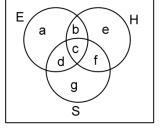
Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

- 1. Sol. Obvious
- 2. Sol. Obvious
- 3. Sol. Obvious
- 4. Sol. Obvious
- 5. Sol. Obvious
- 6. Sol. $n(A \cup B) = n(A) + n(B) n(A \cap B)$ $0 \le n (A \cap B) \le 5$ $7 \le n (A \cup B) \le 12$
- 7. Sol. $A = \{2,3,5,7,11, 13, 17, 19,23\}$ $B = \{4,6,8,9,10,12,14,15,16,18\}$ $n(A \cup B) = 19, n(A \cap B) = 0$ $n(A \cup B') = 9$
- 8. Sol. $A = \phi$ $P(A) = \{\phi\} \Rightarrow n(P(A) = 1)$ $n(P(P(\phi))) = 2^{1}$ $n(P(P(P(\phi)))) = 2^{2} = 4$ $n(P(P(P(P(\phi))))) = 2^{4} = 16$
- 9. Sol. $A' \cup \{(A \cup B) \cap B'\}$ $A' \cup \{(A \cap B') \cup (B \cap B')\}$ $A' \cup (A \cap B') = (A' \cup A) \cap (A' \cup B') = A' \cup B' = (A \cap B)'$
- 10. Sol. a = 18, a + d = 23, c + d = 8 c + f = 8, a + b + c + d = 26 c + d + f + g = 48 a + b + c + d + e + f + g = 100 - 24 = 76 a = 18, d = 5, c = 3, f = 5, b = 0 g = 48 - (3 + 5 + 5) = 35 e = 76 - (18 + 0 + 3 + 5 + 5 + 35) = 10Now b + c + e + f = 0 + 3 + 10 + 5 = 18



11. Sol. $n(2) = \begin{bmatrix} \frac{1000}{2} \end{bmatrix} = 500$

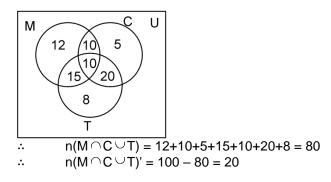
1000 3 n(3) = L = 333 1000 $n(5) = \begin{bmatrix} 5 \end{bmatrix} = 200$ $n(2 \cap 3) = 166, n(3 \cap 5) = 66$ $n(5 \cap 2) = 100 n (2 \cap 3 \cap 5) = 33, n(2 \cup 3 \cup C) = 734$ n (2' ∩ 3' ∩ 5') = 1000 – 734 = 266 12. Sol. $80 = 40 + 50 + 60 - 2 (n(A \cap B) + n(B \cap C) + n (C \cap A)) + 30$ \Rightarrow n(A \cap B) + n (B \cap C) + n(C \cap A) = 50 Required number of members T = n(A \cap B) + n(B \cap C) + n(C \cap A) – 2n (A \cap B \cap C) $= 50 - 2 \times 10 = 30$ $0 \le n (A \cap B) \le min. \{n(A), n(B)\}$ 13. Sol. $0 \le n (A \cap B) \le 12$ $n(A' \cap B) = n(B) - n (A \cap B)$ $3 \le n (A' \cap B) \le 15$ \Rightarrow x = 3, y = 15 14. Sol. $x^2 + 6x - 27 = 0$ $(x + 9) (x - 3) = 0 \Rightarrow x = 3 \text{ and } y = \pm 3\sqrt{3}$ 15. Sol. a + b = 5 $b-3=1 \Rightarrow b=4, a=1$ $X \cap (X \cup Y)' = X \cap (X' \cap Y') = (X \cap X') \cap Y'$ 16. Sol. $= \phi \ \cap \ Y' = \phi$ 17. Sol. $n (A \times B) = 4 \times 3 = 12$ $n (A \times A) = 4 \times 4 = 16$ $n(B \times B) = 3 \times 3 = 9$ $N_3\,\cap\,N_5$ = N_{15} [$\,\because\,$ 3 and 5 are relatively prime numbers) 18. Sol. 19. Sol. $\therefore x^2 + 4y^2 = 45$ We can see that $x = \pm 3 y = \pm 3$ (3,3) (3,-3), (-3,-3) (-3,3) are 4 elements 20. Sol. Obvious Sol. 21. Given = 3x $R = \{(1,3) (2,6) (3,9) (4,12)\}$ 22. Sol. n(A) = 3, n(B) = 4, $n(A \times B) = 3 \times 4 = 12$ number of subset having no element = 1 number of subset having exactly one element = 12 23. Sol. $2^{m} + 2^{n} = 144$ $2^{n} \{2^{m-n} + 1\} = 2^{4} \times 3^{2}$ n = 4, m - n = 3n = 4, m = 7

