Exercise-1

ONLY ONE OPTION CORRECT TYPE

	SECTION - A # Introduction, Procaryotic Cell					
1.	Names of Schleiden an (1) Theory of cell lineag (3) Theory of natural se	-		controling centre of cell		
2.	All cell are derived from (1) Schultz	n pre-existing cells" is the (2) Schleiden	famous generalization of (3) Lamarck	f (4) Virchow		
3.24	Small cell are metaboli (1) Higher surface area (3) Lower nucleocytopla		(2) higher nucleocytopla (4) both (1) & (2)	asmic ratio		
4.	Which of the following features are related with mesokarotic cell?(1) Nucleus is present(2) Present in dinoflagellates(3) Histone protein is absent(4) All of the above					
5.	 Read the following statements and choose the correct option. (i) The physio-chemical approach to study and understand living organisms is called "Reductionist Biology". (ii) Cell theory which is proposed by Schleiden and Schwann explains how new cells arise. (iii) Centriole is a single membranous cell organelle helps in cell division in animal cell. (iv) Prokaryotes lack membrane bounded cell organelles. Select the correct statements. (1) (i) & (ii) (2) (ii) & (iii) (3) (ii) & (iv) (4) (i) & (iv) 					
6.	 Select the pair of correct statements with respect to prokaryotic cell. (i) The genomic DNA is circular and naked (ii) Large linear DNA outside the genomic DNA is known as plasmid (iii) Plasmid DNA confers certain unique phenotypic character to bacteria. (iv) Prokaryotic cells are devoid of cell organelles. (1) i , ii, iii, iv (2) ii & iii (3) ii & iv (4) i & iii 					
7.	Read the following statements & check out the option with incorrect statements with respect to prokaryotes. (i) Prokaryotic cell's envelop consists of a tightly bounded three layered structures with outer to inner arrangement as cell membrane, glycocalyx & cellwall. (ii) Mesosomes and chromatophores are the cell membranes extensions (iii) Fimbriae are small bristle like fibres helpful in attachment with a substratum. (iv) Thin filamentous extension from the cellwall of bacteria are called flagella. (1) only (i) (2) (i) & (ii) (3) (i) & (iv) (4) only (ii)					

8. Polysome is

(1) r - RNA + Ribosome	(2) m - RNA + Ribosome
(3) t - RNA + Lysosome	(4) m - RNA + Lysosome

SECTION - B # Cell Wall

1.	Cell division is not pres (1) Skin	ent in the cells of (2) Gonads	(3) Brain	(4) Bone marrow	
2.	Which is the thickest w (1) Middle lamella	all layer? (2) Tertiary wall	(3) Primary wall	(4) Secondary wall	
3.	Torus is found in (1) Desmosome	(2) Simple pit	(3) Bordered pit	(4) Plasmodesmata	
4.	Cell wall was first studio (1) Bonner	ed by (2) Strasburger	(3) Robert Hooke	(4) Flemming	
5.	The intercellular structu (1) Primary wall	re separating the walls on (2) Middle lamella	of two adjacent cells is (3) Plasma membrane	(4) Secondary wall	
6.	Rigidity in the cell wall i (1) Cellulose	is due to (2) Suberin	(3) Lignin	(4) Pectin	
7.	The phragmoplasts are (1) Cell plate	precursors of (2) Chloroplast	(3) Chromoplast	(4) Leucoplasts	
		SECTION - C #	Cell membrane		
1.	The plasma membrane (1) 60% lipid and 40% (3) 52% protein and 40		(2) 59% protein and 39	% lipids pids and carbohydrates	
2.24	According to Singer an (1) Chitin and phospho (3) Carbohydrates and	•	• • •	sic and intrinsic protein	
3.24	 Plasma membrane is asymmetric because (1) Lipids present in the outer and inner side of the bilayer are different (2) Extrinsic proteins are more abundant on the inner surface than on the outer surface (3) Oligosaccharides are attached only to the external surface of lipids and proteins of a biomembrane (4) All of the above 				
4.24	(1) A lipid bilayer with e(2) A lipid bilayer with p(3) A lipid bilayer coate	cell membrane proposes embedded proteins only proteins on the outer surfa d with proteins on both the proteins of two types, emb	ace only ne surfaces	perficial (extrinsic)	
5.	Plasma membrane par (1) Lipids	ticularly in animal cell is ((2) Proteins	elastic due to (3) Carbohydrates	(4) None of these	

