MATHEMATICS

Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

1.	Sol.	$4 \times 5 = 20$ ways							
2.	Sol.	1 ! + 2 ! + 3 ! + 4 ! + 5 ! + 6 ! = 1 + 2 + 6 + 24 + 120 + 720 = 873							
3.	Sol.	$_{10}C_4 = \frac{10 \times 9 \times 8 \times 7}{24} = 210$							
4.	Sol. selectio	Remaining = 16 on of $9 = {}_{16}C_9$							
5.	Sol. ways to	Total ways = $2_6 = 64$ get fail = $64 - 1 = 63$							
6.	Sol.	No of ways = ${}_{10}C_3 + {}_{8}C_5 = 120 + 56 = 176$							
7.	Sol.	No. of gifts = $({}_{10}C_2) \times 2$							
8.	Sol.	${}_{8}C_{2}-2$. ${}_{4}C_{2}+2=28-12+2=18$							
9.	Sol. $5C_3 - (3C_3) \times 2 = 10 - 2 = 8$								
10.	Sol. n₂ − 3n (n −12)	$nC_2 - n = 54 \Rightarrow \frac{n(n-1)}{2} - n = 54 \Rightarrow n(n-3) = 108$ - 108 = 0 $(n + 9) = 0 \Rightarrow n = 12$							
11.	Sol.	No of ways = 1							
12.	Sol.	Total ways = ${}_{10}C_7 \cdot 7! = {}_{10}P_7$							
13.	Sol.	Total ways = ${}_{20}C_2 \times 1 \times 18! \Rightarrow \frac{20 \times 19}{2} \times 18! \Rightarrow 10(19!)$							
14.	Sol.	Ways = $({}_{2}C_{1} \times {}_{13}C_{10}) \times (11!)$							
15.	Sol.	Number of ways = $1 \times 4! = 24$							
16.	Sol.	Total ways = 9!							
17.	Sol.	Total No. of ways = $(1C_1) \times 1 \times 10!$							

18. Sol. beads are identical There is only one way to arrange 19. Sol. Total ways = 7! 20. Sol. C, R, E, A, 2T, 2I, V, Y 9! 10! Total words = $\overline{2!2!}$, words starting with c \Rightarrow $\overline{2!2!}$ 9! 9(9!) 10! Required words = $\frac{2!2!}{2!2!} - \frac{2!2!}{2!2!} = \frac{2!2!}{2!2!}$ 21. Sol. No. of ways $= 3 \times 5 \times 4 = 60$ Total numbers = - - - 0 + - - - 2 or 4 22. Sol. $= 6 \times 5 \times 4 \times 1 + 5 \times 5 \times 4 \times 2$ = 120 + 200 = 320C, C, E, I, L, R 23. Sol. C C _ _ _ _ = 4! = 24 C E _ _ _ _ = 4! = 24 CIC _ _ _ _ = 3! = 6 CIE _ _ _ _ = 3! = 6 CIL ____ = 3! = 6 CIRCEL = 1 CIRCLE = 1 Total = 68Total ways = $4 \times 4 \times 4 \times 4 \times 4 = 4_5$ 24. Sol. 25. Sol. $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ ways = $20 + 4C_4 = 24C_4$ 15! Total ways = $(5!)^3 3! \times 3!$ 26. Sol. 27. No of ways $= 10+3C_3 = 13C_3$ Sol. Now of ways = 1 correct + 3 incorrect 28. Sol. $= {}_{4}C_{1} \times 1$ (dearrangement of 3) $= 4 \times 1 \times D_3 = 4 \times 1 \times (2) = 8$ 29. Sol. Ways = $5 \times 3 \times 6 = 90$ $1000 = 2_3 \times 5_3$ 30. Sol. Total divisors $= 4 \times 4 = 16$

Practice Test (JEE-Main Pattern)

Que.	1	2	3	4	5	6	7	8	9	10				
Ans.														
Que.	11	12	13	14	15	16	17	18	19	20				
Ans.														
Que.	21	22	23	24	25	26	27	28	29	30				
Ans.														

OBJECTIVE RESPONSE SHEET (ORS)

PART - II : PRACTICE QUESTIONS

1. Sol. $S = \{1, 2, 3, 4\}$ Each element can be put in 3 ways either in subsets or we don't put in any subset. 3>

$$\times 3 \times 3 \times 3 - 1$$

2 So total number of unordered pairs = + 1 = 41. [Both subsets can be empty also]

2. Sol.
$$T_{k} = k.2_{n+1-k} \text{ and } S_{n} = \left(\frac{n+1}{4}\right) \left(2^{n+1} - n - 2\right)$$

Now, $S_{n} = \sum_{k=1}^{n} k.2^{n+1-k} \sum_{k=1}^{n} k.2^{-k}$
 $S_{n} = 2^{n+1}.2.\left[1 - \frac{1}{2^{n}} - \frac{n}{2^{n+1}}\right]$ (sum of A.G.P.)
 $\left(\frac{n+1}{4}\right) \left(2^{n+1} - n - 2\right)$
 $= 2. [2_{n+1} - 2 - n]$
 $\Rightarrow \frac{n+1}{4} = 2 \Rightarrow n = 7$