24. Sol. Obvious

MATHEMATICS

25. Sol. Reflexive $x R x \Rightarrow |x - x| \le 1/3 \Rightarrow$ reflexive Symmetric : $x R y \Rightarrow |x - y| \le 1/3$ \Rightarrow |y - x| \leq 1/3, is also true \Rightarrow symmetric Transitive : $x R y \Rightarrow |x - y| \le 1/3$ $yRZ \Rightarrow |y - z| \le 1/3$ but x R z for all $x, y, z \in R$ for example, x = 1 y = 2/3, z = 1/3 \Rightarrow x R y, y R z but xRz 26. Reflexive :x, $y \in R$, $x \in R$ $x \Rightarrow x^2 \ge 0 \forall x \in R \Rightarrow$ Reflexive Sol. symmetric : $xy \in R$, $x R y \Rightarrow xy \ge 0 \Rightarrow yx \ge 0 \forall x, y \in R \Rightarrow$ symmetric Transitive : x, y z ∈ R $x R y \Rightarrow xy \ge 0$ $y R z \Rightarrow yz \ge 0$ but x R z ⇒ it is not Transitive for example x = 1, y = 0, z = -3

- **27. Sol.** Every element of X have 3 options either in Y or in Z or none o number of ordered pairs = 3^4
- **28.** Sol. $\therefore A \subseteq A \Rightarrow A \in A, \forall A \in P(s)$ $\Rightarrow R \text{ is reflexive}$ Symmetric : $A \in B \Rightarrow A \subseteq B$ $B \subseteq A$ but not necessary so not symmetric transitive $A \in B$ and $B \in C \Rightarrow A \subseteq C \Rightarrow R$ is transitive
- **29.** Sol. n(U) = 100 $n(M \cap C \cap T) = 10; n(M \cap C) = 20;$ $n(C \cap T) = 30; n(M \cap T) = 25;$ $n(M \text{ only}) = 12; n(\text{only } C \ C) = 5; n(\text{only } T \ T) = 8$



30. Sol. $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ So, $X - (A \cap B)$ has 7 elements A will has 7, 8 Rest elements can be assigned in 3 ways, either go to A or B or none so total pairs $= 3^7 - 1 = 2186$

PART - II : PRACTICE QUESTIONS

 Sol. Let C, H, F denote the sets of members who are on the cricket team, hockey team and football team respectively. Then we are given n(C) = 21,n(H) = 26, n(F) = 29 n(H ∩ C) = 14, n (H ∩ F) = 15, n (F ∩ C) = 12 n'(C ∩ H ∩ F) = 8 n(C ∪ H ∪ F) = n(C) + n(H) + n(F) - n(C ∩ H) - n (H ∩ F) -n(F ∩ C) + n (C ∩ H ∩ F) Hence, n(C ∪ H ∪ F) = (21 + 26 + 29) - (14 + 15 + 12) + 8 = 43
 Sol. Suppose that number of employee taking vacations is 100 Su = set of employee taking leave in summer

