as $\Delta H = \Delta H_1 - \Delta H_2 - \frac{1}{2} \Delta H_3 + \Delta \frac{1}{2}$	\H 4
14.	Sol. $C(s) C(g) \longrightarrow CO_2(g)$; $\Delta H = -97.6$ kcal $C_{Graphite} + O_2 \longrightarrow CO_2(g)$; $\Delta H = -97.6$ kcal $C_{Diamond} \longrightarrow C_{Graphite} \Delta H = 3.6$ kcal Heat required to convert 12 gram diamond to graphite = 3.6 \therefore Heat required to convert 1 gm diamond to graphite = $\frac{3.6}{12} = 0.3$ Sol. $C(s) C(g) \longrightarrow$ can be obtained as $\Delta H = \Delta H_1 - \Delta H_2 - \frac{1}{2} \Delta H_3 + \Delta$ Sol. $H_2(g) + \frac{1}{2}O_2 \longrightarrow H_2O(g)$; $\Delta H_f = -\epsilon_1$,(i)	١H4
14. 15.	Sol. C(s) C(g) \longrightarrow CO ₂ (g); $\Delta H = -97.6$ kcal C _{Graphite} + O ₂ \longrightarrow CO ₂ (g); $\Delta H = -97.6$ kcal C _{Diamond} \longrightarrow C _{Graphite} $\Delta H = 3.6$ kcal Heat required to convert 12 gram diamond to graphite = 3.6 \therefore Heat required to convert 1 gm diamond to graphite = $\frac{3.6}{12} = 0.3$ Sol. C(s) C(g) \longrightarrow can be obtained as $\Delta H = \Delta H_1 - \Delta H_2 - \frac{1}{2} \Delta H_3 + \Delta$ Sol. H ₂ (g) + $\frac{1}{2}$ O ₂ \longrightarrow H ₂ O(g) ; $\Delta H_f = -\epsilon_1$,(i) H ₂ O(g) \longrightarrow H ₂ O(l) ; $\Delta H_f = -\epsilon_2$,(ii)	١H4
14. 15.	Sol. C(s) C(g) \rightarrow CO ₂ (g); $\Delta H = -97.6$ kcal C _{Graphite} + O ₂ \longrightarrow CO ₂ (g); $\Delta H = -97.6$ kcal C _{Diamond} \longrightarrow C _{Graphite} $\Delta H = 3.6$ kcal Heat required to convert 12 gram diamond to graphite = 3.6 \therefore Heat required to convert 1 gm diamond to graphite = $\frac{3.6}{12} = 0.3$ Sol. C(s) C(g) \longrightarrow can be obtained as $\Delta H = \Delta H_1 - \Delta H_2 - \frac{1}{2}\Delta H_3 + \Delta$ Sol. H ₂ (g) + $\frac{1}{2}O_2 \longrightarrow H_2O(g)$; $\Delta H_f = -\epsilon_1$,(i) H ₂ O(g) \longrightarrow H ₂ O(l) ; $\Delta H_f = -\epsilon_2$,(ii) and (i) and (ii).	١H4
14. 15.	Sol. Clamond + O ₂ \rightarrow CO ₂ (g); $\Delta H = -94.0$ Kdai $C_{Graphite} + O_2 \longrightarrow CO_2(g)$; $\Delta H = -97.6$ kcal $C_{Diamond} \longrightarrow C_{Graphite} \Delta H = 3.6$ kcal Heat required to convert 12 gram diamond to graphite = 3.6 \therefore Heat required to convert 1 gm diamond to graphite = $\frac{3.6}{12} = 0.3$ Sol. C(s) C(g) \longrightarrow can be obtained as $\Delta H = \Delta H_1 - \Delta H_2 - \frac{1}{2} \Delta H_3 + \Delta$ Sol. H ₂ (g) + $\frac{1}{2}O_2 \longrightarrow H_2O(g)$; $\Delta H_f = -\epsilon_1$,(i) H ₂ O(g) \longrightarrow H ₂ O(l) ; $\Delta H_f = -\epsilon_2$,(ii) and (i) and (ii). H ₂ (g) + $\frac{1}{2}O_2(g)$ H ₂ O(l) $\Delta H_f = -\epsilon_2$,(ii)	١H4

 Sol. Heat of neutralisation for strong acid and strong base combination is constant is equal to - 13.7 Kcal or - 57.1 KJ.

Exercise-3

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

OFFLINE JEE-MAIN

1. Sol. In an isolated system, there is no exchange of energy or matter between the system and surrounding. For a spontaneous process in an isolated system, the change in entropy is positive, i.e. $\Delta S > 0$.

Most of the spontaneous chemical reactions are exothermic. A number of endothermic reaction are spontaneous e.g melting of ice (an endothermic process) is a spontaneous reaction.

The two factors which are responsible for the spontaneity of process are

(i) tendency to acquire minimum energy

(ii) tendency to acquire maximum randomness.

2. Sol. $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

for a spontaneous process $\Delta G^{\circ} < 0$

- $\Rightarrow \qquad \Delta H^{\circ} T \Delta S^{\circ} < 0$
- \Rightarrow T Δ S° > Δ H°

$$\Rightarrow \qquad \mathsf{T} > \frac{\Delta \mathsf{H}^{\circ}}{\Delta \mathsf{S}^{\circ}} \Rightarrow \mathsf{T} > \frac{179.1 \times 1000}{160.2}$$

- ⇒ T > 1117.9 K ≈ 1118 K.
- 3. Sol. $\Delta U = \Delta H \Delta nRT$ = 41000 - 1 x 8.314 x 373 = 41000 - 3101.122 = 37898.878 J mol⁻¹ = 37.9 kJ mol⁻¹.

