Additional Problems For Self Practice (APSP)

PART -: PRACTICE TEST PAPER

1. Sol. $S = \{HH, HT, TH, TT\}$ Probability, $p = \frac{1}{4} = \frac{1}{2}$, $q = \frac{1}{4}$ 2. Odds against = 4:11 Sol. Probability, = $\frac{11}{4+11} = \frac{11}{15}$ 3. Sol. S= {1, 2, 3, 4, 5, 5, 6} 4 2 Probability, $=\overline{6} = \overline{3}$ $P(A' \cap B') = P(A') P(B')$ A,B independent 4. Sol. $\left(\frac{3}{4}\right)\left(\frac{2}{3}\right) = \frac{1}{2}$ P(Gargy to speak truth) = $\frac{60}{100} = \frac{3}{5}$ Sol. 5. 90 P(Ashmeet to seak truth) = $\frac{33}{100} = \frac{3}{10}$ required probability = $\frac{3}{5} \left(1 - \frac{9}{10} \right) + \left(1 - \frac{3}{5} \right) \left(\frac{9}{10} \right)_{=} \frac{3}{50} + \frac{18}{50} = \frac{21}{50}$ $\therefore \frac{21}{50} \times 100\% \Rightarrow 42\%$ Required probability = $\frac{1}{4} + \frac{1}{5} - \frac{1}{15} = \frac{15 + 12 - 4}{60} = \frac{23}{60}$ 6. Sol. 7. Sol. S= {2, 3, 5} 2 Probability,= 38. S={(2,2), (2,3) (2,5), (3, 2) (3, 3) (3,5), (5,2) (5,3), (5,5)} Sol. Probability,= $\overline{9}$ Probability,= $\frac{{}^{8}C_{1}}{{}^{9}C_{2}} = \frac{8 \times 2}{9 \times 8} = \frac{2}{9}$ Sol. 9. P(Thomas to be true, $=\overline{4}$ Sol. 10. P(Thomas to be false, = 4 $E \rightarrow$ Thomas said six $A \rightarrow$ Actually a six $P\left(\frac{A}{E}\right) = \frac{P(A \cap E)}{P(E)} = \frac{1/6 \times 3/4}{1/6 \times 3/4 + 5/6 \times 1/4} = \frac{3/24}{3/24 + 5/24} = \frac{3}{8}$

11. Sol. Probability,=
$$\frac{\frac{4}{52}C_2}{\frac{1^2C_4}{5^2C_4}}$$
12. Sol. Probability,=
$$\frac{\frac{1^2C_4}{5^2C_4}}$$
13. Sol. P(all boys sit together) = $\frac{\frac{81\times71}{14!}}{14!}$
14. Sol. Probability,=
$$\frac{\frac{40}{5^2C_2}}{\frac{5^2C_2}{2}}$$
15. Sol. A -, First ticket is perfect square B -, Second ticket to be perfect square B -, Second ticket to be perfect square $P\left(\frac{B}{A}\right)_{=} = \frac{\left(\frac{5}{25}\right)\left(\frac{4}{24}\right)}{\left(\frac{5}{25}\right)(1)} = \frac{4}{24} = \frac{1}{6}$
16. Sol. P (getting composite number) = $\frac{2}{6} = \frac{1}{3}$
Probability,=
$$\frac{5}{5}C_3\left(\frac{1}{3}\right)^3\left(\frac{2}{3}\right)^2 \rightarrow 10\times\frac{1}{27}\times\frac{4}{9} = \frac{40}{243}$$
17. Sol. P (Red) = $\frac{3}{5}$
P (Black) = $\frac{2}{5}$
P (Black) = $\frac{4}{5}C_2\left(\frac{3}{5}\right)^2\left(\frac{2}{5}\right)^2 = \frac{3^32^3}{5^4}$
18. Sol. Sum, 10 -, $4(4, 6), (5, 5), (6, 4)$)
P (getting sum, 10) = $\frac{3}{36} = \frac{1}{12}$
Probability,= $\frac{5}{5}C_3\left(\frac{1}{12}\right)^3\left(\frac{11}{12}\right)^2$
Probability,= $\frac{5}{5}C_3\left(\frac{1}{12}\right)^3\left(\frac{11}{12}\right)^2$
19. Sol. Probability, = $\frac{3}{5}C_3\left(\frac{1}{12}\right)^2\left(\frac{1}{2}\right) = \frac{3}{8}$
20. Sol. (52 weeks) + (2 days extra) $\Rightarrow (SM, MT, TW, WT, TF, FS, SS)$
Probability,= $\frac{2}{7}$
21. Sol. P(AUB) = P(A) + P(B) - P(A \cap B)

