Trigonometry

Max. Time : 1 Hr.

Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks : 120 Important Instructions :

- 1. The test is of 1 hour duration and max. marks 120.
- 2. The test consists **30** questions, **4 marks** each.
- **3.** Only one choice is correct **1 mark** will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 4. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.

1.	If $\sin\theta + \cos\theta = m$ and (1) $2n = m (n_2 - 1)$	$\sec\theta + \csc\theta = n$, then (2) $2m = n (m_2 - 1)$	(3) 2n = m (m ₂ - 1)	(4) 2m = n₂ (n − 1)
2.	The ratio of the greates $\frac{1}{4}$ (1)	st value of 2– cosx + sin ₂ (2) $\frac{9}{4}$	x to its least value is (3) $\frac{13}{4}$	(4) $\frac{7}{4}$
3.	Which of the following	is correct ? <u>2</u>		
	(1) tan 1 = tan 2	(2) $\tan 1 = \frac{3}{3} \tan 2$	(3) tan 1 > tan 2 1	(4) tan 1 < tan 2
4.	The smallest positive a	ingle satisfying the equat	$\sin \sin_2 \theta - 2 \cos \theta + \overline{4} =$	0 is
	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$
	(1) 2	(2) 3	(3) 4	(4) 6
			min	
5.	The most general value	e of θ for which sin θ – co	$bs\theta = a \in R$ (1, $a_2 - 6a + \pi$	10) are given by
	(1) n π + (- 1) _n $\frac{\pi}{4} - \frac{\pi}{4}$	(2) n π + (- 1) _n $\frac{\pi}{4} + \frac{\pi}{4}$	(3) $2n\pi + \frac{\pi}{4}$	(4) (4n + 1) $\frac{\pi}{2}$
			π	
6.	The least difference be 4 cosx (2 – 3sin ₂ x) + (c	etween the roots, in the fi $\cos 2x + 1) = 0$, is	rst quadrant ($0 \le x \le \overline{2}$)	of the equation
	$\underline{\pi}$	$\frac{\pi}{2}$	<u></u>	π
	(1) 6	(2) 4	(3) 3	(4) 2
7.	If tan A = $\frac{a}{a+1}$ and ta	n B = $\frac{1}{2a+1}$, then the va	alue of A + B is	
		$\frac{\pi}{}$	$\frac{\pi}{2}$	<u></u>
	(1) 0	(2) 2	(3) 3	(4) 4
^				

MATHEMATICS

Trigonometry

8.	Which of the following i (1) sin 15°	s rational number ? (2) cos 15° 1	(3) sin 15° cos 15°	(4) sin 15º cos 75°						
9.	If sin(A + B + C) = 1 , ta (1) A = 90°, B = 60°, C (3) A = 60°, B = 30°, C	an $(A - B) = \sqrt[]{\sqrt{3}}$ and sec = 30° = 0°	c (A + C) = 2, then (2) A = 120°, B = 60°, C = 0° (4) A = 45°, B = 30°, C = 60°							
10.	The height of a house s window from the base (1) $4\sqrt{3}$	subtends a right angle at of the house is 60°. If the (2) $6\sqrt{3}$	the opposite wide windo width of the road is 6m (3) $8\sqrt{3}$	w. The angle of elevation of the , then the height of the house is (4)10 $\sqrt{3}$						
11.	The general value of θ , obtained from the equation $\cos 2\theta = \sin \alpha$, is									
	(1) $\theta = n\pi \pm \left(\frac{\pi}{4} - \frac{\alpha}{2} \right)$	(2) $\theta = \frac{n\pi + (-1)^n \alpha}{2}$	(3) $\theta = 2n\pi \pm \left(\frac{\pi}{2} - \alpha\right)$	$(4) 2\theta = \frac{\pi}{2} - \alpha$						
12.	Value of $\frac{\cos 2\pi}{7} + \cos \frac{4\pi}{7}$	$\frac{\pi}{7} + \cos\frac{8\pi}{7} =$								
	(1) 1	(2) 2	(3) –1	$(4) -\frac{1}{2}$						
13.	The general solution of	$\sin x + \cos x = \sqrt{2} \cos A$	is							
	(1) x = 2n $\pi + \frac{\pi}{4} \pm A$	(2) x = 2n $\pi + \frac{\pi}{3} \pm A$	(3) x = 2n π + $\frac{\pi}{6} \pm A$	(4) $x = n\pi + \frac{\pi}{2} \pm A$						
14.	The solution set of (2co (1) $\left\{\frac{\pi}{3}\right\}$	(2) $\begin{cases} x-1 & (3+2\cos x) = 0 \\ \frac{\pi}{3}, \frac{5\pi}{3} \end{cases}$	n the interval $0 \le x \le 2\pi$, (3) $\left\{\frac{\pi}{3}, \frac{5\pi}{3}, \cos^{-1}(-\frac{3}{2})\right\}$	is $\binom{\pi}{6}, \frac{11\pi}{6}$						
15.	If $\frac{\sin(x+y)}{\sin(x-y)} = \frac{a+b}{a-b}$, t	hen $\frac{\frac{\tan x}{\tan y}}{\frac{a}{b}}$ is equal to	(3) ah	$(a) \frac{a+b}{a-b}$						
		(2)	(5) 25	(+)						
16.	The value of $\sqrt{3}$ cosec (1) 2	20°– sec20° is (2) 1	(3) 4	(4) – 4						
17.	If sinA = $3sin(A+2B)$, th (1) - $2cosB$	en tan(A+B) is equal to (2) – 2tanB	(3) cot B	(4) – 2						
18.	If $\tan \theta = -\frac{4}{3}$, then the (1) $-\frac{4}{5} \lim_{but \neq} \frac{4}{5}$ $\tan 70^\circ - t$	value of sin θ is (2) $\frac{-4}{5}$ or $\frac{4}{5}$ an 20°	(3) $\frac{4}{5}$ but $\neq -\frac{4}{5}$	(4) $\frac{1}{5}$						
19.	The value of tan 50 (1) 2)° is equal to (2) 1	(3) 0	(4) 3						