4. Sol. $C + 2H_2 \rightarrow CH_4$; $\Delta H^\circ = -74.8 \text{ kJ mol}^{-1}$ In order to calculate average energy for C - H bond formation we should know the followng data. $C(\text{graphite}) \rightarrow C(g)$; $\Delta H_f^\circ = \text{enthalpy of sublimation of carbon}$ $H_2(g) \rightarrow 2H(g)$; ΔH° bond dissociation energy of H_2 .

5. Sol. ΔS° reaction $= 50 - \frac{1}{2}(60) - \frac{3}{2}(40) = -40 \text{ JK}^{-1}$ For reaction to be at equilibrium $\Delta G = 0$ $\Delta H - T\Delta S = 0 \Rightarrow T = \frac{\Delta H}{\Delta S} = \frac{30000}{40} = 750 \text{ K}$

6. Sol. $H_2(g) + \frac{1}{2}O_2(g) - \rightarrow H_2O(\ell)$ $\Delta H = -286.20 \text{ kJ}$ $\Delta H_r = \Delta H_f (H_2O, \ell) - \Delta H_f (H_2, g) \Delta H_f (O_2, g)$ $-286.20 = \Delta H_f (H_2O(\ell))$ So $\Delta H_f (H_2O, \ell) = -286.20 \text{ KJ/mole}$ $H_2O(\ell) \longrightarrow H^+ (aq) + OH^- (aq) \Delta H = 57.32 \text{ kJ}$

 $\Delta H_r = \Delta H^{o_f} (H^+, aq) + \Delta H^{o_f} (OH^-, aq) - \Delta H^{o_f} (H_2O, \ell)$ $57.32 = 0 + \Delta H^{o_f} (OH^-, aq) - (-286.20)$ $\Delta H^{0}_{f}(OH^{-}, aq) = 57.32 - 286.20 = -228.88 \text{ kJ}.$ 7. Sol. $CH_3OH(\ell) + O_2(g) \rightarrow CO_2(g) + 2H_2O(\ell)$ 3 $\Delta G_{r} = \Delta G_{f} (CO_{2}, g) + 2\Delta G_{f} (H_{2}O_{1}, (\ell)) - \Delta G_{f} (CH_{3}OH_{1}, (\ell)) - \frac{1}{2} \Delta G_{f} (O_{2}, g)$ $= -394.4 + 2(-237.2) - (-166.2) - 0 = -394.4 - 474.4 + 166.2 = -868.8 \times 166.2$ $\Delta G_{\rm r} = -702.6 \, \rm kJ$ % efficiency = $\frac{702.6}{726} \times 100$ = 97%. 3 $N_2(g) + \frac{1}{2}H_2(g) \longrightarrow NH_3(g)$; $\Delta H_1^0 = -46.0 \text{ kJ mol}^{-1}$ 8. Sol. ; $2H(q) \longrightarrow H_2(q)$ $\Delta H_{f^0} = -436 \text{ kJ mol}^{-1}$ $2N(g) \longrightarrow N_2(g)$; $\Delta H_{f^0} = -712 \text{ kJ mol}^{-1}$ $NH_3(g) \longrightarrow \frac{1}{2} \frac{1}{N_2(g)} + \frac{3}{2} \frac{3}{H_2(g)}$: $\Delta H = +46$ 3 3 $\overline{2}_{H_2} \longrightarrow 3 H$; $\Delta H = + 436 \times \overline{2}$ 1 ; ΔH = + 712 × ^{__}2 $\overline{2}_{N_2} \longrightarrow N$ $NH_3(g) N (g) + 3H (g)$; $\Delta H = + 1056 \text{ kJ mol}^{-1}$ 1056 Average bond enthalpy of N–H bond = $3 = +352 \text{ kJ mol}^{-1}$ 9. Sol. $\Delta G = \Delta H - T\Delta S$

For spontaneous reaction ΔG must be negative At equilibrium temperature $\Delta G = 0$ to maintain the negative value of ΔG T should be greater than T_e.

10. Sol.
$$\Delta S = nR \ln \frac{V_2}{V_1}$$

= 2.303 nR log $\frac{V_2}{V_1}$
= 2.303 x 2 x 8.314 x log $\frac{100}{10}$
= 38.3 J mol⁻¹ K⁻¹

11. $C_2H_5OH(\ell) + 3O_2(g) - \rightarrow 2CO_2(g) + 3H_2O(\ell)$ Sol.

$$\Delta n_g = 2 - 3 = -1$$

$$\Delta U = \Delta H - \Delta n_g RT$$

$$= -1366.5 - (-1) \times \frac{8.314}{10^3} \times 300$$

$$= -1366.5 + 0.8314 \times 3 = -1364 \text{ KJ}$$

12. Ans. (4)

$$4NO_2(g) + O_2(g) \longrightarrow 2N_2O_5(g), \Delta H = -111 \text{ kg}$$

 $\Delta H' \longrightarrow -54$
Sol.
 $-111 - 54 = \Delta H'$

ΔH' = - 165 KJ

13. Negative $\Delta_r G^o$ value indicates that + 2 oxidation state is more stable for Pb²⁺. Also it is supported Sol. by inert pair effect that +2 oxidation state is more stable for Pb and + 4 oxidation state is more stable for Sn.

14.