 $=\frac{1}{8}+\frac{2}{5}-0=\frac{21}{40}$ $\mathsf{P}(\mathsf{A}/\mathsf{B}) = \frac{\mathsf{P}(\mathsf{A} \cap \mathsf{B})}{\mathsf{P}(\mathsf{B})} \Longrightarrow \mathsf{P}(\mathsf{A} \cap \mathsf{B}) = \frac{2}{3} \times \frac{3}{5} = \frac{2}{5}$ 22. Sol. $P(\overline{A} \cap B) = P(B) - P(A \cap B)$ $\frac{3}{5}$ $\frac{2}{5}$ $\frac{1}{5}$ B₁ → Ball drawn from urn A is red but ball returned to it is black, P(B₁) = $\frac{6}{10} \times \frac{6}{11}$ 23. Sol. $D_1 \rightarrow Ball drawn from urn A is black and ball returned is red, P(D_1) = \frac{1}{10} \times \frac{1}{11}$ Required probability P(R) = P(B_1) × P $\left(\frac{R}{B_1}\right)$ + P(D_1) × P $\left(\frac{R}{D_1}\right)$ $= \frac{6}{10} \times \frac{6}{11} \times \frac{5}{10} + \frac{4}{10} \times \frac{4}{11} \times \frac{7}{10} = \frac{73}{275}$ 24. n (S) = $6 \times 6 \times 6 = 216$ also to get sum of '8' $x_1 + x_2 + x_3 = 7$ where $1 \le x_i \le 6$ Sol. $0 \leq t_1 \leq 4 \implies t_1 + t_2 + t_3 = 4$ $x_i = t_i + 1$ by fictious partition method number of solution of this equation is 6C2 $P = \frac{15}{216} = \frac{5}{72}$ n (E) = 15 $\frac{{}^{21}\mathrm{C}_{11}}{{}^{23}\mathrm{C}_{11}} = \frac{6}{23}$ 25. Sol. Since ten places are vacant. Probability of finding vacant places = 26. Sol. P(Product of digits) = 15 $P(A) = \frac{2}{90} = \frac{1}{45} \qquad \Rightarrow \qquad P(\overline{A}) = \frac{44}{45}$ if 35, 53 \Rightarrow $1 - \left(\frac{44}{45}\right)^3$ Probability= $\Rightarrow q = \frac{2}{3} \Rightarrow p = \frac{1}{3}$ $\frac{np}{npq} = \frac{3}{2}$ 27. Sol. Probability of getting exactly 5 success ${}^6\!C_5 \left(\frac{1}{3}\right)^5$ $p(x=4) = c_4 \left(\frac{1}{2}\right)^{\prime\prime}$ $p(x=5) = {}^{n} c_{5} \left(\frac{1}{2}\right)^{n}$ $p(x=6) = {}^{n} c_{6} \left(\frac{1}{2}\right)^{n}$ \Rightarrow (nC₅)² = nC₄ nC₆ \Rightarrow n = - 1 which is not possible Sol. 28. $E_1 = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$ 29. Sol. $E_2 = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$

