Exercise-1

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

Section (A) : Calculation related to nucleus

		Volume of nucleus $= \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (10^{-13})^3 \text{ cm}^3$
A-1.	Sol.	Volume of nucleus $= \frac{1}{3}\pi r^3 = \frac{1}{3}\pi (10^{-13})^3 \text{ cm}^3$
		4
	Volum	e of atom $= \frac{4}{3} \pi (10^{-8})^3 \text{ cm}^3$
		$\frac{V_{\rm N}}{V_{\rm Atom}} = \frac{10^{-39}}{10^{-24}} = 10^{-15}$
		$V_{Nucleus} = 10_{-15} \times V_{Atom}$
A-2.	Sol.	Average atomic mass of CI is 35.5. Due to isotopes.
A-3.	Sol.	Net charge is –1. (17 e+ 18 p)
A-4.	Sol.	Isoelectronic species should have same number of electrons.
A-9.	Sol.	Cathode rays are made up of negatively charged particles (electrons, e ⁻).
A-10.	Sol.	It is fact.
A-11.	Sol.	It is fact.
A-12.	Sol.	It is fact.
		$\frac{(e/m)_{e}}{(e/m)_{e}} = \frac{e/m_{e}}{2e/4 \times 1836 m_{e}} = \frac{3672}{1}$
A-13.	Sol.	$\frac{1}{(e/m)_{\alpha}} = \frac{1}{2e/4 \times 1836} m_e = \frac{1}{1}$
A-14.	Sol.	It is fact.
A-15.	Sol.	It is fact.
A-16.	Sol.	It is fact.
A-17.	Sol.	It is fact.
A-18.	Sol.	It is fact.

Section (B) : Quantum theory of light and photoelectric Effect

B-1. Sol. Given $\lambda = 219 \text{ m}$ Thus, $v = \frac{c}{\lambda}$ or $v = \frac{3.0 \times 10^8}{219} = 1.3 \times 106 \text{ Hz}$ B-2. Sol. $E = \frac{nhc}{\lambda} \Rightarrow n = 28$ $E = \frac{hc}{\lambda} \Rightarrow E \propto 1/\lambda$ B-3. Sol.

$$\lambda = \frac{h}{p} \Rightarrow p \times 1/\lambda$$
B-4. Sol. For photoelectric effect to take place, $E_{light} \ge W : \frac{hc}{\lambda} \ge \frac{hc}{\lambda_0} \text{ or } \lambda \le \lambda_0$.
B-5. Sol. More energy means less wavelength.
B-6. Sol. Power = $\frac{hC}{\lambda \times 1}$ $40 \times \frac{80}{100} = \frac{n \times 6.62 \times 10^{-34} \times 3 \times 10^{6}}{620 \times 10^{-9} \times 20} \Rightarrow n = 2 \times 10^{21}$
B-8. Sol. $f = \frac{c}{\lambda} = 7.5 \times 10^{14} \text{ s}^{-1}$
B-9. Sol. $\lambda = \frac{hc}{v} = 6.204 \times 10^{-7} \text{ m}$
B-10. Sol. Ionisation enthalpy decreases down the group.
A $\frac{c}{v} = \frac{3 \times 10^{6}}{400 \times 10^{6}} = 0.75 \text{ m}$
B-11. Sol. Violet colour has minimum wavelength so maximum energy.
Section (C) : Bohr Model
C-1. Sol. E : for H^{-2} = E : for H \times Z^{2} = E : for H \times 9
E : for H^{-2} = E : for H × Z^{+1} = E : for H × 4
or E : for L^{+2} = E : for H × Z^{+1} = E : for H × 4
 $c : E_{n} = \frac{-13.62^{2}}{n^{2}}$
E : $= -33.62^{2} = 100 \text{ unit}$
 $\frac{-13.6 \times 2^{2}}{2} = \frac{25 \text{ unit}}{2}$
C-3. Sol. E : for Lt^{-2} = E : for H × Z^{2} [for Li, Z = 3] = 13.6 \times 9 = 122.4 \text{ eV}
C-4. Sol. Largest amount of energy is required in n = ~ to n = 1.
C-5. Sol. Radius = $0.529 \frac{n^{2}}{2} \text{ Å} = 10 \times 10^{-9} \text{ m}$
So, $n^{2} = 189$ or, $n = 14 \text{ Ans}$.
C-6. Sol. $V = 2.188 \times 10^{6} \text{ m} ns$
Now, $V \propto n$ so, $\frac{V_{L^{2}}}{V_{H}} = \frac{Z_{1}/H_{1}}{Z_{2}} \frac{3/3}{1/1} = 1$ or, $V_{L^{2}} = V_{H}$
C-7. Sol. (1) Energy of ground state of He⁺ = -13.6 \times 2^{2} = -54.4 \text{ eV} (v)