Sol. $\Delta G^{o} = \Delta H^{o} - T \Delta S^{o}$ $-RTInK = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta H^{\circ} - T \Delta S^{\circ}$ RT lnK = –

15. Sol. The process is isothermal expansion Hence, q = - w $\Delta u = 0$ q = + 208 J w = - 208 J(expansion work)

16. Sol.
$$C_2H_5OH(\ell) + 3O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(\ell)$$

 $\Delta U = -1364.47 \text{ KJ/mol.}$
 $\Delta H = \Delta U + \Delta n_g \text{ RT}$
 $\Delta n_g = -1$
 $\Delta H = -1364.47 + \left[\frac{-1 \times 8.314 \times 298}{1000}\right]_{=} - 1364.47 - 2.4776 = -1366.94 \text{ KJ/mol.}$

17. Sol. $2\Delta G^{o_{f}}(NO2) - [2\Delta G^{o_{f}}(NO) + \Delta G^{o_{f}}(O2)] = \Delta G^{o_{r}} = - RT\ell n K_{p}$

 $2\Delta G^{0}_{f}$ (NO2) - [2 × 86,600 + 0] = - RT ℓ n K_p

 $\Delta G^{o}_{f (NO2)} = 0.5[2 \times 86,600 - R (298) \ln(1.6 \times 10^{12})]$

- **18.** Sol. $C(s) + \frac{1}{2}O_{2}(g) \rightarrow CO_{2}(g)$; $\Delta H = -393.5 \text{ kJ/mol.}$ $CO(g) + O_{2}(g) \rightarrow CO_{2}(g)$; $\Delta H = -283.5 \text{ kJ/mol.}$ $\frac{1}{2}O_{2}(g) \rightarrow CO(g)$; $\Delta H = -393.5 + 283.5 \text{ kJ/mol} = -110 \text{ kJ/mol.}$
- **19.** Sol. For Adiabatic process Q = 0Now, $\Delta U = Q + W$ $\Rightarrow \qquad \Delta U = W$
- 20. Sol. $C_{(graphite)} + O_2(g) \longrightarrow CO_2(g)$ $\Delta H_r = -393.5 \text{ kJ/mol} = \Delta H_f CO_2(g)$ $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(\ell)$ $\Delta H_r = -285.8 \text{ kJ/mol} = \Delta H_f H_2O(\ell)$ $CO_2(g) + 2H_2O(\ell) \longrightarrow CH_4(g) + 2O_2(g)$ $\Delta H_r = \Delta H_f (CH_4) - \Delta H_f CO_2(g) - 2\Delta H_f H_2O(\ell) = 890.3$ $\Rightarrow \Delta H_f CH_4 + 393.5 + 2 \times 285.8 = 890.3$ $\Rightarrow \Delta H_f CH_4(g) = -74.8 \text{ kJ/mol}$

ONLINE JEE-MAIN

5. Sol. $CH_4(g) \longrightarrow C(g) + 4H(g)$ \Rightarrow $4 \times E_{C-H} = 360 \text{ KJ/Mol.}$ \Rightarrow Ес-н = 90 KJ/Mol. $C_2H_6(g) \longrightarrow 2C(g) + 6H(g)$ and $E_{C-C} + 6 \times 90 = 620$ $E_{c-c} = 80 \text{ kJ/mol}$ ⇒ ⇒ hc $N_A \times \lambda = 80 \times 1000 \text{ J}$ ⇒ $6.02\!\times\!10^{^{23}}\!\times\!6.62\!\times\!10^{^{-34}}\!\times\!3\!\times\!10^{^8}$ 80000 $= 14.9 \times 10^{-7} \text{ m} = 1.49 \times 10^{-6} \text{ m} = 1.49 \times 10^{3} \text{ nm}.$ λ= 6. Sol. $\Delta G^{\circ} = \Delta H^{\circ} - T.\Delta S^{\circ} = -29.8 + 298 \times (0.1) = -29.8 + 29.8$ $\Delta G^{0} = 0$ ÷ apply relation between $\Delta G^{\circ} \& K_{eq}$ $\Delta G^{\circ} = -RT \ell n K_{eq}$ $K_{eq} = 1$ *.*..

7. Sol. $\Delta G = \Delta H - T \Delta S$

If $\Delta H \& \Delta S$ are both positive, then ΔG may be negative at high temperature hence reaction becomes spontaneous at high temperature.

8. Sol. $2H_2O_2(l) = 2H_2O(l) + O_2(g)$

 $W = -P_{ext} (\Delta V) = -\frac{(n_{O_2})}{RT}$

- \therefore 100 mol H₂O₂ on decomposition will give 50 mol O₂
- ⇒ W = -(50)(8.3)(300)J = -124500 JW = -124.5 kJ
- \Rightarrow Work done by O2(g) = 124.5 kJ Ans.

9. Sol. $\Delta H = \Delta U + \Delta n_g RT$ $\therefore \Delta ng = -1$ $-3RT = \Delta U - 1RT$

 $\Delta U = -2P$ So $|\Delta H| > |\Delta U|$

10. Sol. $\Delta H = {}^{\Delta H_{H_2O_{(\lambda)}}} + \Delta H_{fus} + {}^{\Delta H_{H_2O_{(S)}}}$ = ${}^{n_{C_P\Delta T}} + \Delta H_{fus} + n_{CP\Delta T}$ = 1×75.3×5 + 6000 + 1× 36.8×5 = 6560.5 J mole⁻¹ or 6.56 kJ mol⁻¹

11. Sol.
$$A \longrightarrow B$$
:
 $q = +5$; $W = -8 \therefore \Delta E = -3$
 $B \longrightarrow A$:
 $\Delta E = 3$; $q = -3 \therefore W = +6J$
 $\Rightarrow 6J$ of the work will be done by the surrounding on gas.