 $\begin{array}{l} \therefore n(E_{1}) = 5, n(E_{2}) = 6 \\ \text{Also } n(S) = 6 \times 6 = 36 \\ \text{Now, } P(E_{1}) = \frac{5}{36} \text{ and } P(E_{2}) = \frac{6}{36} = \frac{1}{6} \\ \text{Let E = the event that A wins} \\ \text{Let F = the event that B wins} \\ \text{P(E)} = \frac{5}{36} + \frac{31}{36} \times \frac{5}{6} \times \frac{5}{36} + \frac{31}{36} \times \frac{5}{6} \times \frac{31}{36} \times \frac{5}{6} \times \frac{5}{36} + \frac{30}{61} \\ \text{P(F)} = 1 - P(E) = \frac{\frac{31}{61}}{16} \end{array}$

30. Sol. Unit digit of 3a = 3, 9, 7, 1 Unit digit of 2b = 2, 4, 8, 6

3 ^a		3 ^a	2 ^b	3 ^a			25	25	25	25	25	25	3
3	8	9	2	7	4	⇒	$\overline{100}^{\times}$		— ×	100 +	— ×	(<u>16</u>

Practice Test (JEE-Main Pattern) OBJECTIVE RESPONSE SHEET (ORS)

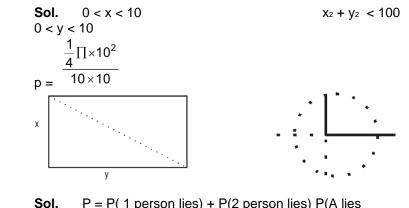
Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

PART - II : PRACTICE QUESTIONS

1*. Sol.
$$P(x_{1}) = \frac{1}{2}$$

 $P(x_{2}) = \frac{1}{4}$
 $P(x_{3}) = \frac{1}{4}$
 $P(x_{3}) = \frac{1}{4}$
 $P(x) = P(E_{1}E_{2}E_{3}) + P(\overline{E}_{1}E_{2}E_{3}) + P(E_{1}E_{2}\overline{E}_{3}) + P(E_{1}E_{2}\overline{E}_{3})$
 $= \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}$
 $P(x) = \frac{1}{4}$
 $P(x) = \frac{1}{4}$
 $P(\frac{x_{1}^{c}}{x}) = \frac{P(x_{1}^{c} \cap x)}{P(x)}$
 $(1) P(\frac{x_{1}^{c}}{x}) = \frac{P(x_{1}^{c} \cap x)}{P(x)}$
 $(2) P(exactly two / x) = \frac{P(exactly two \cap x)}{P(x)}$
 $(2) P(exactly two / x) = \frac{P(x)}{P(x_{2})}$
 $(3) P(x / x_{2}) = \frac{P(x \cap x_{2})}{P(x_{2})} = \frac{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}}{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4}} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}$
 $(3) P(x / x_{2}) = \frac{P(x \cap x_{2})}{P(x_{1})} = \frac{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}}{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}} = \frac{5}{8}$
 $(3) P(x / x_{3}) = \frac{P(x \cap x_{1})}{P(x_{1})} = \frac{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}}{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}} = \frac{7}{16}$
2. Sol. $x + \frac{100}{x} > 50$
 $x = 1Satisfis$
 $= 2^{-w} = \frac{1}{3}$
 $= 3 does 'nt satsfies$
 $= 48 Satifes$
 $= 100 Safies = \frac{53}{53} number$
then no. of x which satisfy given inequation = 55
 $Pro. = \frac{55}{100}$

3.



Sol. P = P(1 person lies) + P(2 person lies) P(A lies first / 2 person lied) + P(3 person lied)
 P(A 1 died first / 3 person lied)

$$= {{}^{n}C_{1} pq^{n-1} \times \frac{1}{n} + {}^{n}C_{1} p^{2}q^{n-2} \times \frac{1}{2} + {}^{n}C_{2} p^{3}q^{n-3} \times \frac{1}{3} + \dots}{pq^{n-1} + {}^{n-1}C_{r-1} p^{2}q^{n-2} \frac{1}{2} + {}^{n}C_{3} p^{3}q^{n-3} \frac{1}{3} + \dots}{pq^{n-1} + {}^{r-2} p^{n-1}C_{r-1} p^{r} q^{n-r} \frac{1}{r}}$$