ATOMIC STRUCTURE

 $= -27.2 \times 1^2 = -27.2 \text{ eV}$ (2) Potential energy of I orbit of H-atom (ii) **2**² $= 13.6 \times \frac{3^2}{3^2} = 6.04 \text{ eV}$ (3) Kinetic energy of II excited state of He⁺ (i) = 13.6 × 2² = 54.4 V (4) Ionisation potential of He⁺ (iii)

C-10. Sol. $\mathbf{r} \propto \mathbf{n}^2$

$$\Delta E = E_3 - E_2 = 13.6 \left[\frac{1}{(2)^2} - \frac{1}{(3)^2} \right] = 1.9 \text{ eV}$$

 $\frac{\Lambda_{\text{Balmer}}}{4} = 4$

Sol. C-13. Sol. It is fact.

C-12.

Section (D) : Spectrum

D-1. Sol.
$$\frac{1}{\lambda_{\text{lyman}}} = R_{\text{H}} \left(\frac{1}{1}\right)$$
$$\frac{1}{\lambda_{\text{Balmer}}} = R_{\text{H}} \left(\frac{1}{4}\right) \xrightarrow{\lambda_{\text{E}}} \frac{\lambda_{\text{E}}}{\lambda_{\text{L}}}$$

D-2. For Lymen series $n_1 = 1$ Sol. For shortest 'l' or Lymen series the energy difference in two levels showing transition should be maximum

(i.e.
$$n_2 = \infty$$
) $\frac{1}{\lambda} = R_H \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right] = 109678 = 911.7 \times 10^{-8} = 911.7 \text{ Å}$

D-3. Sol.
$$mvr = \frac{n\underline{N}}{2\pi} = \frac{5\underline{N}}{2\pi} = 2.5 \frac{\underline{N}}{\pi}$$

 $r_n = r_0 \times \frac{n^2}{7}$

When transition is from higher to lower level emission spectrum results. D-4. Sol.

D-6.

$$r_{Li^{2+}} = \frac{r_H}{3} = \frac{0.53}{3} = 0.17$$

 $E_{min} = E_2 - E_1 = -3.4 + 13.6 = 10.2 \text{ eV}$ D-7. Sol.

Sol.

 $\frac{-13.6Z^2}{n^2}$; En = Sol. D-8.

-1.51 =
$$\frac{-13.6Z^2}{9}$$
; E₂ = $\frac{-13.6Z^2}{4}$ = $\frac{-1.51 \times 9}{4}$ = -3.4

D-9. Sol.
$$\lambda = \frac{\Pi c}{\Delta E} \therefore \lambda \alpha \frac{\Gamma}{\Delta E}$$

6(6 – 1) infrared lines = total lines – visible lines – UV lines = $\frac{2}{2}$ – 4 – 5 = 15 - 9 = 6.D-10. Sol. (visible lines = 4 $6 \rightarrow 2$, $5 \rightarrow 2$, $4 \rightarrow 2$, $3 \rightarrow 2$) (UV lines = 5 $6 \rightarrow 1, 5 \rightarrow 1, 4 \rightarrow 1, 3 \rightarrow 1, 2 \rightarrow 1$)

eV

D-11. Sol. For third line of Bracket series $(4 \rightarrow 7)$

$$\frac{1}{\lambda} = R \left(\frac{1}{16} - \frac{1}{49} \right) \Rightarrow \lambda = \frac{784}{33R}$$

- D-12. Sol. Balmer series of hydrogen atom spectrum is 'n' to second Bohr orbit.
- **D-13**. Sol. Paschen series of hydrogen atom spectrum is 'n' to third Bohr orbit. $n_1 = 3$ and $n_2 = 4, 5, 6$
- **D-14.** Sol. For 1^{st} line of Balmer series $(3 \rightarrow 2)$

$$E_3 - E_2 = \frac{hc}{\lambda}$$

- **D-15.** Sol. They lies in ultra violet region.
- **D-16.** Sol. n₁ = lyman series i.e. transition of the electron in hydrogen atom from the fourth to first energy shell emits a spectral line which falls in lyman series.
- **D-18.** Sol. When electronic transition in H–atom takes place from higher level ($n_2 = 3, 4, 5.....\infty$) to second level ($n_1 = 2$), then obtained spectral lines are called Balmer–series.