12. Sol. $\Delta H = nC_P\Delta T = O$

 $\Delta S = nR \ \ell n \left(\frac{V_f}{V_i} \right)$

 $\left(\mathbb{I} \quad V_f > V_i \right)$

: Entahalpy remains constant but entropy increases.

PART - II : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

1. Sol. In a reversible process, the driving and the opposite forces are nearly equal, hence the system and the surroundings always remain in equilibrium with each other.

2.

Sol. Work is not a state function becuase it depends upon the path followed.

- 3. Sol. $\Delta H = \Delta U + \Delta (PV)$ $\Rightarrow \Delta H = 30 + (P_2V_2 - P_1V_1) = 30 + (4 \times 5 - 2 \times 3) = 30 + 14 = 44$ L atm.
- Sol. The amount of heat either evolved or absorbed when one gram mole of a substance is formed from its constituent elements, is known as the standard heat of formation (ΔH°_f). Standard state temperature is 25C° or 298K and pressure of gaseous substance is one atmosphere. Thus in given thermochemical equation '(B)' represents the standard heat of formation of HF.
 1

$$\overline{2}_{H_{2(g)}} + \overline{2}_{F_{2}(g)} \longrightarrow HF(g)$$
, $\Delta H^{\circ}_{f} = ?$ (Standard heat of formation of HF(g))

5. Sol. \therefore H = E + PV and Δ H = Δ E + P Δ V

 $P\Delta V = nRT.$

 $\Delta H = \Delta E + nR\Delta T$

For isothermal and reversible process

 $\Delta T = 0.$

$$\therefore \quad \Delta H = \Delta E + 0.$$

 $\therefore \quad \Delta E = 0.$

:..

 \therefore ΔH is also equal to zero.

6. Sol. Given that, $\Delta H_{vaps} = 30 \text{ kJ/mol} = 30 \times 10^3 \text{ J/mol}.$ $\Delta S_{vaps} = 75 \text{ J/mol}.$ We know that, $\Delta S = \frac{\Delta H_{vap}}{T_{B,P}}$ $\therefore \qquad \Delta H = T\Delta S \implies 30 \times 10^3 = T \times 75.$

T = 400 K.

- **7. Sol.** In adsorption there in bond formation between the gases and solid surface which decrease the entropy.
- $\Delta U = W$ 8. Sol. $nCv (T_2 - T) = -P \times (V_2 - V_1)$ 2 3 $\frac{3}{2}$ R (T₂-T) = -1 $T_2 = T - 3 \times 0.0821$ ⇒ :. 9. Sol. From first law of Thermodynamics, $\Delta E = q + w \Rightarrow nC_v dT = nCdT - PdV$(1) Now according to process, P = V and according to ideal gas equation, PV = nRT We have, $V^2 = nRT$

On differentiating, 2VdV = nRdT and $PdV = VdV = \frac{nRdT}{2}$ So, from first equation we have, $nC_vdT = nCdT - \frac{nRdT}{2}$

So,
$$C_v = C - \frac{R}{2}$$
 Hence, $C = \frac{4R}{2}$

10. Sol. $A \longrightarrow C$; $\Delta S = 50$; $C \longrightarrow D$; $\Delta S = 30$; $D \longrightarrow B$; $\Delta S = -20$ For $A \longrightarrow B$: $\Delta S = 50 + 30 - 20 = 60$

- **11. Sol.** When nitrogen is added at equilibrium condition, the equilibrium will shift according to Le-chatelier principle at equilibrium $\Delta G = 0$ and catalyst changes the rate of forward and backward reactions by equal extent. K_P of reaction is a function of temperature only.
- 12. Sol. $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ} = -54.07 \times 1000 298 \times 10 = -54070 2980 = -57050$ $\Delta G^{\circ} = -2.303 \text{ RT} \log_{10} \text{ K}$ $-57050 = -2.303 \times 298 \times 8.314 \log_{10} \text{K} = -5705 \log_{10} \text{ K}$ $\log_{10} \text{ K} = 10$
- **13.** Sol. H₂O(ℓ,1bar, 373K) → H₂O(g, 1bar, 373 K) ΔS > 0 ;ΔH > 0 ;ΔG = 0
- **14.** Sol. At equilibrium ΔG (Gibbs energy) = 0 but ΔG° (standard Gibbs energy) $\neq 0$ As ΔG (Gibbs energy) is more negative reaction will be more spontaneous.
- **15. Sol.** Statement 2 is IInd law of thermodynamics which concludes that total heat can never be converted into equivalent amount of work.
- **16.** Sol. $\Delta H_{f^{\circ}}(Cl_{2},g) = 0$, As $\Delta H_{f^{\circ}}$ of elements in their standard state is taken to be zero.
- **17. Sol.** E_{C-C} 100 KCal/mole.

18.

$$2C(s) + H_{2}(g) \longrightarrow C_{2}H_{2}(g) \Delta H = 225 \text{ KJ/mol}$$

$$1410 \downarrow 330 \downarrow f - (2\varepsilon_{C-H} + \varepsilon_{C=C})$$
Sol.

$$2C(g) + 2H(g) - (2\varepsilon_{C-H} + \varepsilon_{C=C})$$

$$\therefore \Delta H = +1410 + 330 - (350 \times 2) - \varepsilon_{C=C} = +225$$

$$\therefore \varepsilon_{C=C} = 1740 - 700 - 225 = +815 \text{ KJ/mol}.$$

19. Sol.
$$C_6H_{12}O_6(s) + 6O_2(g) \longrightarrow 6CO_2(g) + 6H_2O(\mathcal{X})$$

 $\Delta_C H = 6 \times \Delta_f H (CO_2) + 6 \Delta_f H (H_2O) - \Delta_f H (C_6H_{12}O_6) - 6\Delta_f(O_2,g)$
 $= 6 \times (-400 - 300) - (-1300) - 0$

= - 4200 + 1300 = - 2900 KJ/ mol

For one gram of glucose, enthalpy of combustion = $-\frac{180}{-16.11}$ KJ/g.