 6. Cell recognition and adhesion occurs due to the following c (1) Protein (2) Lipids 			• •	• • •		
	(3) Proteins and lipids		(4) Glycoproteins & glycolipids			
		SECTION - D	# PLASTIDS			
1.	Which of the plastid sto	pres protein?				
	(1) Elaioplast	(2) Chloroplast	(3) Amyloplast	(4) Aleuroplast		
2.	The pigment which is n	ot found in chloroplast is	-			
	(1) Carotene	(2) Chlorophyll	(3) Xanthophyll	(4) Anthocyanin		
3. 🕿	The endosymbiotic theory explains (1) The origin of the nucleus (2) The origin of mitochondria and chloroplasts (3) Why prokaryotic cells are different from eukaryotic cells (4) Where the endomembrane system came					
4.2	-	semi-autonomous struct	-			
	(1) RNA only		(2) DNA only			
	(3) Both RNA and DNA		(4) Pigment and proteins			
5.	Fret channels are chara					
	(1) Mitochondria	(2) Dictyosomes	(3) ER	(4) Chloroplast		
6.	The complex liquid mat	trix of chloroplast is called	b			
	(1) Cytoplasm	(2) Cytosol	(3) Hyaloplasm	(4) Stroma		
7.	Larger thylakoids in chl	oroplast are called				
	(1) Grana lamellae	(2) Stroma lamellae	(3) Grana	(4) Loculus		
		SECTION - E # N	MITOCHONDRIA			
1.	Mitochondria are the si	te of				
	(1) ATP formation	(2) Cellular respiration	(3) Electron transport	(4) All of these		
2.	-	structure is present in mit				
	(1) Oxysome	(2) Polysome	(3) Dictyosome	(4) Quantasome		
3.	Oxidative phosphorylat (1) Chloroplasts	ion takes place in (2) Vacuoles	(3) Mitochondria	(4) Ribosome		
4.2a	Cytochrome oxidases are found (1) On outer wall of mitochondria (3) In the lysosomes		(2) In the matrix of mitochondria(4) On cristae of mitochondria			
5.	•	dria can be stained with				
	(1) Neutral red	(2) Janus green B	(3) Crystal violet	(4) Aceto-orcein		
6.	Mtiochondria are not fo (1) Liver cells	und in (2) Yeast	(3) Mature RBCs	(4) Immature RBCs		

7.æ	Mitochondria and chlo (1) DNA (3) DNA + RNA + ribos		(2) DNA + RNA (4) Proteins		
8.	Synthesis of ATP in mi (1) In the matrix (3) At the cristae	tochondria takes place	(2) In the intracristal space(4) At the outer membrane		
9.	The mitochondrial DNA (1) Lacking association (3) Having higher C–G		DNA in (2) Being circular in nature (4) All of these		
10.24	The inner membrane o (1) Increase ATP suppl (3) Increase the thickne	-	ings called cristae these (2) Keep external subst (4) Increase surface are	ances away	
11.	Enzyme ATPase is fou (1) F _o	nd in head of oxysome th (2) $F_1 - F_0$	at is called (3) F ₁	(4) None of these	
12.১	 Which of the following observations most strongly support the view that the mitochondria have electron transport system? (1) Mitochondria have a folded inner membrane (2) Mitochondria have a property to concentrate in cells, which form locomotory structures. (3) Disruption of mitochondria yields membrane fragments, which are able to synthesize ATP. (4) A protein capable of utilizing ATP is obtsained from mitochondria. 				
13.	If a cell is placed under (1) ER will disappear (3) Mitochondria will dis		(2) Mitochondria will mu (4) Mitochondria and rik	ultiply posomes will multiply speedly.	
14.æ		•	 e– (2) Functionally similar but structurally different. (4) Structurally and functionally dissimilar 		
15.	Inner membrane of mitochondria contains (1) Cytochrome oxidase (3) Malic dehydrogenase		(2) Succinic dehydrogenase (4) Both (1) and (2)		
	SE	CTION - F # Endop	asmic Reticulum (B	ER)	
1.	Endoplasmic reticulum (1) Centrioles	often bears (2) Lysosomes	(3) Ribosomes	(4) Plastids	
2.	Microsomes are related (1) Endoplasmic reticul (3) Lysosomes		(2) Spherosomes (4) Plasmalemma		
3.	Plasmodesmata often I (1) Symplasm	nas ER (endoplasmic reti (2) Desmotubule	culum) tubule called as (3) Apoplasm	(4) Intermediate filaments	