Section (E) : De broglie wavelength & Uncertainity principle

 $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{V_2}{V_1}} = \sqrt{\frac{200}{50}} = \frac{2}{1}$

E-1. Sol.

$$\lambda = \frac{h}{h}$$

- **E-2.** Sol. $mv = 1.33 \times 10^{-3} \text{ Å}$
- **E-3.** Sol. For an α particle, $\lambda = \frac{0.101}{\sqrt{V}}$ Å.

Ε-4. Sol. ΔΧ .ΔΡ
$$\frac{h}{4\pi}$$

$$m(\Delta X . \Delta V) = \overline{4\pi} \Rightarrow m = 0.099 \text{ Kg}$$

Ь

E-5. Sol.
$$\Delta X : \Delta P \ge \frac{1}{4\pi}$$

 $\Delta X \to 0 \Rightarrow \Delta P \to \infty$

E-6. Sol. An electron has particle and wave nature both.

 $\Rightarrow \qquad \Delta x = \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 1 \times 10^{-5}} = 5.27 \times 10^{-30} \text{ m.}$ h $\Delta p \cdot \Delta x = \frac{4\pi}{4\pi}$ E-7. Sol. $\lambda = \frac{h}{mv} \Rightarrow \lambda \propto \frac{1}{m}$ E-8. Sol. h $\lambda = mv = 0.416 \text{ nm}$ E-9. Sol. E-10. Sol. r₁ = 0.529 Å $r_3 = 0.529 \times (3)^2 \text{ Å} = 9x$ 2π(9x) 2πr 3 $\lambda = n =$ = 6 πx. SO,

E-11. Sol. For a charged particle
$$\lambda = \frac{h}{\sqrt{2mqV}}$$
, $\therefore \qquad \lambda \propto \frac{1}{\sqrt{V}}$.

E-12. Sol.
$$\lambda = mv = 0.4 \times 10^{-33}$$
 cm

E-13. Sol.
$$\Delta x \cdot \Delta p \simeq 4\pi \Rightarrow \Delta v = 3.499 \times 10^{-24} \text{ ms}^{-1}$$

h

E-14. Sol. All the material object in motion.

$$\Delta \mathbf{x} \times \Delta \mathbf{p}$$

Sol. According to

E-15.

F-1.

$$\Delta \mathbf{x} = \frac{h}{\Delta p \times 4\pi} = \frac{6.62 \times 10^{-34}}{1 \times 10^{-5} \times 4 \times 3.14} = 5.27 \times 10^{-30} \text{ m}$$

Section (F) : Quantum numbers & Electronic configuration

Sol. Orbital angular momentun =
$$\frac{h}{2\pi}\sqrt{\ell(\ell+1)}$$

For 2s-orbital = 0 \Rightarrow Orbital angular momentun = 0

F-2. Sol. (1) This set of quantum number is permitted.

- (2) This set of quantum number is not permitted as value of 's' cannot be zero.
- (3) This set of quantum number is not permitted as the value of 'l' cannot be equal to 'n'.
- (4) This set of quantum number is not permitted as the value of 'm' cannot be greater than 'l'.

F-6. Sol.
$$n = 4, \ell = 2, s = -\frac{1}{2} or + \frac{1}{2}$$

- F-7. Sol. Any orbital can accommodate only 2 electrons with opposite spins.
- **F-9.** Sol. Maximum no. of electrons in a subshell = $2(2\ell + 1) = 4 + 2$.

F-10. Sol. Two electrons in K shell will differ in spin quantum number $s = +\frac{1}{2} \text{ or } -\frac{1}{2}$.

F-11. Sol. Magnetic moment = $\sqrt{n(n+2)} = \sqrt{24}$ B.M.

 \therefore No. of unpaired electron = 4.

 $X_{26}: 1s^2\,2s^22p^63s^23p^63d^64s^2.$

To get 4 unpaired electrons, outermost configuration will be 3d⁶.

- \therefore No. of electrons lost = 2 (from 4s²).
- ∴ n = 2.

F-12. Sol. Number of radial nodes =
$$n - \ell - 1 = 1$$
, $n = 3$. $\therefore \ell = 1$.

Orbital angular momentum = $\sqrt{\ell(\ell+1)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi}$.

- **F-15.** Sol. The electronic configuration must be $1s^2 2s^{1}$. Hence, the element is lithium (z = 3).
- **F-16.** Sol. An element has the electronic configuration 1s², 2s² 2p⁶, 3s² 3p² (Si). It's valency electrons are four.

- F-17. Sol. It has 3 orbitals p_x , p_y , p_z .
- **F-18.** Sol. 2s orbital have minimum energy and generally electron filling increases order of energy according to the Aufbau's principle.
- F-19. Sol. No two electrons in an atom can have identical set of all the four quantum numbers.