20. Sol. For $H_2O(\ell) \rightarrow H_2O(g)$ at T = 100°C, 1 atm equilibrium exists.

 $\therefore \Delta G = 0, \Delta H - T \Delta S = 0$

 $\Delta H = T\Delta S > 0$ for system, since evaporation is endothermic

 $-\frac{\mathsf{q}_{\mathsf{surr}}}{\mathsf{T}_{\mathsf{surr}}}$

 \therefore (Δ S)_{system} > 0, also (Δ S)_{surrounding} = I_{surr}

Heat gained by system = heat lost by surroundings

 $\therefore q_{surr.} < 0 \therefore (\Delta S)_{surr.} < 0$

Sol. $\Delta S_{Surr} = \frac{q_{Surr}}{T} = -\frac{q_{Sys}}{T} = \frac{vv_{Sys}}{T}$ (:: Isothermal process $\Rightarrow \Delta U = 0$)

$$\Delta S_{Surr} = \frac{-P_{ext}(V_f - V_i)}{T} = \frac{-3(2-1)}{300} \times 101.3 = -1.013 \text{ J/K}$$

Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

$$(125 + 8) \times 4.2 \times 6$$

6. Sol. $\Delta H_{solution} = \frac{7}{8} \times 80 = 33516 \text{ J/mol or } 33.51 \text{ kJ/mol.}$ 7. Sol. $\Delta_r C_p = 0$, $\therefore \Delta H_{300} = \Delta H_{310}$ 8. Sol. $C_2 H_5 OH(\ell) + 3O_2(g) \longrightarrow 2CO_2(g) + 3H_2 O(\ell)$ $\Delta n_g = 2 - 3 = -1$ so $\Delta U = \Delta H - \Delta n_g RT$ = -q + RT

9. Sol.
$$H_2C_2O_4(\ell) + \frac{1}{2}O_2(g) \rightarrow H_2O(\ell) + 2CO_2(g);$$

 $\Delta n_g = 3/2$ $\Delta U_c = -\frac{0.312 \times 8.75}{1} \times 90 = -245.7 \text{ kJ/mol}$ $\Delta H = \Delta U + \Delta n_g RT$ $= -245.7 + \frac{3}{2} \times \frac{8.314 \times 300}{1000} = -241.947 \text{ kJ/mol}.$

10. Sol. From given reaction $\Delta n_g = 12 - 15 = -3$

so $\Delta E^{\circ} = \Delta H^{\circ} - \Delta n_{g} RT = -6542 + 3RT$ for 1.5 mole, $\Delta E^{\circ} = \frac{1.5}{2} \{-6542 + 3RT\} = 4900.9 \text{ kJ}$

- **11.** Sol. $\Delta n_g = 1-2 = -1$ $\Delta E = \Delta H - \Delta n_g RT = \Delta H - RT = -72.3 + 8.314 \times 300 \times 10^{-3}$ = -69.806 kJ/moleso for 3 mole we will get $\Delta E = -69.806 \times 3 \text{ kJ/mole} = 209.42 \text{ kJ/mole}$
- 12. Sol. For same amount of gas at constant temperature, lesser is the volume, lower will be the entropy.

13. Sol.
$$W = -P_{ext}(\Delta V) = -(1 \text{ atm}) \times 500 \times 50 \times 10^{-3} \text{ L}$$

= - 25 L atm = - 25 × 101.3 × 10⁻³ kJ = -2.53 kJ

- 14. Sol. $C_2H_4 + H_2 \longrightarrow C_2H_6$ 50 ml 50 ml 0 X X 50 ml $\Delta H = \Delta U + P (\Delta V)$ $- 0.31 = \Delta U + 1.5 \times 1.01 \times 10^5 (-50 \times 10^{-6}).$ $\Delta U = - 0.3024 \text{ kJ}.$
- **15.** Sol. $H_2O(s) H_2O(l), \Delta H = 1440$ cal. $\Delta H \cong \Delta U \longrightarrow$ for solids and liquids.

16. Sol.
$$\Delta E = q + w$$

 $W_{BC} = \frac{1}{2} (2V^{\circ} - V^{\circ}) (P^{\circ} - 3P^{\circ}) + (2V^{\circ} - V^{\circ}) (0 - P^{\circ}) = -2P^{\circ}V^{\circ}$
 $\Delta E = nC_{V}\Delta T = 1 \times R \left(\frac{P^{\circ}2V^{\circ}}{R} - \frac{3P^{\circ}V^{\circ}}{R}\right)_{=} -P^{\circ}V^{\circ}$
 $q_{BC} = \Delta E - W = -\frac{3}{2}P^{\circ}V^{\circ} + 2P^{\circ}V^{\circ} = \frac{1}{2}P^{\circ}V^{\circ}$

17. Sol. Beaker is open and in open beaker external pressure remains constant. $Zn + H_2SO_4 - \rightarrow ZnSO_4 + H_2 (g)$ $\frac{130}{65} = 2 \text{ mole}$ PV = nRT $P\Delta V = n_gRT$