$$= {{}^{n-1}C_{r-1} p^{2}q^{n-2} \frac{1}{2} + {}^{n}C_{3} p^{3}q^{n-3} \frac{1}{3} + \dots}{pq^{n-1} + {}^{r-2} p^{n-1}C_{r-1} p^{r} q^{n-r} \frac{1}{r}}$$

$$= {{}^{n-1}C_{r-1} p^{2} q^{n-2} \frac{1}{2} + {}^{n}C_{3} p^{3} q^{n-3} \frac{1}{3} + \dots}{pq^{n-1} + {}^{n-1}C_{r-1} p^{r} q^{n-r} \frac{1}{r}}$$

$$= {{}^{n-1}C_{r-1} p^{2} q^{n-2} \frac{1}{2} + {}^{n}C_{3} p^{3} q^{n-3} \frac{1}{3} + \dots}{pq^{n-1} + {}^{n-1}C_{r-1} p^{r} q^{n-r} \frac{1}{r}}$$

$$= {{}^{n-1}C_{r-1} p^{2} q^{n-2} \frac{1}{2} + {}^{n}C_{3} p^{3} q^{n-3} \frac{1}{3} + \dots}{pq^{n-1} + {}^{n-1}C_{r-1} p^{r} q^{n-r} \frac{1}{r}}$$

$$= {{}^{n-1}C_{r-1} p^{2} q^{n-2} \frac{1}{2} + {}^{n}C_{3} p^{3} q^{n-3} \frac{1}{3} + \dots}{pq^{n-1} + {}^{n-1}C_{r-1} p^{r} q^{n-r} \frac{1}{r}}$$

$$= {{}^{n-1}C_{r-1} p^{2} q^{n-r} \frac{1}{r} - {}^{n}C_{r} p^{r} q^{n-r} p^{2} q^{n-r} p^$$

Sol. Person is selected if either he passes all the tests or exactly two of the tests.
 P(passing all the tests) = p.p.p = p₃
 Prob. of passing exactly 2 of the tests = P(first two tests) + P(first and third tests) + P(second and third tests)

$$= p.p.(1-p) + p.(1-p). \frac{p}{2} + (1-p) \frac{p}{2}.p$$

$$= p_{2}(1-p) + \frac{1}{2}p_{2}(1-p) + p_{2}(1-p)$$

$$= 2p_{2}(1-p)$$
Thus, required probability = $p_{3} + 2p_{2}(1-p) = 2p_{2} - p_{3}.$

6. Sol. Here,

P(A) = probability that A will hit B = $\frac{2}{3}$ P(B) = probability that A will hit A = $\frac{1}{2}$ P(C) = probability that C will hit A = $\frac{1}{3}$ P(E) = probability that A will be hit P(E) = 1 - P(B). P(C) = 1 - $\frac{1}{2} \cdot \frac{2}{3} = \frac{2}{3}$ Probability if A is hit by B and not by C.