Exercise-2

Marked Questions may have for Revision Questions.

- 2. Sol. Na⁺ has 10 electron and Li⁺ has 2 electron so these are different number of electron from each other.
- **3. Sol.** $-CONH_2 = 6 + 8 + 7 + 2 + 1 = 24$.
- Sol. Mass number ≈ At. Wt.
 Mass no. = no. of protons + no. of neutrons At. no. = no. of protons.
- 5. Sol. Eabsorbed = Eemitted

$$\therefore \qquad \frac{hc}{300} = \frac{hc}{496} + \frac{hc}{\lambda}$$
$$\therefore \qquad \lambda = 759 \text{ nm.}$$

Sol.
$$E_2 - E_1 = 1312 - 1312/4 = 984 \text{ kJ/mol}$$

7. **Sol.**
$$E_n = -13.6 \frac{2}{n^2}$$

$$v = \frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = 109678 \left[\frac{1}{1} - \frac{1}{4} \right] = 82258.5$$

8. Sol.

6.

 $λ = 1.21567 \times 10^{-5}$ cm or $λ = 12.1567 \times 10^{-6}$ cm = 12.1567 × 10⁻⁸ m

$$v = \frac{c}{\lambda} = \frac{3 \times 10^8}{12.567 \times 10^{-8}} = 24.66 \times 10^{14} Hz$$

-2

9. Sol. For 1st line of Balmer series

$$\overline{v}_{1} = R_{H}(3)^{2} \left[\frac{1}{(2)^{2}} - \frac{1}{(3)^{2}} \right]_{=9R} \left(\frac{5}{36} \right)_{=} \frac{5}{4} R_{H}(3)^{2}$$

so,
$$\overline{v}_1 - \overline{v}_2 = R - R = \overline{4}$$
.

For last line of Pachen series

$$\overline{v}_{1} = R_{H} (3)^{2} \left[\frac{1}{(2)^{2}} - \frac{1}{(3)^{2}} \right]_{=} 9R^{\left(\frac{5}{36} \right)_{=}} \frac{5}{4}_{R}$$
10. Sol.
$$n_{1} + n_{2} = 4$$

$$n_{1} - n_{2} = 2$$
so $n_{1} = 3$ and $n_{2} = 1$.
$$\overline{v}_{=} R (3)^{2} \left\{ \frac{1}{(3)^{2}} - \frac{1}{(1)^{2}} \right\}_{=} 8R.$$

11.	Sol.	Visible lines \Rightarrow Balmer series \Rightarrow 3 lines. (5 \rightarrow 2, 4 \rightarrow 2, 3 \rightarrow 2).					
12.	Sol.	Shortest wave length of Lyman series of H-atom					
	For D	$\frac{1}{\lambda} = \frac{1}{x} = R \left[\frac{1}{(1)^2} - \frac{1}{(\infty)^2} \right] \qquad \text{so,} \qquad x = \frac{1}{R}$					
	FOL BS	almes series					
		$\frac{1}{\lambda} = R (1)^2 \left\{ \frac{1}{(2)^2} - \frac{1}{(3)^2} \right\}$					
		$\frac{1}{\lambda} = \frac{1}{x} \frac{5}{x^{-36}}$ so, $\lambda = \frac{36x}{5}$					
13.	Sol.	According to energy, $E_{4 - 1} > E_{3 - 1} > E_{2 - 1} > E_{3 - 2}$.					
	Accore	ding to energy, Violet > Blue > Green > Red.					
	.:	Red line \Rightarrow 3 \rightarrow 2 transition.					
14.	Sol.	$\lambda = v$					
	then	$\lambda = \frac{h}{mV}$ or $\lambda^2 = \frac{h}{m}$ So, $\lambda = \sqrt{\frac{h}{m}}$.					
15.	Sol.	$\lambda \propto \frac{n}{Z}$ $\therefore \frac{n_1}{Z_1} = \frac{n_2}{Z_2}$ or $\frac{2}{3} = \frac{4}{6}$ (n = 4 of C ⁵⁺ ion).					
16.	Sol.	For an electron accelerated with potential difference V volt, $\lambda = \frac{h}{\sqrt{2mqV}} = \frac{12.3}{\sqrt{V}} \hat{A}$.					
17.	h	—					
	$\lambda = m$						
18.	Sol. Δx . Δι	$\Delta x = 2\Delta p$ $p \cdot m = \frac{\overline{A}}{2} = \frac{h}{4\pi} \implies 2\Delta p \cdot m\Delta V = \frac{\overline{A}}{2} \implies (\Delta V)^2 = \frac{\overline{A}}{4m^2}$					
	or	$\Delta V = \frac{\sqrt{\mathbb{Z}}}{2m}.$					
19.	Sol.	s orbital is spherical so non-directional.					
20.	Sol.	Total number of electrons in an orbital = 2 (2 ℓ +1).					
		ℓ = n − 1					
	T I	$\sum_{\ell=0}^{\ell=n-1} 2(2\ell+1)$					
24		alue of ℓ varies from 0 to n – 1. \therefore Total numbers of electrons in any orbit = $\ell = 0$.					
21.	Sol.	After np orbital, (n + 1) s orbital is filled.					
22.	Sol. II : Ou	I : For n = 5, $I_{min} = 0$. \therefore Orbital angular momentum = $\sqrt{\ell(\ell + 1)}$ = 0.(False) utermost electronic configuration = 3s ¹ or 3s ² . \therefore possible atomic number = 11or 12 (False).					