 $W = -n_g RT = 2 \times 2 \times 300 = -1200 cal.$

18. Sol. $C_3H_8(g) + 5O_2 \rightarrow 3CO_2(g) + 4H_2O(\ell)$

$$\begin{bmatrix} 8 \times BE. (C - H) \\ +2 \times BE. (C - C) \\ +5 \times BE. (O = 0) \end{bmatrix}_{=}^{1} \begin{bmatrix} 6 \times BE. (C - C) \\ +8 \times BE(O - H) \\ +3 \times [RE] \text{ of } CO_{2} \\ +4 \times \Delta_{eqp} \quad H(H_{2}O) \end{bmatrix}$$
19. Sol. $H_{2}(g) + \frac{1}{2}O_{2}(g) \longrightarrow H_{2}O(l)$: $\Delta H_{comb,}H_{2}$
 $\Delta H_{comb} = \Delta H_{H-H} + \frac{1}{2}\Delta H_{0=0} - 2\Delta H_{0-H} - \Delta H_{eqp} = x_{1} + \frac{x_{2}}{2} - 2x_{3} - x_{4}$
20. Sol. $\frac{1}{2}N_{2}(g) + \frac{3}{2}Cl_{2}(g) \longrightarrow NCl_{3}(g)$
 $\Delta H = -\Delta H_{1} + \frac{1}{2} - \frac{3}{2}\Delta H_{3}$
21. Sol. $H^{*}(q) + OH^{*}(q) \longrightarrow H_{2}O(l)$
so $\Delta H^{\circ} = -57.3 = -285.5 - \Delta H^{*}(H+, aq) - \Delta H^{\circ}(OH^{*}, aq)$
so $\Delta H^{\circ}(OH^{*}, aq) = -228.5 \text{ kJ/mole} (as \Delta H^{*}(H+, aq) = 0)$
22. Sol. $\Delta H = \frac{8}{9} \times 45.54 + \frac{1}{9} \times 68.91 = 48.137 \text{ kJ}.$
23. Sol. $\Delta H = \Delta U + \Delta ng RT$
 $= 2.1 + \frac{2 \times 2 \times 300}{1000} = 1.2$
 $\Delta G = \Delta H - T\Delta S$
 $= 3.3 - 300 \times \frac{26}{1000} = 3.3 - 6 = -2.7 \text{ K cal}$
24. Sol. $\Delta H^{\circ} = 2 \times \Delta H^{\frac{1}{2}} + 2 \times \Delta H^{\frac{1}{2}} - \Delta H^{\frac{1}{3}}$
25. Sol. $\Delta G = \Delta H - T\Delta S$
 $= -2808 - 310 \times 182.4 \times 10^{-3}$
 $= -2864.5 \text{ kJ}$
26. Sol. $\Delta S = 10.13 = 31.2 + 51.1 - 47.3 - \frac{S_{10}O}{S_{10}O} = \frac{S_{10}O + 10.23 \times 10^{-3}}{S_{10}O + 10.23 \times 10^{-3}} = -2864.5 \text{ kJ}$
27. Sol. $\Delta G = 29.3 \times 10^{3} - (2 \times 239.7 - 152.3 - 223) \times 298 = -1721.8 \text{ Joule.}$
28. Sol. Since, expansion occurred at constant temperature,

$$\Delta S = nR \ln \frac{V_2}{V_1} = \frac{1}{32} \times 8.314 \ln \frac{3.0}{0.75} = 0.36 \text{ JK}^{-1}$$

Since, this is case of free expansion, $P_{ext} = 0$. \Rightarrow $-W = P_{ext} \Delta V = 0$, q = 0Also, since, $\Delta T = 0 \Rightarrow \Delta H = \Delta E = 0$.

29. Sol. (2) $Cu_2O(s) + \frac{1}{2}O_2(g) \rightleftharpoons 2CuO(s)$ $\Delta G^{0}_{reaction} = [2 \times (-30.4)] - [-34.98] = -25.82 \text{ kcal}$ and $-25.82 \times 10^3 = 2.303 \times 2 \times 298 \text{ logK}$ $\therefore \qquad K \approx 10^{19}$, a very high value, hence reaction will be almost complete with a trace of Cu₂O.

30. Sol.
$$\Delta_{f}S^{\circ}(NH_{4}CI,s)$$
 at 300 K (300 K ij $\Delta_{f}S^{\circ}(NH_{4}CI,s)$)

$$= S^{NH_{4}CI(s)} - \left[\frac{1}{2}S^{\circ}_{N_{2}} + 2S^{\circ}_{H_{2}} + \frac{1}{2}S^{\circ}_{CI_{2}}\right]$$

$$= -374 \text{ JK}^{-1} \text{ mol}^{-1}$$
 $\Delta_{f}C_{P} = 0$
 $\therefore \quad \Delta_{f} \frac{S^{\circ}_{310}}{S^{\circ}_{310}} = \Delta_{f}S^{\circ}_{300}$
 $= -374 \text{ JK}^{-1} \text{ mol}^{-1}$
 $\Delta_{f}H^{\circ}_{310} = \Delta_{f}H^{\circ}_{300} = -314.5$
 $\Delta_{f}G^{\circ}_{310} = \Delta_{f}H^{\circ} - 310 \Delta S^{\circ} = -314.5 - \frac{310(-374)}{1000} = -198.56 \text{ kJ/mol.}$

Page | 17

PART - II : PRACTICE QUESTIONS

1. Sol. For endothermic reactions standard heat of reaction (ΔH) is positive because in these reactions total energy of reactants is lower than that of products. i.e.,

Er < Ep

So, $\Delta H = E_P - E_R = +ve$

- **2.** Sol. (i) $S(s) + \overline{2}O_2(g) \rightarrow SO_3(g) + 2x \text{ kcal}$

3

(ii) By inverting second equation $SO_3(g) \rightarrow SO_2(g) + O_2(g) - y$ kcal,

On addition Eq. (i) and (ii)

 $S(s) + O_2(g) - \rightarrow SO_2(g) + (2x - y)$ kcal Hence, heat of formation of SO_2 is (2x - y) kcal.