4.	Which of the following is associated with detoxification of drugs and muscle contraction by the release and uptake of Ca ² + ions?					
	(1) Golgi complex	(2) RER	(3) SER	(4) Free ribosomes		
5.	The site of detoxificatio	n reaction in liver is				
	(1) SER	(2) Free ribosomes	(3) RER	(4) hydrophobic interaction		
6.	 ER is involved in all of the following except (1) Production of ribosomes (2) Synthesis of lipids (3) Synthesis of proteins (4) Transportation of molecules to the cell membrane for export. 					
7.æ	Which organelle help i cells of retina?	n the synthesis of lipids	, cholesterol, steroids a	nd visual pigments in epithelial		
	(1) RER	(2) SER	(3) Golgi bodies	(4) All of these		
8.	Myeloid bodies, sarcop (1) Fats	lasm of muscles and nise (2) Golgi bodies	sl granules are rich in (3) Lipids	(4) ER		
9.2	The close functional rel	ationship between ER, G	Golgi, Lysosome are repr	esent as		
	(1) GERL system	(2) Vacuolar system	(3) Annulated lamellae	(4) None of the above		
10.	ER of rapidly dividing c	ells is				
	(1) Non functional	(2) Highly developed	(3) Less developed	(4) Absent		
		SECTION - G #	Golgi Complex			
1.	Cell organelles associa	ted with secretion are				
	(1) Mitochondria	(2) Ribosomes	(3) Chloroplasts	(4) Golgi complex		
2.	Besides giving out secr	etory vesicles, Golgi app	paratus is also concerned	l with formation of		
	(1) Grana of chloroplas		(2) Plastids			
	(3) Enzymes of mitocho	ondria	(4) Lysosomes			
3.24	The Golgi complex is s (1) Glycosylation of lipio (3) Generation of ATP		(2) Conversion of light energy into chemical energy(4) Intracellular digestion			
4.	fraction is		-	structure formed in one of the		
	(1) Lysosomes	(2) Microsome	(3) Ribosome	(4) Centrosomes		
5.	The organelle that mov (1) ER	es materials out of the co (2) Lysosomes	ell is (3) Golgi bodies	(4) Ribosomes bound on ER		
6.	In plant cells the number	er of golgi bodies increas	es during			
	(1) Respiration	(2) Cell division	(3) Translocation	(4) Food synthesis		
7.	Which organelle is loca (1) Centrosome	ted near the nucleus and (2) Chloroplast	d contains stack of flatten (3) Golgi bodies	ed cisternae structures? (4) Centriole		

8.2	Golgi bodies are maxim				
	(1) Root cap cells	(2) Root tip cells	(3) Calyprogen	(4) Quiesent centre	
9.			granules from side	-	
	(1) Plain	(2) Convex	(3) Concave	(4) All sides	
		SECTION - H	# Lysosome		
1.	Lysosomes are celled " (1) Catabolic enzymes	suicide bags" because tl (2) Food vacuole	hey have (3) Hydrolytic enzymes	(4) Parasitic activity.	
2.	Autophagic vacuoles di (1) Cell organelles (3) Fluid droplets of pin	-	(2) Solid particles of phagosomes(4) None of the above		
3.	Which of the following on (1) Golgi apparatus	organelle show polymorp (2) Lysosome	hism? (3) Mitochondria	(4) Chloroplast	
4.24	 The mitochondria serves as a marker for cytochrome oxidase at (1) Succinic dehydrogenase (2) Catalse (3) Galactosidase (4) Acid phosp 			vsosomes serve for	
5.24	Most of hydrolytic enzy (1) Basic pH	mes of lysosomes function (2) Any pH	on at (3) Neutral pH	(4) Acidic pH	
6.24	Pri. lysosome + phagosome forms (1) Residual body (3) Autophagic vacuole		(2) Secondary lysosome (4) None of these		
		SECTION - I	# Ribosome		
1.	Engine of the cell is				
	(1) Ribosome	(2) Lysosome	(3) Vacuole	(4) Mitochondria	
2.	Ribosomes are attache	d to endoplasmic reticul	um through		
	(1) r-RNA		(2) Hydrophobic interaction		
	(3) t-RNA		(4) Ribophorins		
3.	The smallest organelles	s in the cell are			
	(1) Dictyosomes	(2) Lysosomes	(3) Microsomes	(4) Ribosomes	
4.	 Protein synthesis in an animal cell occurs (1) Only on the ribosomes present in the cytosol (2) Only on ribosomes attached to the nuclear envelope and ER (3) On ribosomes present in the cytoplasm as well as in mitochondria (4) On ribosomes present in the nucleolus as wall as in cytoplasm 				
5.24		somal precursor in euca	-	(1) Colai body	
	(1) Stroma	(2) Nucleus	(3) Nucleolus	(4) Golgi body	