III : $Mn_{25} = [Ar] 3d^5 4s^2$. $\therefore 5$ unpaired electrons. \therefore IV : Inert gases have no unpaired electrons. \therefore Total spin = $\pm \frac{5}{2}$ (False).

spin magnetic moment = 0 (True).

- **23.** Sol. The lobes of $d_{x^2-y^2}$ orbital are alligned along X and Y axis. Therefore the probability of finding the electron is maximum along x and y-axis.
- **24.** Sol. Number of values of ℓ = total number of subshells = n.

Value of $\ell = 0, 1, 2, \dots, (n - 1)$.

 ℓ = 2 \Rightarrow m = – 2, – 1, 0, + 1 , + 2 (5 values)

 $m = + \ell \text{ to} - \ell \text{ through zero.}$

- **25. Sol.** Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts when each of them is singly filled.
- **26. Sol.** $1s^2 2s^2 2p^6 3s^1$ m = 0 is for 2 + 2 + 2 + 1 electrons = 7 e⁻

Exercise-3

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1. Sol. Mn²⁺ has the maximum number of unpaired electrons (5) andtherefore has maximum moment.

2. Sol.
$$2^{nd}$$
 excited state will be the 3^{rd} energy level. En = $\frac{13.6}{n^2}$ eV or E = $\frac{13.6}{9}$ = 1.51 eV.

3. Sol. $\Delta x. \Delta v = \frac{h}{4\pi m}$ $\Delta v = \frac{6.6 \times 10^{-34}}{4 \times 3.14 \times 25 \times 10^{-5}}$ $\therefore \Delta v = 2.1 \times 10^{-18} \text{ ms}^{-1}.$

4. Sol.
$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34} \times 1000}{60 \times 10} = 11.05 \times 10^{-34} = 1.105 \times 10^{-33} \text{ metres.}$$

- 5. Sol. The electron has minimum energy in the first orbit and its energy increases as n increases. Here n represents number of orbit, i.e., 1^{at}, 2nd, 3rdThe thired line from the red end corresponds. To yellow region i.e., 5. In order to obtain less energy electron tends to come 1st or 2nd orbit. So jump may be involved either 5 → 1 or 5 → 2. Thus option (1) is correct here.
- 6. Sol. ${}_{26}Fe = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^6, 4s^2,$ $Fe^{++} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^6$ The number of d -electrons retained in $Fe^{2+} = 6$. Therefore, (3) is correct option.
- 7. Sol. The value of ℓ (azimuthal quantum number) for s -electron is equal to zero.