3. Sol. We known that

 $\Delta H = \Delta E + \Delta nRT$

where, Δn = number of moles of gaseous product – number of moles of gaseous reactant

$$= 2 - 3 = -1$$
So, $\Delta H = \Delta E - RT$

 ΔH_{f}

4. Sol. $\Delta S_f = \overline{T_f}$

 $\Delta S_{f} = \frac{\frac{2930 \text{ J mol}^{-1}}{300 \text{ K}}}{300 \text{ K}} = 9.77 \text{ JK}^{-1} \text{ mol}^{-1}$

5. Sol. ΔG of formation of different substances are as :

$$\begin{split} 2SO_2 &= -544 \text{ kJ} \\ 2ZnS &= -293 \text{ kJ} \\ ZnO &= -480 \text{ kJ} \end{split}$$
 For the reaction, $2ZnS + 3O_2 (g) \to 2ZnO (s) + 2 \text{ SO}_2 (g) \\ \Delta G &= [(\Delta G_{(\text{products})} - \Delta G (\text{reactants})] \\ &= [(-480) + (-544) - (-293)] \\ &= -1024 + 293 = -731 \text{ kJ} \end{split}$

6. Sol. $2H_2O_2(\ell) \rightarrow 2H_2O(\ell) + O_2(g) \Delta H = ?$

 $\Delta H = [(2 \times \Delta H_f \text{ of } H_2O(\ell) + (\Delta H_f \text{ of } O_2)] - (2 \times \Delta H_f \text{ of } H_2O_2(\ell))]$ $= [(2 \times -286) + (0) - (2 \times -188)] = [-572 + 376] = -196 \text{ kJ / mol}$

7. Sol. We know that $\Delta H = \Delta E + p\Delta V$ When $\Delta V = 0 \therefore \Delta H = \Delta E$ From the law of thermodynamics

$$\begin{split} \Delta E &= q - W \\ \text{In given problem } \Delta H &= 500 \text{ J} \\ &-W &= -p \Delta V, \ \Delta V &= 0 \\ \text{So,} \qquad \Delta E &= q = 500 \text{ J} \end{split}$$

8. Sol. $CH_4 + \frac{1}{2}O_2$

$$CH_4 + 2 O_2 - \rightarrow CH_3OH(\ell)$$

 $\therefore \Delta H = -[(\Delta H \text{ of combustion of } CH_3OH)]$

 $-(\Delta H \text{ of combustion of } CH_4)]$

$$= - [(-y) - (-x)]$$

= - [- y + x] = y - x
∴ x < y

9. Sol.

 $\Delta S = \frac{q}{T}$ Sol. q = required heat per mol

T = constant absolute temprature

Thus unit of entropy is JK⁻¹ mol⁻¹

$$\Delta S = \frac{q}{T}$$

Sol. In closed insulated contianer a liquid is stirred with a paddle to increase the temprature, therefore No heat exchange with surrounding, so for it q = 0.
 Hence, from first law of thermodynamics

 $\Delta E = q + W$

 $\therefore \Delta E = W$ but not equal to zero.

11. Sol.
$$\Delta S$$
 (Entopy change) = 2.303 nR log10 $\frac{V_2}{V_1} = 2.303 \times 2 \times 2 \times \log_{10} \frac{20}{1}$
= 2.303 $\times 2 \times 2 \times 1$
= 9.212 cal

12. Sol.
$$C(s) + 2H_2(g) \rightarrow CH_4(g), \Delta H^0 = ?$$

 $\Delta H^0 = -[(\Delta H^0_c \text{ of } CH_4) - (\Delta H^0_c \text{ of } C + 2 \times \Delta H^0_c, \text{ of } H_2)]$
 $C + O_2 - \rightarrow CO_2: \Delta H = -94 \text{ kcal(i)}$
 $2H_2 + O_2 - \rightarrow 2H_2O:$
 $\Delta H = -68 \times 2\text{ kcal(ii)}$
Eq. (i) + (ii) - Eq. (iii)
 $= -[(-213) - (-94 + 2 \times -68)] \text{ kcal/mol}$
 $= -[(-213 + 230)] = -17 \text{ kcal/mol}$

13. Sol.

$$\frac{1}{2} \xrightarrow{A} \longrightarrow B + 150 \dots (1)$$

$$3B \longrightarrow 2C + D - 125 \dots (2)$$

$$E + A \longrightarrow 2D + 350 \dots (3)$$

$$\overline{B + D \longrightarrow E + 2C}$$

$$2 \times eq.(1) + eq.(2) - eq.(3)$$

$$\Delta H = 300 - 125 - 350 = -175$$

Sol. C = $\frac{q}{n(T_2 - T_1)}$ Given that C = 75 JK⁻¹ mol⁻¹, q = 1.0 kJ = 1000 J 75 = $\frac{1000}{5.55 \text{ x } \Delta T}$ (n = $\frac{100}{18}$ = 5.55) ∴ $\Delta T = \frac{1000}{5.55 \text{ x } 75}$ = 2.4 K

15. Sol. $\Delta S = \frac{\Delta Hf}{T} = \frac{6.0}{273} = 0.02198 \text{ kJ K}^{-1} \text{ mol}^{-1}$ (T = 0°C + 173 = 273 K) = 0.02198 x 1000 JK⁻¹ mol⁻¹ = 21.98 JK⁻¹ mol⁻¹

16. Sol. When one mole of a substance is directly formed from its constituent elements, then the enthalpy change is called heat of formation.