MATHEMATICS

Trigonometry

	Practice Test (JEE-Main Pattern)									
	(1) 2	(2) $\overline{e^x + e^{-x}}$	(3) 2	$(4) \ \overline{e^x + e^{-x}}$						
50.	$e^{x} + e^{-x}$	2	$e^{x} - e^{-x}$	$e^{x} - e^{-x}$						
30.	If $\tan \theta + \sec \theta = e_{x}$ the	en cosθ equals								
	(3) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\beta}{2}$	$\frac{\gamma}{2} = -\tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2}$	(4) none of these							
	(1) $\tan\frac{\alpha}{2} + \tan\frac{\beta}{2} + \tan\frac{\beta}{2}$	$\frac{\gamma}{2} = \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$	(2) $\tan\frac{\alpha}{2} + \tan\frac{\beta}{2} + \tan\frac{\beta}{2}$	$\frac{3}{2}$ tan $\frac{\gamma}{2}$ + tan $\frac{\gamma}{2}$ tan $\frac{\alpha}{2}$ = 1						
29.	If $\alpha + \beta + \gamma = 2\pi$, then									
28.	Range of value of 13 + (1) [0,26]	$12 \sin \frac{10}{2} + 5\cos \frac{10}{2}$ is (2) (0,26)	; (3) [–13,13]	(4) [13, 26]						
	(.).	(_) J 11θ 11θ								
27.	Total number of solutio	n of $16^{\sin^2 x} + 16^{\cos^2 x} = 10$ (2) 8	in $x \in [0, 3\pi]$, is equal to (3) 12	o (4) 10						
	(1) 16	(2) 32	(3) 64	$(4)^{-\frac{1}{16}}$						
26.	Value of $\frac{\cos\frac{\pi}{33}\cos\frac{2\pi}{33}}{1}$	$\cos\frac{4\pi}{33}\cos\frac{8\pi}{33}\cos\frac{16\pi}{33}$	1	1						
	$(1) \ \theta = \frac{n\pi}{7} + \frac{\pi}{14}$	(2) $\frac{n\pi}{7} + \frac{\pi}{5}$	(3) $\frac{n\pi}{7} + \frac{\pi}{2}$	$(4) \frac{n\pi}{7} + \frac{\pi}{3}$						
25.	General solution of tan	$5\theta = \cot 2\theta$ is	\-/							
	(1) 6	(2) 1	$(3) \frac{1}{6}$	(4) 3						
24.	If in a Δ ABC, tanA + ta	nB + tanC = 6 then the v	value of cotA . cotB . cotO	C is equal to.						
۷۵.	(1) $x_2 - 6x + 1 = 0$	(2) $x_2 + 6x + 1 = 0$	(3) $x_2 - 6x - 1 = 0$	(4) $x_2 + 6x - 1 = 0$						
າາ	$\frac{1}{3}$ then the m	adratic equation where	roots are tap $\frac{\theta}{2}$ and set	$\frac{\theta}{2}$ in						
22.	If $\sin\theta + \csc\theta = 2$ the (1) 2	en sin _n θ + cosec _n θ is equ (2) 2 _n	ial to (3) 2 _{n-1}	(4)						
	(1) 0	(2) 1	(3) √3	(4) 2						
21.	The value of sin10° + s	sin20° + sin30° ++sin3	60° is equal to							
	(1) 1 + cot₂θ	(2) cot₄θ	(3) cot₃θ	(4) 2 cotθ						
20.	$\frac{3\cos\theta + \cos 3\theta}{3\sin\theta - \sin 3\theta}$ is equal to									