Orbital angular momentum =
$$\sqrt{\ell(\ell+1)} \cdot \frac{h}{2\pi}$$

$$\sqrt{0(0+1)}.\frac{h}{2\pi}=0$$

Substituting the value of I for s-electron =

8. Sol. Number of electrons in $N^{3-} = 7 + 3 = 10$.

·		Number of electrons in $F^- = 9 + 1 = 10$ Number of electrons in Na ⁺ = 11 - 1 = 10.						
9.	Sol.	$\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \frac{1}{\lambda} = 1.097 \times 10^7 \text{ m}^{-1} \left(\frac{1}{1^2} - \frac{1}{\infty^2} \right) \qquad $						
10.	Sol. ℓ = 3	For 4f orbital electrons, n = 4 s p d f (because 0 1 2 3) $m = +3, +2, +1, 0, -1, -2, -3 s = +1/2.$						
11.	Sol.	${}_{24}Cr \ \rightarrow \ 1s^2, \ 2s^2, \ 2p^6, \ 3s^2, \ 3p^6, \ 3d^5, \ 4s^1 \qquad \qquad \ell = 1, \ \ell = 1, \ \ell = 2$						
	(we kr	how for p, $\ell = 1$ and for d, $\ell = 2$). For $\ell = 1$, total number of electrons = 12						
	For ℓ =	For $\ell = 2$, total number of electron = 5.						
12.	Sol.	For hydrogen the energy order of orbital is $1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d = 4f$.						
13.	(iv) n = (v) n =	The electron having same principle quantum number and azimuthal quantum number will be the same y in absence of magnetic and electric field. = 3, $I = 2$, $m = 1$ = 3, $I = 2$, $m = 0$ same n and I value.						
14.	Sol.	According to Heisenberg's uncertainity principle $\Delta x \times \Delta p = \frac{h}{4\pi}$ $\Delta x \times (m.\Delta v) = \frac{h}{4\pi} \Rightarrow \Delta x = \frac{h}{4\pi m.\Delta v}$ $\Delta v = \frac{0.001}{100} \times 300 = 3 \times 10^{-3} \text{ ms}^{-1}$ $\Delta x = \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 3 \times 10^{-3}} = 1.29 \times 10^{-2} \text{m}.$						
		nh R						
15.	Sol.	Angular momentum of the electron, $mvr = 2\pi$ where $n = 5$ (given)						
	.:.	Angular momentum $= \frac{5h}{2\pi} = 2.5 \frac{h}{\pi}$						
16.		$ {}_{28}\text{Ni} \rightarrow [\text{Ar}]3d^8 4s^2 $ er of unpaired electrons (n) = 2 $ \overline{n(n+2)} = \sqrt{2(2+2)} = \sqrt{8} \approx 2.84 $						
17.	Sol.	The atoms of the some elements having same atomic number but different mass numbers are called						
	isotop							
	^A ZX—	$\xrightarrow{-\alpha} \overset{A-\Delta}{Z^{-2}} Y ; \overset{A}{z} X \xrightarrow{-\beta} \overset{Ay}{Z^{+1}} \qquad \overset{A}{z} X \xrightarrow{-\frac{1}{0}n} \overset{A-1}{Z^{-1}} X ; \overset{A}{z} X \xrightarrow{-\beta_{+}} \overset{A}{Z^{-1}} Y$						
18.		The electron have $n + l$ higher value have hegher energy. 3 + 0 = 3 3 + 1 = 4						

n + l = 3 + 2 = 5 (highest energy)

n + l = 4 + 0 = 419. **Sol.** I.E. = 1.312 × 10⁶ J mol⁻¹ The energy required to excite the electron in the atom from $n_1 = 1$ to n = 2. = $1.312 \times 10^{6} \left[1 - \frac{1}{4} \right]$ = $1.312 \times 10^{6} \times \frac{3}{4}$ = $9.84 \times 10^{5} \text{ J mol}^{-1}$ 20. Sol. Isoelectronic : which have same no. of electrons. NO⁺, C₂²⁻, CN⁻, N₂, O₂²⁻, O₂⁻, Species : CO NO No. of e.s: 14 14 14 14 18 17 14 15 As $\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{1.67 \times 10^{-27} \times 1 \times 10^3} = 3.97 \times 10^{-10} \text{ M} = 0.397 \times 10^{-9} \text{ M} = ~ 0.40 \text{ nm}.$ Sol. 21. h $\Delta x \times \Delta P = 4\pi$ 22. Sol. h $\Delta x \times [m\Delta v] = \overline{4\pi}$ 600×0.005 100 = 0.03 Δv = 6.6×10^{-34} So $\Delta x [9.1 \times 10^{-31} \times 0.03] = 4 \times 3.14$ 6.6×10^{-34} $\Delta x = \overline{4 \times 3.14 \times 9.1 \times 0.03 \times 10^{-31}} = 1.92 \times 10^{-3} M.$ 23. **Sol.** $CI-CI(g) \longrightarrow 2CI(g)$; $\Delta H = 242$ KJ mol 242×10^{3} = 6.02×10^{23} J molecule⁻¹ hc $E = \lambda^{-}$ $\frac{242 \times 10^{-23} \times 10^3}{6.02} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{\lambda}$ $\lambda = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{242 \times 10^{-23} \times 10^3} = \frac{6.6 \times 3 \times 6.02}{242} \times 10^{-6}$ $= 0.494 \times 10^{-6}$ = 494 × 10⁻⁹ m = 494 nm **Sol.** I.E. of He⁺ = 19.6 × 10⁻¹⁸ J atom⁻¹ 24. $I.E. = -E_1$ E_1 for He⁺ is = -19.6 × 10⁻¹⁸ J atom⁻¹ $\frac{{(\mathsf{E_1})}_{He^+}}{{(\mathsf{E_1})}_{Li^{3+}}} = \frac{{(\mathsf{Z_{He^+}})}^2}{{(\mathsf{Z_{Li^{2+}}})}^2}$ $\frac{-19.6 \times 10^{-18}}{(\mathsf{E}_1)_{\mathsf{LI}^{2+}}} = \frac{4}{9}$