- $P(B \cap \overline{C}/E)$ ⇒ $\frac{P(B).P(\overline{C})}{P(E)} = \frac{\frac{1}{2}.\frac{2}{3}}{\frac{2}{2}} = \frac{1}{2}$ ⇒ Statement-1 If $P(H_i \cap E) = 0$ for some i, then 7. Sol. $P\left(\frac{H_{i}}{E}\right) = P\left(\frac{E}{H_{1}}\right) = 0$ If $P(H_i \cap E) \neq 0$ for $\forall i = 1, 2, \dots, n$, then $P\left(\frac{H_{i}}{E}\right) = \frac{P(H_{i} \cap E)}{P(H_{i})} \times \frac{P(H_{i})}{P(E)} = \frac{P\left(\frac{H_{i}}{E}\right) \times P(H_{i})}{P(E)} > P\left(\frac{E}{H_{i}}\right), P(H_{i})$ [as 0 < P(E) < 1] Hence statement -1 may not always be true. Statement-2 Clearly, $H_1 \cup H_2 \cup \dots \cup H_n = S$ (sample space) P(H₁) + P(H₂) ++ P(H_n) = 1 8. Sol. Here, n(s) = 1 length of the interval [0, 5] = 5; $n(E) = length of the interval <math>\leq [0, 5]$ in which P belongs such that the given equation has real roots. Now $x_2 + Px + \frac{1}{4}(P + 2) = 0$ will have real roots if $P_2 - 4.1$. 4 $(P + 2) \ge 0$ $\Rightarrow P_2 - P - 2 \ge 0$ \Rightarrow (P + 1) (P - 2) \ge 0 \Rightarrow P \le - 1 or P \ge 2 But P ∈ [0, 5]. So, E = [2, 5] \therefore n(E) = length of the interval [2, 5] = 3 \therefore Required Probability = $\overline{5}$ Here, $P(A \cup B).P(A' \cap B')$ 9. Sol. $\Rightarrow \{P(A) + P(B) - \frac{P(A \cap B)}{P(A'), P(B')}\}$ Since A, B are independent \Rightarrow A', B' are independent} = P(A). P(A'). P(B') + P(B).P(A') . P(B')(1) \leq P(A). P(B') + P(B). P(A') {Since in (1), $P(A') \le 1$ and $P(B') \le 1$ } $\Rightarrow \frac{\mathsf{P}(\mathsf{A} \cup \mathsf{B})}{\mathsf{P}(\mathsf{A}' \cap \mathsf{B}')} \le \mathsf{P}(\mathsf{A}) \cdot \mathsf{P}(\mathsf{B}') + \mathsf{P}(\mathsf{B}) \cdot \mathsf{P}(\mathsf{A}')$ $\Rightarrow P(A \cup B) \cdot P(A' \cap B') \leq P(C)$ $\{as P(C) = P(A). P(B') + P(B). P(A')\}$ 10. Sol. $\overline{P = 1 - P(A \cup B \cup C)}$
 - $= 1 P(A) P(B) P(C) + P(A \cap B) + P(B \cap C) +$

- $$\begin{split} \mathsf{P}(\mathsf{C} \cap \mathsf{A}) &- \mathsf{P}(\mathsf{A} \cap \mathsf{B} \cap \mathsf{C}) \\ &= \mathsf{P}(\mathsf{A} \cap \mathsf{B} \cap \mathsf{C})_1 \mathsf{P}(\mathsf{A}) \mathsf{P}(\mathsf{B}) \mathsf{P}(\mathsf{C}) + \mathsf{P}(\mathsf{A} \cap \mathsf{B}) + \\ \mathsf{P}(\mathsf{B} \cap \mathsf{C}) + \mathsf{P}(\mathsf{C} \cap \mathsf{A}) \\ &= \frac{\mathsf{P}(\overline{\mathsf{A}} \cup \overline{\mathsf{B}} \cup \overline{\mathsf{C}})}{\mathsf{P}(\mathsf{A}) \mathsf{P}(\mathsf{B}) \mathsf{P}(\mathsf{C}) + \mathsf{P}(\mathsf{A} \cap \mathsf{B}) + \\ \mathsf{P}(\mathsf{B} \cap \mathsf{C}) + \mathsf{P}(\mathsf{C} \cap \mathsf{A}) \end{split}$$
- 11. Sol.