OBJECTIVE RESPONSE SHEET (ORS)

<u>Trigonometry</u>

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

PART - II : PRACTICE QUESTIONS

1. If $\sin \alpha \sin \beta - \cos \alpha \cos \beta + 1 = 0$, then the value of $1 + \cot \alpha \tan \beta$ is (1) 1 (2) - 1 (3) 2 (4) 0

1

2. In a triangle ABC, angle A is greater than angle B. If the measures of angles A and B satisfy the equation $3 \sin x - 4 \sin_3 x - k = 0, 0 < k < 1$, then the measure of angle C is :

(1)
$$\frac{\pi}{3}$$
 (2) $\frac{\pi}{2}$ (3) $\frac{2\pi}{3}$ (4) $\frac{5\pi}{6}$
The positive integral value of n > 3 satisfying the equation

$$\frac{1}{\sin\left(\frac{\pi}{n}\right)} = \frac{1}{\sin\left(\frac{2\pi}{n}\right)} + \frac{1}{\sin\left(\frac{3\pi}{n}\right)}$$

(1) 5 (2) 6 (3) 7 (4) 8
(1) 5 (2) 6 (3) 7 (4) 8
(1) 5 (2) 6 (6 + (m-1)) \pi (4) + (m - 1)) \pi (4) = 4\sqrt{2}
(1) $\frac{\pi}{4}$ (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{3}$ (4) $\frac{5\pi}{12}$

5. $\cos (\alpha - \beta) = 1$ and $\cos (\alpha + \beta) = e^{\alpha}$, where $\alpha, \beta \in [-\pi, \pi]$. Number of pairs (α, β) which satisfy both the equations is/are (1) 0 (2) 1 (3) 2 (4) 4

6. Let $\theta, \varphi \in [0, 2\pi]$ be such that $2\cos\theta(1 - \sin\varphi) = \sin_2\theta \left(\tan\frac{\theta}{2} + \cot\frac{\theta}{2}\right) \cos\varphi - 1$, $\tan(2\pi - \theta) > 0$ and $1 < \sin\theta < -\frac{\sqrt{3}}{2}$. Then value of φ is $(1) \ 0 < \varphi < \frac{\pi}{2}$ (2) $\frac{\pi}{2} < \varphi < \frac{4\pi}{3}$ (3) $\frac{4\pi}{3} < \varphi < \frac{3\pi}{2}$ (4) $\frac{3\pi}{2} < \varphi < 2\pi$

(1) $0 < \varphi < \overline{2}$ (2) $\overline{2} < \varphi < \overline{3}$ (3) $\overline{3} < \varphi < \overline{2}$ (4) $\overline{2} < \varphi < 2\pi$ 7. The number of all possible triplets (a₁, a₂, a₃) such that : a₁ + a₂ cos 2x + a₃ sin₂x = 0 for all x is (1) 0 (2) 1 (3) 2 (4) infinite

8. For $x \in (0, \pi)$, the equation sinx + 2 sin 2x - sin 3x = 3 has (1) infinitely many solutions (3) one solution (2) three solutions (4) no solution

9. Number of ordered pairs (a, x) satisfying the equation $\sec_2 (a + 2) x + a_2 - 1 = 0$ where $a \in R$ and $-\pi < x < \pi$ is

3.