Su – set of employee taking leave in summer W – set of employee taking leave in winter Sp – set of employee leave in spring A- set of employee taking leave in Autumn n(Su) = 90, n(W) = 65, n(Sp) = 10, n(A) = 7 $n(W \cap Su) = 55$, $n(Sp \cap Su) = 8$, $n(A \cap Su) = 6$ $n(W \cap Sp) = 4$, $n(W \cap A) = 4$, $n(Sp \cap A) = 3$, $n(Su \cap W \cap A) = 3$ $n(Su \cap W \cap Sp) = 3$, $n(Su \cap A \cap Sp) = 2$ $n(W \cap Sp \cap A) = 2$ $n(W \cap Sp \cap A) = 2$ $n(Su \cap Sp \cap W \cap A)$ $= n(Su) + n(Sp) + n(W) + n(A) - n(Su \cap Sp)$ $- n(Sp \cap W) - n(W \cap A) - n(Su \cap A) - n(Su \cap W)$ $- n(Sp \cap A) + n(Su \cap Sp \cap W) + n(Su \cap W \cap A)$ $+ n(W \cap A \cap Su) + n(Su \cap Sp \cap A) - n(Sp \cup Su \cup A \cup W)$ - 90 + 65 + 10 + 7 - 55 - 8 - 6 - 4 - 4 - 3 + 3 + 3 + 2 + 2 - 100 = 2

3. Sol. $(A \Delta B) \Delta C$ is disjoint union of (A - B) - C, (B - C) - A, (C - A) - B and $A \cap B B \cap C$. Therefore, number of elements is $(A\Delta B) \Delta C$ is 10 + 15 + 20 + 5 = 50

4. Sol.
$$N \cap Np = \{0\},$$

 $I - N = \{\dots, -2, -1\}$
 $N \Delta Np = \{N - Np\} \cup (Np - N)$
 $= \{1, 2, 3, \dots\} \cup \{\dots, -3, -2, -1\}$
 $= I \sim \{0\}$
and $E \cap P = \{2\}$

5.* Sol. $D_f = [-5, -1], R_f = [0,2]$ domain of f(x) $\Rightarrow -5 - 6 x - x^2 \ge 0$ $\Rightarrow (x + 5) (x + 1) \le 0$ $-5 \le x \le -1$ range of $y = f(x) = \sqrt{-5 - 6x - x^2}$ $\Rightarrow x^2 + 6x + 5 + y^2 = 0$ and $y \ge 0$ $\Rightarrow y^2 \le 4$ and $y \ge 0 \Rightarrow y \in [0,2]$

6.* Sol. Domain of $\frac{f(x)}{g(x)}$ $x^2 - 4 \ge 0$ and $x - 3 > 0 \Rightarrow (3, \infty)$ Domain of h(x)

- $\frac{x^2-4}{x-3} \ge 0 \Rightarrow [-2,2] \cup (3,\infty)$
- 7.*_ Sol. Since $m \neq 0$ and 0 is divisible by m, therefore, a – a is divisible by m \Rightarrow a \equiv a (mod m) for all a \in Z \Rightarrow a R a for all a \in Z Hence, R is reflexive. Next, let aR b; $a,b \in Z$ \Rightarrow a \equiv b (mod m) \Rightarrow a – b is divisible by m \Rightarrow a – b = mk for some integer k \Rightarrow b - a = - (mk) \Rightarrow b - a = m (-k) \Rightarrow b \equiv a (mod m) \Rightarrow b R a ∴ R is symmetric. Again let a R b and b R c; a, b, $c \in Z$ \Rightarrow a \equiv b (mod m) and b \equiv c (mod m) \Rightarrow a – b is divisible by m and also b – c is divisible by m. \Rightarrow a – b = mk₁ and b – c = mk₂ where $k_1, k_2 \in Z$ \Rightarrow (a - b) + (b - c) = mk₁ + mk₂ \Rightarrow a – c = m (k₁ + k₂) \Rightarrow a – c is divisible by m \Rightarrow a \equiv c (mod m) \Rightarrow a R c Hence, R is transitive. Thus, we see that R is an equivalence relation.
- 8. Sol. Here $A_1 \times A_1$ = {(x, y) : x, y $\in A_1$ } = {(1, 1), (1, 3), (1, 4), (3, 1), (3, 3), (3, 4), (4, 1), (4, 3), (4, 4)}

This relation is symmetric and transtive on A1 and hence on A also but not reflexive

9. Sol. As $A_1 \cup A_2 \cup A_3 = A$ and $(A_1 \times A_1) \cap (A_2 \times A_2) \cap (A_3 \times A_3) = \phi$, 3therefore, i=1 $(A_i \times A_i)$ defines an equivlence relation on A, where x, y \in A are related iff they are in the same subset.