6.	Specific cells which sec (1) ER	retes protein contain la (2) Free ribosomes	arge number of (3) Bound ribosomes	(4) Golgi bodies	
7.æ	In ribosomes two subun (1) Joins only at the time (3) Dissociates at the er	e of protein synthesis	(2) Lie freely in cytopla (4) All of the above	sm	
8.	Sedimentation coefficien (1) Greater will be the v (3) Value of S will be sa	alue of S	. Greater the size of riboso (2) Smaller will be the (4) It has no relation w	value of S	
9.2	70 S type of ribosomes (1) Eukaryotic cells	are found in (2) Mitochondria	(3) Prokaryotic cells	(4) All of these	
	SECTION - J # (Cilia & Flagella, C	entrioles and cytos	celetal elements	
1.	Basal bodies are assoc (1) Cilia and flagella	ated with the develop (2) Cell plate	ment of (3) Phragmoplast	(4) Kinetochore	
2.	 Cilia and flagella have (1) Dissimilar internal structure and are of similar size (2) Dissmilar internal structure and are of unequal size (3) Similar internal structure and are of dissimilar size (4) Similar internal structure and are of equal size 				
3.	9+0 microtubular structu (1) Centriole	ure is found in- (2) Basal body	(3) Blepharoplast	(4) All of these	
4.	Pick up the incorrect part (I) Movement of cilia (II) Giant lysosome (III) Movement of flagell (IV) Giant centriole (V) Basal body (kinetos (VI) Number of flagella f (1) Only I is incorrect (3) IV and VI are incorrect	- swee - sperr a - indep - Oocy ome) - 9 + 0 for cell - Many	eping or pendular stroke m acrosome bendent to each other rtes and sperms fibrillar arrangement ((2) Only IV is incorrect (4) all are incorrect		
5.	Centrosome is (1) Cytoplasmic structure of animal cells (2) A nuclear structure of animal cells (3) Cytoplasmic structure of plant cells (4) Cytoplasmic structure of animal cells and some lower plants				
6.24	Basal body could be an(1) It gives rise to spino(3) It gives basic reaction	lle	e in view of internal structu (2) It divides during mit (4) It gives rise to cilia	tosis	
7.	Centriole and centrosor (1) Animals	ne are found in the cel (2) Green plants	l of (3) Bacteria	(4) Cyanobacteria.	

	SECTION - K # MICROBODIES AND VACUOLES								
1.æ	List- A N B Sp C Pe		nes (ii) Transport of macromolecules						
Codes		Α	В	C	D				
	 (1) (2) (3) (4) 	(iv) (i) (iv) (i)	(i) (ii) (i) (ii)	(iii) (iv) (ii) (iii)	(ii) (iii) (iii) (iv)				
2.			e followi of respira		nelle possess ox	idases and are associa	ted with oxidation reaction other		
	(1) S	phaero	somes	(2) F	Peroxisomes	(3) Lysosomes	(4) Golgi		
3.		h of the Iyoxiso			elle takes part in p Peroxisome	ohotorespiration? (3) Dictyosome	(4) ER		
4.	Catalase forms peroxisome protein and utilizes H_2O_2 to oxidise alcohol in liver and converts H_2O_2 into H_2O so it is also called as safty valve. It's opposite enzyme in peroxisome is -								
	(1) C	yt P–45	50	(2) C	Cathepsin	(3) Cyt b ₅	(4) Oxidase		
5.2	Plan	t lysoso	mes rich	in fats a	and taking part in	β -oxidation of fattyacids	are		
	(1) L	ysosom	ies	(2) N	licrosomes	(3) Sphaerosomes	(4) Glyoxysomes		
6.24		brane.			•	-	es while some others are without es in List II and select the correct		
	List-	I		List	List-II				
	(A) T	ransos	omes	()	(i) Without membrane				
		ysosom			(ii) Single membrane				
	. ,	Ribosom Nucleus			(iii) Triple membrane (iv) Double porous membrane				
	(0)1	A	В	(IV) L	D				
	(1)	(i)	(ii)	(iii)	(iv)				
	(2)	(iii)	(i)	(ii)	(i)				
	(3)	(iii)	(ii)	(i)	(iv)				
	(4)	(ii)	(iii)	(i)	(iii)				
7.	Vacu	iole is s	urrounde	ed by a s	ingle membrane	called			
	(1) P	lasmale	emma	(2) V	acuole wall	(3) Tonoplast	(4) Tono membranous		
8.	In a (1) V		ll vacuol		ns Dissolved salts	(3) Gases	(4) All of these		