3. Sol. maximum size of square can be 8 x 8

$$\sum_{r=1}^{8} (16-r)(9-r) = \sum_{r=1}^{8} (r^2 - 25r + 144) = 456$$

so required no. of square be =

- 4. Sol. First fill 3 places by 1,2,3 in 5P3ways and then remaining one in 7 x 7 ways so total no. of ways = ₅P₃ x 7 x 7 = 2940
- 5. Sol. First we select 3 length from the given 6 length so the no. of ways = ${}_{6}C_{3}$ But these some pair i.e. (2, 3, 7), (2, 3, 6), (2, 3, 5) (2, 4, 6), (2, 4, 7), (2, 5, 7), (3, 4, 7) are not form a triangle so that total no. of ways is $_6C_3 - 7$ ways

6. Sol.

There are 2M, 2T, 2A and 1 H, E, I, C, S

First find the number of ways if odd's no. position place be filled is 5P3 = 60 If even place words is same i.e no. of ways = 3 Now Case I Case II If even place words is different i.e no. of ways = ${}_{3}C_{2} \times 2! = 6$ Hence total no. of arragment is $60 \times (3 + 6) = 540$ 7. Sol. First we select n grand children from 2n grand children is 2n**C**n Now arrangement of both group is n! x n! Rest all (m + 1) place where we occupy the grandfather and m sons but grandfather refuse the Now sit to either side of grand children so the out of m - 1 seat one seat can be selected Now required number of sitting in $2nCn \times n! \times n! \times (m-1)C1$. m! (2n)! $= n! \times n! \times n! \times n! \times (m-1)C_1 . m!$ = 2n ! . m ! . (m – 1) 4! 4! 21 2! 2! 2! 2! = 144 8. Sol. Number of words = ${}_{8}C_{4} 2! = 840$ Sol. 9. 5! Number of words = $2!_{6}C_{2} = 900$ 10. Sol. 11. Sol. ALASKA 5! 120 Total number of arrangement is $\overline{3!} = \overline{6} = 20$ 12. Sol. Required sum $= 3! \times 20 \times (1111)$ = 133320COMPREHENSION

13. Sol. <u>1</u>------ <u>1</u> # a_{n-1} ------ <u>1</u> <u>0</u> # a_{n-2} So (1) choice is correct consider (2) choice $c_{17} \neq c_{16} + c_{15}$ $c_{15} \neq c_{14} + c_{13}$ is not true consider (3) choice $b_{17} \neq b_{16} + c_{16}$ $a_{16} \neq a_{15} + a_{14}$ is not true consider (4) choice $a_{17} = c_{17} + b_{16}$

 $a_{17} = a_{15} + a_{15}$ which is not true Aliter 1 0 1 a_{n-2} 1 1 a_{n-1} using the Recursion formula $a_n = a_{n-1} + a_{n-2}$ Similarly $b_n = b_{n-1} + b_{n-2}$ and $c_n = c_{n-1} + c_{n-2}$ ∀ n ≥ 3 and $a_n = b_n + c_n$ ∀ n ≥ 1 so $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, $a_4 = 5$, $a_5 = 8$ $b_1 = 1$, $b_2 = 1$, $b_3 = 2$, $b_4 = 3$, $b_5 = 5$, $b_6 = 8$ $c_1 = 0$, $c_2 = 1$, $c_3 = 1$, $c_4 = 2$, $c_5 = 3$, $c_6 = 5$ using this $b_{n-1} = c_n \quad \forall n \ge 2$ 14. Sol. $b_6 = a_5$ a₅ = <u>1</u> - - - <u>1</u> <u>1</u> - - - <u>0</u> ${}_{3}C_{0} + {}_{3}C_{1} + 1 + {}_{2}C_{1} + 1$ 1 + 3 + 1 + 2 + 14 + 4 = 815. Sol. 3 official out of 8 can be selected by ${}_{8}C_{3} = 56$ ways 2 non-official out of 4 can be selected in $_4C_2 = 6$ ways required number of committees are $56 \times 6 = 336$. :. 16. Two non-officials and 3 officials i.e. Sol. ${}_{4}C_{2} \times {}_{8}C_{3} = 6 \times 56 = 336.$ Three non-official and 2 officials $_{4}C_{3} \times _{8}C_{2} = 4 \times 28 = 112$. Four non-officials and 1 official ${}_{4}C_{4} \times {}_{8}C_{1} = 1 \times 8 = 8$ Total 336 + 112 + 8 = 456. 17. Sol. Required no. of ways $= 12 - 1C_5 = 11C_5 = 462$ 18. In the word RESONANCE there are 9 letters. Sol. Consonants (5), 1R, 1S, 1C and 2N Vowels (4), 2E, 1O, 1A total even places 4; 4! No. of ways arranging vowels in even places is 2! = 125! No. of ways arranging consonants in remaining odd places is 2! = 60required number of arrangement = $12 \times 60 = 720 = n$ 91

19. Sol. Required number of arrangements are $\frac{2! 2! 4!}{2! 3!} = 3780$

20. Sol. Now exponents of 5 in 720

$$-\left[\frac{720}{5}\right] + \left[\frac{720}{5^2}\right] + \left[\frac{720}{5^3}\right] + \left[\frac{720}{5^4}\right]$$

= 144 + 28 + 5 + 1 = 178

ASSERTION / REASONING

21. Ans. (1)

Sol. Here n₂ objects are distributed in n groups, each group containing n identical objects.

(as number of arrangements has to be integer) (n \in I+)