 $-19.6\times9\times10^{-18}$

 $= -44.1 \times 10^{-18} = -4.41 \times 10^{-17} \text{ J atom}^{-1}$ 4 $E_1(Li^{2+}) =$ **Sol.** $E = E_1 + E_2$ 25. $\frac{hc}{\lambda} = \frac{hc}{\lambda_1} + \frac{hc}{\lambda_2}$ $\frac{1}{\lambda} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$ $\frac{1}{355} = \frac{1}{680} + \frac{1}{\lambda_2}$ $\lambda_2 = 742.76$ nm. $h\nu = \Delta E = 13.6 \ z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$ Sol. 26. $\left(\frac{1}{\left(\frac{n_1}{2}\right)^2} - \frac{1}{\left(\frac{n_2}{2}\right)^2}\right)$ $V_{He+} = V_H \times Z^2$ $\left(\frac{1}{\left(\frac{2}{2}\right)^2} - \frac{1}{\left(\frac{4}{2}\right)^2}\right)$ $- \lambda \mu$ For H-atom $n_1 = 1, \ n_2 = 2$ 27. Sol. (a) 4 p (b) 4 s (c) 3 d (d) 3 p Acc. to $(n + \ell)$ rule, increasing order of energy (d) < (b) < (c) < (a) $\Delta E = 2.178 \times 10^{-18} \left(\frac{1}{1^2} - \frac{1}{2^2} \right) = \frac{hC}{\lambda}$ Sol. 28. $2.178 \times 10^{-18} \left(\frac{1}{1^2} - \frac{1}{2^2}\right) = \frac{6.62 \times 10^{-34} \times 3.0 \times 10^8}{\lambda}$ $\therefore \lambda \approx 1.214 \times 10^{-7} \text{m}$ Sol. Z = 37. 29. Rb is in fifth period. [Kr]5s¹ is its configuration. So n = 5, l = 0, m = 0, s = $+\frac{1}{2}$ or $-\frac{1}{2}$ $(E_n)_H = -13.6 \overline{n^2} eV$ 30. Sol. $n = 2 \implies E_2 = -3.4 \text{ eV}$ 31. Sol. K.E. = eV

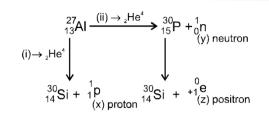
$$\Lambda = \frac{h}{\sqrt{2meV}}$$
$$\frac{h}{\lambda} = \sqrt{2meV}$$

32. Sol.
$$R = 0.529 \frac{n^2}{z} \mathring{A}$$

= 0.529 $\frac{2^2}{1} \mathring{A}$
= 2.12 \mathring{A}

ONLINE JEE-MAIN

8. Sol. Following Aufbau principle for filling electrons. h $\sqrt{2m \text{ KE}}$ De-broglie wavelength (for particles) = Sol. 9. 1 $\propto \frac{1}{\sqrt{m}}$ As temperature is same, KE is same. So, λ Hence λ_{db} (electron) > λ_{db} (neutron) 10. Sol. n = 5 Possible subshell are 5s, 5p, 5d, 5f, 5g \Rightarrow Total number of orbital = 1 + 3 + 5 + 7 + 9 = 25:. NaF: $Na^{+} = 1s^{2}2s^{2}2p^{6}$ 11. Sol. $F^{-} = 1s^{2}2s^{2}2p^{6}$ 12. Sol. For shortest ' λ ' of hydrogen n₁ = 1 & n₂ = ∞ $\frac{1}{\lambda} = Rz^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$ $\frac{1}{A} = R(1)^2 \left(\frac{1}{1^2} - \frac{1}{\infty^2} \right) \Rightarrow R = \frac{1}{A}$ for longest ' λ ' of He⁺ n₁ = 3 n₂ = 4 $\frac{1}{\lambda} = \frac{1}{A} (2)^2 \left(\frac{1}{3^2} - \frac{1}{4^2} \right) = \frac{1}{A} \times \frac{7}{36} \text{ or } \lambda = \frac{36A}{7}$ $\left(\frac{n^2}{1}\right)$ pm = 211.6 pm (for H-atom) 13. Sol. $r_{\rm n} = 52.9$ ∴ n = 2


Higher orbit to $n = 2 \Rightarrow$ Balmer series

PART - II : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

* Marked Questions may have more than one correct option.