9.	Cell sap is (1) Non living part of cy (3) Living matter of cell	toplasm	(2) Living part of cytoplasm(4) Non living part of vacuole		
10.১	Vacuolar cell sap has p (1) Alkaline and hypoton (3) Acidic and hyperton	nic	(2) Neutral and isotonic(4) Equal to cytoplasm and isotonic		
11.১	Vacuoles help in (1) Making cell light (3) Separating water fro	m cytoplasm	(2) Storing wastes and(4) All of the above	food particles	
		SECTION - L	# NUCLEUS		
1.	Nuclear material withou (1) Mycoplasma and gro (3) Bacteria and cyanob	-	ound in (2) Bacteria and green (4) Cyanobacteria and	-	
2.	Genome is (1) Diploid set of chrom (3) A single chromosom		(2) Haploid set of chromosomes (4) None of the above		
3.	A constriction on the ch (1) Centromere	romosomes is called (2) Centrosome	(3) Centriole	(4) Chromomeres	
4.2	Nucleolus takes part in (1) rRNA	the synthesis of (2) tRNA	(3) mRNA	(4) None of these	
5.	Number of chromosome (1) Triploid	es in definite nucleus is/a (2) Diploid	are (3) Polyploid	(4) Haploid	
6.	The genetic material of (1) Nucleus	the bacterial cell is local (2) Nucleolus	ised within a discrete rec (3) Plasmid	gion, called as (4) Nucleoid	
7.24	(1) Acid proteins	extensively looped and o in called as polyamines	(2) Histones		
8.24	Nucleolus is produced f (1) 1 st constriction (2) Nucleolar organising (3) Nuclear envelope (4) ER	rom g region of certain chrom	osomes		
		SECTION - M #	CELL DIVISION		
1	The plane of cell wall fo (1) Microtubules	rmation and spindle forn	nation is determined by (2) Microfilaments		

(3) Vesicles of Golgi bodies (4) ER

2.	Anastral mitosis is four (1) Plants	nd in (2) Animals	(3) All living cells	(4) Prokaryotes	
3.2	The best stage to view (1) Metaphase	structure, size and to co (2) Late prophase	unt the number of chrom (3) Early anaphase	nosomes is (4) I-phase	
4.	Which is called direct c (1) Mitosis	ell division? (2) Amitosis	(3) Meiosis	(4) All cell divisions	
5.	During synapsis, the nu (1) 2	umber of chromonemata (2) 4	/ DNA in bivalent chrom (3) 8	osome are (4) 16	
6.	In meiosis, chromosom (1) Anaphase-I	nes separate at (2) Anaphase-II	(3) Diakinesis	(4) Diplotene	
7.	In plant cells, division c (1) Cell plate	of cytoplasm occurs by (2) Cleavage	(3) Furrowing	(4) Invagination	
8.	What are events over in telophase (1) Chromosomes cluster at opposite spindle poles (2) Nuclear envelope reforms (3) Nucleolus, Golgi complex, ER reform (4) All				
9.	Which among the following is most active and of longest duration in animals?(1) Diplotene(2) Leptotene(3) Zygotene(4) Pachytene				
10.	In which stage of cell d (1) Prophase	ivision the nucleus looks (2) Anaphase	like a ball of wool (spire (3) Prophase-I	me stage)? (4) Cytokinesis	
11.	The common mitogen i (1) Temperature	is (2) Cytokinin	(3) Both (1) and (2)	(4) Colchicine	
12.	In which phase of I-Pha (1) G ₁	ase, damaged DNA is re (2) G ₂	paired. (3) S Phase	(4) M Phase	
13.๖	The centriole divides at (1) G ₁ Phase	t (2) S phase	(3) Anaphase	(4) G_2 Phase	
14.	The gap between 2 suc (1) Interkinesis	ccessive divisions is calle (2) Interphase	ed (3) I-phase	(4) Generation time	
15.	The active phase, also (1) Interphase	called metabolic or ener (2) M–Phase	getic phase with most cy (3) Meiosis	rtogenetic activity is (4) Pachytene	
16.	To observe chiasmata, (1) Metaphase-II	the most appropriate sta (2) Diakinesis	age of meiosis would be (3) Diplotene	(4) Pachytene	
17.๖	The number of chroma (1) Two in mitosis and (3) Two in mitosis and		metaphase is (2) One in mitosis and (4) Two in mitosis and		