- 12. Sol. $P = 1 P(A \cap B \cap C)$ $= 1 - P(A \cup B \cup C) + P(A) + P(B) + P(C)$ $- P(A \cup B)$ $= 1 - P(A \cup B \cup C)_{\circ} + P(A) + P(B) + P(C)$ $- P(A \cup B) - P(B \cup C) - P(C \cap A)$
- **13.** Sol. Total number of ways = M_n , number of favorable cases = n!
- **14.** Sol. Total number of ways = $M_{+n-1}C_{M-1}$, number of favorable cases = 1
- **15.** Sol. Total number of ways = ${}_{M}C_{n}$, number of favorable cases = 1

16. Sol. P(white) = P (H \circ white) + P(T \circ white)

$$= \frac{\frac{1}{2} \cdot \left\{ \frac{3}{5} \times 1 + \frac{2}{5} \cdot \frac{1}{2} \right\} + \frac{1}{2} \cdot \left\{ \frac{{}^{3}C_{2}}{{}^{5}C_{2}} \times 1 + \frac{{}^{2}C_{2}}{{}^{5}C_{2}} \times \frac{1}{3} + \frac{{}^{3}C_{1} \cdot {}^{2}C_{1}}{{}^{5}C_{2}} \times \frac{2}{3} \right\}}{\frac{1}{2} \times \frac{8}{10} + \frac{1}{2} \times \left\{ \frac{3}{10} + \frac{1}{30} + \frac{12}{30} \right\} = \frac{4}{10} + \frac{1}{2} \times \frac{22}{30} = \frac{23}{30}}$$

17. Sol.
P(Head/White) =
$$\frac{P(\text{Head} \cap \text{white})}{P(\text{white})} = \frac{\frac{2}{23}}{\frac{23}{30}} = \frac{\frac{4}{10}}{\frac{23}{30}} = \frac{\frac{12}{23}}{\frac{23}{30}} = \frac{\frac{12}{23}}{\frac{23}{30}} = \frac{12}{23}$$

18. Sol. $ax + by = 0$ $a, b, c, d \in \{0, 1\}$
 $cx + dy = 0$
system has unique solution if and only if $ad - bc \neq 0$
For which $a = d = 1$ and $bc = 0 \Rightarrow 3$ combination
Similarly if $bc = 1$, $ad = 0 \Rightarrow 3$ combination
Total choice for a, b, c, d is 24
Hence probability of unique solution is $\frac{6}{16} = \frac{3}{8}$. Statement-2 is also true since $(0, 0)$ is a solution
Thus 'B' is correct
Aliter : $ad - bc \neq 0$
If (i) $ad = 1, bc = 0$
(ii) $ad = 0, bc = 1$

Quadratic Equations

 $P(ad = 1) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}; P(bc = 0) = 1 - P(bc = 1) = 1 - \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}$ 3 P(ad = 1 and bc = 0) = $\frac{3}{16}$; P(ad = 0 and bc = 1) = $\frac{3}{16}$ *.*: 3 required probability = $\frac{3}{8}$ ÷ 19. Sol. Let x, y, z be probability of E1, E2, E3 respectively $x(1-y)(1-z) = \alpha \qquad \Rightarrow \qquad y(1-x)(1-z) = \beta$ ⇒ (1-x)(1-y)(1-z) = Pz(1 - x)(1 - y) = y⇒ ⇒ $\frac{x}{z} = 6$ x = 6z ⇒ ⇒ Putting in the given relation we get x = 2y and y = 3z20. Sol. Three squares are shown as below Ist row 1 11nd 2 row $\frac{1}{3} \times \frac{2}{7} \times \frac{3}{6} + \frac{1}{3} \times \frac{2}{7} \times \frac{3}{6} = \frac{2}{21}$ 3 IIIrd row digit 3 may come only in Ist and IInd rows. In second square if ? is replaced by 3 then probability is 1/3.

Case-1: We assume that first square contains digit 3 in first row :: and corresponding to it in third square digit 3 may come in II_{nd} row \therefore Case-2: We assume that first square contains digit 3 in second row ... probability is 2/7 and corresponding to it in third square digit 3 may come in I_{st} row \therefore

- probability is 2/7 probability is 3/6
- probability is 3/6

Hence probability = $\frac{1}{3} \times \frac{2}{7} \times \frac{3}{6} + \frac{1}{3} \times \frac{2}{7} \times \frac{3}{6} = \frac{2}{21}$