Trigonometry

	(1) 2`	(2) 1	(3) 3	(4) Infinite					
10.	Number of solution of t	he equation $x = 4 \sin x$ w	when $x \in [0, 2\pi]$ is						
	(1) 1	(2) 2	(3) 3	(4) 4					
11.	I ne number of integral values of a for which the equation $\cos 2x + a \sin x = 2a - 7$ possesses a solution is								
	(1) 2	(2) 3	(3) 4	(4) 5					
12.	The equation sin₀x + co	os₀x = a₂ has real solution	n if						
		$\begin{bmatrix} -1 & -\frac{1}{2} \end{bmatrix} \cup \begin{bmatrix} -1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{pmatrix} -1 \\ -1 \end{bmatrix}$						
	(1) a ∈ (–1, 1)	(2) $a \in \begin{bmatrix} 1 & 2 \end{bmatrix} \subset \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	$2^{(3)} a \in (2^{(2)} 2)$) (4) a ∈ (–2, 2)					
13.	If the area of circle is A	and area of regular per	ntagon inscribed in the o	circle is A ₂ , then the ratio of area					
	of two is								
	$\frac{2\pi}{5} \sec\left(\frac{\pi}{12}\right)$	$\frac{\pi}{5} \sec\left(\frac{\pi}{12}\right)$	$\frac{\pi}{10} \sec\left(\frac{\pi}{10}\right)$	$\frac{\pi}{12}$ sec $\left(\frac{\pi}{2}\right)$					
	(1) 5 (10)	(2) 5 (10)	(3) 10 (10)	(4) 10 (5)					
14.	A regular pentagon and	d a regular decagon have ا	e the same perimeter, tl	he ratio of their areas is					
	(1) 3: √ ⁵	(2) 1 : √ ⁵	(3) 2: √ ⁵	(4) 2 : √ ⁵					
			$\frac{\sec^2 \frac{x}{2}}{2}$						
15.	General solution of equ	uation 1 + 2 cosec x =	2 is						
	(A) -	(0) 0 4	$\frac{\pi}{2}$	$\frac{\pi}{2}$					
40	(1) $n\pi$, $n \in I$ The number of distinct	(2) $2n\pi$, $n \in I$	(3) 2 nπ − ∠, n ∈ l	(4) 2nπ + ∠ , n ∈ l					
16.	5	solutions of the equation	1						
	$\frac{2}{4}$	$n_4 x + cos_2 x + sin_2 x - 2i$	n the interval [0, 2π] is						
	(1) 8	(2) 4	(3) 6	(4) 2					
17.	All solutions of the equ	uation 2 sin θ + tan θ = 0	are obtained by taking	all integral values of m and n in:					
	$\frac{2\pi}{2}$		$\frac{2\pi}{2}$						
	(1) 2nπ + ³ , n ∈ I		(2) n π or 2m $\pi \pm 3$	where n, $m \in I$					
	$\frac{\pi}{2}$	_	$\frac{\pi}{2}$						
	(3) n π or m $\pi \pm 3$ whe	ere n, m ∈ I	(4) n π or 2m $\pi \pm 3$ w	here n, m \in I					
18.	Total number of solutio	ons of equation sinx . tan	$4x = \cos x$ belonging to	(-π, 2π) are :					
	(1) 4	(2) 7	(3) 8	(4) 15					
19*.	The general value of θ	satisfying the equation 2	$2\cos 2\theta + \sqrt{2}\sin \theta = 2$ is	6 –					
			$\frac{\pi}{2}$						
	(1) nπ , n ∈ I		(2) nπ + (−1) _n ^{·3} , n ∈	I					
	$\frac{\pi}{c}$		$\frac{\pi}{4}$						
	(3) nπ + (−1) _n ⁶ , n ∈ I		(4) nπ + (−1) _n 4 , n ∈	I					
		$\frac{\sqrt{3}}{2}$							
20*.	General solution of the	equation $2 \sin x - \cos x$	$sx = cos_2 x$ is :						
	(4) (2 4) - 1		$\frac{\pi}{3}$						
	$(1) x = (2n + 1)\pi$, $n \in I$		(2) $x = 2n\pi \pm 3$, $n \in 1$	1					
	(2) \times $0 \rightarrow \frac{\pi}{4}$	т	$(4) \times 2n = \frac{\pi}{6} = -$	т					
	$(3) x = 2 \operatorname{nit} \pm \forall, n \in \mathbb{R}$		$(4) X = 2 \Pi \Pi \pm \circ, \Pi \in$	1					
	APSP Ansv	vers							
									

Trigonometry

						PA	RT - I						
1. 8. 15. 22. 29.	(2) (3) (2) (1) (1)	2. 9. 16. 23. 30.	 (3) (3) (1) (2) 	3. 10. 17. 24.	(3) (3) (2) (3)	4. 11. 18. 25.	(2) (1) (2) (1)	5. 12. 19. 26.	(2) (4) (2) (2)	6. 13. 20. 27.	(1) (1) (3) (3)	7. 14. 21. 28.	(4) (2) (1) (1)
						PA	RT - II						
1.	(4)	2.	(3)	3.	(3)	4.	(4)	5.	(4)	6.	(2)	7.	(4)
8.	(4)	9.	(3)	10.	(2)	11.	(4)	12.	(2)	13.	(1)	14.	(4)
15. g	(3)	16.	(1)	17.	(2)	18.	(4)	19.	(1)	20*.	(1, 2)		