For the reaction

Xe (g) + 2F₂ (g)
$$\rightarrow$$
 XeF₄ (g)
1 mol
 $\Delta H^{\circ}_{react} = \Delta H^{\circ} f$

17. Sol. For the reaction,

 $C_{3}H_{8}(g) + 5O_{2}(g) - \rightarrow 3CO_{2}(g) + 4H_{2}O(\ell)$

- Δn = number of gaseous moles of products
 - number of gaseous moles of reactants

$$= 3 - 6 = -3$$

 \therefore $\Delta H = \Delta E + \Delta nRT$

- or $\Delta H \Delta E = \Delta nRT$
- $\therefore \qquad \Delta H \Delta E = 3RT$
- **18.** Sol. For the reaction $H_2(g) + Br_2(g) \rightarrow 2HBr(g) \Delta H^\circ = ?$

$$\begin{split} \Delta H^\circ &= - \left[(2 \text{ x bond energy of HBr}) - (\text{bond energy of H}_2 + \text{bond energy of Cl}_2) \right] \\ \Delta H^\circ &= - \left[(2 \text{ x } (364) - (433 + 192) \right] \text{kJ} \\ &= - \left[728 - (625) \right] \text{kJ} \end{split}$$

19. Sol. $\Delta G^{\circ} = \Delta H - T \cdot \Delta S^{\circ}$

 $\Delta H = -382.64 \text{ kJ mol}^{-1}$ $\Delta S^{\circ} = -145.6 \text{ J K}^{-1} \text{ mol}^{-1}$ $= -145.6 \text{ x } 10^{-3} \text{ kJ K}^{-1}$ or $\Delta G^{\circ} = -382.64 - (298 \text{ x} - 145.6 \text{ x } 10^{-3})$ $= -339.3 \text{ kJ mol}^{-1}$

20. Sol. For spontaneous process, ΔS must be positive. In reversible process

 $\Delta S_{system} + \Delta S_{surrounding} = 0$ Hence, system is present in equilibrium. (i.e, it is not spontaneous process) While in irreversible process

 $\Delta S_{\text{system}} + \Delta S_{\text{surrounding}} > 0$

Hence, in process ΔS is positive.

21. Sol. Work done (W) = $-P_{ext} (V_2 - V_1)$ = -3 x (6 - 4) = -6 L-atm = -6 x 101.32 J($\because 1 L$ -atm = 101.32 J) = $-607.92 \approx 608 J$

22. Sol. The spotaneously of a reaction is based upon the negative value of ΔG and ΔG is based upon T, ΔS and ΔH according to following equation (Gibb's-Helmholtz equation)

 $\Delta G = \Delta H - T \Delta S$

If the magnitude of $\Delta H - T\Delta S$ is negative, then the reaction is spontaneous.

When $T\Delta S > \Delta H$ and ΔH and ΔS +ve, then ΔG is negative.

23. Sol. If reaction is exothermic, therefore ΔH is -ve and on increasing disorder, ΔS is +ve thus, at these condition, ΔG is negative according to following equation.

$$\Delta G = \Delta H - T \Delta S$$

 ΔG = -ve, and for spotaneous reaction ΔG must be -ve.

24. Sol. Heat of neutralisation of strong acid and strong base is -57.33 kJ MgO is weak base while HCI is strong acid, so the heat neutralisation of MgO and HCI is lower than -57.33 kJ because MgO requires some heat for ionisation, then net released amount of heat is decreased.

CHEMISTRY FOR JEE

- **25.** Sol. If the Gibb's free energy for a system (ΔG_{system}) is equal to zero, then system is present in equilibrium at a constant temprature and pressure.
- 26. Sol. As we know that

 $\Delta H = \Delta E + p \Delta V$

or $\Delta H = \Delta E + \Delta nRT$

where $\Delta n \rightarrow no.$ of gaseous mole of product – no. of gaseous moles of reactant

If $\Delta n = 0$ (for reactions in which the number of moles of gaseous product are equal to number of moles of gaseous reactants), therefore $\Delta H = \Delta E$

So, for reaction (1) $\Delta n = 2 - 2 = 0$

Hence, for reaction (1) = $\Delta H = \Delta E$

27. Sol. At equilibrium Gibb's free energy change (Δ G) is equal to zero.

 $\Delta G = \Delta H - T\Delta S$ $0 = 30 \times 10^{3} (J \text{ mol}^{-1}) - T \times 105 (J \text{ K}^{-1} \text{ mol}^{-1})$ $\therefore T = \frac{30 \times 10^{3}}{105} \text{ K} = 285.71 \text{ K}$

28.

Sol.

 $\Delta H = [\Delta H \text{ of combustion of cyclohexane} - (\Delta H \text{ of combustion of cyclohexane} + \Delta H \text{ of combustionof } H_2)]$ = -[- 3920 -(- 3800 - 241)] kJ = -[- 3920 + 4041] kJ = -[121] kJ = - 121 kJ

29. Sol. Enthalpy of formation : The amount of heat evolved or absorbed during the formation of 1 mole of a compound for its constituent elements is known as heat of formation. So, the correct answer is :

 $H_2(g) + \frac{1}{2}O_2(g) - → H_2O(\ell)$, $\Delta H = + x_2 \text{ kJ mol}^{-1}$

30. Sol. $\Delta_{f}H_{(HCI)} = -90 = \frac{1}{2} \times 430 + \frac{1}{2} \times 240 - \Delta H_{BE(HCI)}$