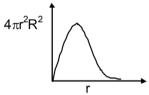
- **1. Sol.** Because Rutherford used α-particles and α-particle is represented as nucleus of helium with 2 protons and 2 neutrons.
- **2. Sol.** On the basis of Pauli's exclusion principle, not more than two electrons can enter in a orbital. Hence seven electrons (as 1s⁷) in an orbital violates Pauli's exclusion principle.

 $r_n = 0.529 \frac{n^2}{Z} \overset{o}{A}$ Sol. 3. For hydrogen, n = 1 and Z = 1; $r_{\rm H} = 0.529$... $r_{Be^{3+}} = \frac{0.529 \times 2^2}{4} = 0.529$ For Be³⁺, n = 2 and Z = 4; ... Therefore, (D) is correct option. Sol. No. of radial nodes = $n - \ell - 1$ 4. For 3s, no, of radial nodes = 3 - 0 - 1 = 2For 2p, no. of radial nodes = 2 - 1 - 1 = 05. Sol. For lower state (S₁) No. of radial node = $1 = n - \ell - 1$ Put n = 2 and $\ell = 0$ (as higher state S₂ has n = 3) So, it would be 2s (for S1 state) $\left(\frac{3^2}{2^2}\right)$ Energy of state $S_1 = -13.6$ Sol. eV/atom 6. 9 = 4 (energy of H-atom in ground state) = 2.25 (energy of H-atom in ground state). Sol. 7. For state S₂ No. of radial node = $1 = n - \ell - 1$ (eq.-1) Energy of S_2 state = energy of e^- in lowest state of H-atom = - 13.6 eV/atom 3² $\left(\frac{1}{n^2}\right)$ = -13.6eV/atom n = 3. put in equation (1) $\ell = 1$ so, orbital ⇒ Зp (for S₂ state).

h

8. Sol.

9.


Sol.

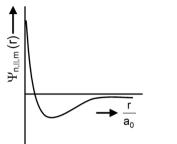
so

mv (4a₀) =
$$\pi$$

so, v = $\frac{h}{4m\pi a_0}$
KE = $\frac{1}{2}mv^2 = \frac{1}{2}m$, $\frac{h^2}{16m^2\pi^2 a_0^2} = \frac{h^2}{32m\pi^2 a_0^2}$

10.

Sol. For 1s electron in H-atom, plot of radial probability function $(4\pi r^2 R^2)$ V/s r is as shown :


Answer Q.11, Q.12 and Q.13 by appropriately matching the information given in the three columns of the following table.

The wave function, Ψ_{n, l, m_l} is a mathematical function whose value depends upon spherical polar coordinates (r, θ , ϕ) of the electron and characterized by the quantum numbers *n*, *l* and *m_l*. Here r is distance from nucleus, θ is colatitude and ϕ is azimuth. In the mathematical functions given in the Table, Z is atomic number and a_0 is Bohr radius.

Column 1	Column 2	Column 3			
(I) 1s orbital	(i) $\Psi_{n, l, m_{l}} \propto \left(\frac{Z}{a_{o}}\right)^{\frac{3}{2}} e^{-\left(\frac{Zr}{a_{o}}\right)}$	$(P) \qquad \qquad$			
(II) 2s orbital	(ii) One radial node	(Q) Probability density at nucleus $\frac{1}{\alpha_o^3}$			
(III) 2p _z orbital	(iii) $\psi_{n, l, m_{l}} \propto \left(\frac{Z}{a_{o}}\right)^{\frac{5}{2}} re^{-\left(\frac{Zr}{2a_{o}}\right)} \cos\theta$	(R) Probability density is maximum at nucleus			
(IV) 3dz ² orbital	(iv) xy-plane is a nodal plane	(S) Energy needed to excite electron from n = 2 state to $\frac{27}{32}$ times the energy needed to excite electron from n = 2 state to n = 6 state			

11. Sol. s-orbital is non directional so wave function will be independent of $\cos \theta$.

12. Sol. For 2s orbital no. of radial nodes = $n - \ell - 1 = 1$

13.

3. Sol. For 1s orbital Ψ should be independent of θ , also it does not contain any radial node.

	E_1	E ₁	3E1				
	16	4	16				
$E_4 - E_2$	E ₁	E ₁	8E1		3×36		27
$E_6 - E_2 =$			36	=	8×16	=	32