- **10.** Sol. Total number of subsets of A is 2^7 . Out of these only one set, namely A, is improper. \therefore Number of proper subsets is $2^7 - 1 = 128 - 1 = 127$.
- **11. Sol.** Here , a relation R on A is a subset of A × A. Since A contains n elements, therefore A × A contains n × $n = n^2$ elements.

Moreover, $A \times A = \{x, y\} : x, y \in A\}$

= {(x, x) : $x \in A$ } \cup {(x, y) : x, y $\in A$, x \neq y} = P \cup Q, where P = {(x, x) : x $\in A$ } and Q = (x, y): x, y $\in A$, x \neq y} Here, P contains n elements and Q contains n × n – n element

Here, P contains n elements and Q contains $n \times n - n$ elements. We try to compute the number of possible subsets R of A \times A = P \cup Q such that (x, y) \in R \Leftrightarrow (y,x) \in R. This number is infact, the required number of symmetric relations on A. An element of P can be dealt in two ways; it may or may not be included in n(n-1)

R. So, all the elements of P can be dealt in 2^n ways. Also, Q contains n^2 –n elements, i.e., 2 pairs of elements (x,y) and (y.x), $x \neq y$. Either, both (x, y) and (y, x) will be put in R or neither will be put in R. So, elements of Q may be dealt in $2^{n(n-1)/2}$ ways. Hence, the required number of symentric relations on A = $2^n \times 2^{n(n-1)/2} = 2^{n(n+1)/2}$.

- **12.** Sol. Let $A = \{a_1, a_2, a_3, ..., a_{99},\}$ $B = \{a_1, a_2, a_3, ..., a_{99},\}$ common ordered pairs of $A \times B$ and $B \times A$ are = $\{a_1, a_2, ..., a_{99}\} \times \{a_1, a_2, ..., a_{99}\}$ \Rightarrow (99)² elements are common
- **13.** Sol. $S = \{1, 2, 3, 4\}$. Let A, B be two subsets such that $A \cap B = \phi$ and (A, B), (B, A) are considered same since we require unordered pair of disjoint subsets

 $=\frac{({}^{4}C_{0} 2^{4} + {}^{4}C_{1} 2^{3} + {}^{4}C_{2} 2^{2} + {}^{4}C_{3} 2^{1} + {}^{4}C_{4} 2^{0}) + 1}{2} = 41$

14. Sol. The number of required ordered pairs (x, y) where $x > y = {}^{100}C_2 = 4950$

```
15.*_
           Sol.
                       for reflexive
                                              A = PAQ
           (A, A) \in R
                                  ⇒
           which is true for P = I = Q
                       reflexive
           .:.
           for symmetry
           As (A, B) \in R for matrix P and Q
                                                                    (A, B) \in R P Q
                                              \mathsf{B} = \mathsf{P}^{-1}\mathsf{A}\mathsf{Q}^{-1}
           A = PBQ
                                  \Rightarrow
                       B, A) \in R for matrix P<sub>-1</sub>, Q<sup>-1</sup>, \therefore R is symmetric
           :.
           for transitivity,
           As (A, B) \in R for matrix P,Q and (B, C) \in R for matrix R and S
            (A, B) \in R P,Q (B, C) \in R, R S
           A = PBQ
                                   and
                                              B = RCS
                                                                                 A = P (RCS)Q
                                                                      \Rightarrow
                       \mathsf{A}=(\mathsf{PR})\;\mathsf{C}\;(\mathsf{SQ})\;\; \mathrel{\dot{\cdot}}\;\; (\mathsf{A},\,\mathsf{C})\in\mathsf{R}\;\; \text{for matrix }\mathsf{PR}\;,\,\mathsf{SQ}\;\;
           ⇒
                       R is transitive and hence R is equivalence.
           :.
```