18.	Inhibitors of cell division are (1) Cyanides and azides (3) Chalones and UV–rays		(2) Colchicine (4) All of the above.	
19.æ	Select the correct pair– Phase of meiosis 1. Prophase I 2. Metaphase I 3. Anaphase I (1) 1, 2 and 3 are correct (3) 1 and 3 are correct, 2 is fals	Homologous c		linear sequence. 3 are false
20.24	In pachytene– (1) Chromatids are not visible (3) Chromosomes stain faintly		(2) Chromomeres are(4) Chromosomes coil	
21.	At which stage of cell cycle, cel (1) G_3 (2) G_1	l has undergone	e differentiation. (3) G ₄	(4) G ₀
22.১	Which substage of I phase is of (1) G_1 (2) G_2	f shortest duratio	on? (3) S	(4) All of these
23.	G₁ is also called as (1) Pre synthetic phase (2) Pos	st mitotic phase	(3) First Gap period	(4) All are correct
24.	How many mitotic divisions occ (1) 8 (2) 128		oot tip to form 256 cells? (3) 255	(4) None of these
25.	Centriole is in cell division in animal cell required for (1) Spindle formation (2) Nucleolus reappearance (3) Chromosome segregation (4) None of the above			rance
26.24	Mechanism of genetic continuit (1) Crossing over (2) Pairing (3) Segregation of maternal and (4) Duplication of DNA			
27.১	 What is the cause of cell division? (1) Decrease in surface area/volume ratio due to growth of cell (2) Nucleo-cytoplasmic ratio decreases due to increase in size of cell (3) Disturbance in DNA and RNA ratio (4) All of the above 			
28.2	Colchicine inhibits cell division l (1) Inhibiting splitting of centron (2) Inhibiting spindle formation a (3) Splitting chromosomes (4) Not allowing disappearance	nere at anaphas at premetaphase	9	

29.	Mitosis occurs in (1) Red bone marrow (3) Stratum germinativ	um	(2) Meristems (4) All of the above	
30.	The spindle microtubul (1) '+' and '-' both ends (2) '+' end towards the (3) '+' and '-' both ends (4) '-' end towards the	poles s towards the poles	ation is	
31.	•	pairs of chromosomes. H It the end of meiosis II? (2) 20, 20	low many chromosomes (3) 10, 5	s will be at the end of meiosis I (4) 10, 10
32.	A bacterium that divide (1) 2 ¹²	es once in half hour how (2) 2 ²⁴	many bacteria are forme (3) 248	d after 24 hrs. of growth? (4) 2 ⁴⁷
33.	(1) Crossing over	or cells are formed that a independent assortment	(2) Difference in chrom	nosome number
34.	How many successive (1) 7	generations of mitosis m (2) 8	ust occur to produce 25 (3) 128	6 cells? (4) 255
		MISCELLANEO	US QUESTIONS	
1.	Endomenbranous syst (1) ER + Golgibody + L (3) ER + Ribosome + N	_ysosome + Vacuole	(2) ER + Ribosome + L (4) ER + GB + Ribosor	
2.	The cell organelle resp (1) ER	oonsible to make luminal (2) GB	and extra-luminal compa (3) Nucleus	artment in eukaryotic cell is - (4) Vacuole
3.	(2) Concave Cis/formi(3) Convex Cis/formirplasma membrance	g face is towards cell me ing face is towards cell m ng face is towards Nucl ce.	embrane leus while concave trar	ns or maturing face is towards
4.	Match the columns Column-I (i) Fat (ii) Xanthophyll (iii) Protein (iv) Starch (1) i – b ii – d iii – a iv – (3) i – b ii – d iii – c iv –		(2) i – c ii – d iii – b iv – (4) i – c ii – b iii – d iv –	
5.	Checkout the incorrect	statement		

(1) Nuclear pores are the passages through which movement of RNA and protein molecules take place in both the directions between the nucleus and cytoplasm. (2) Nucleus contains only one nucleolus exclusively (3) Chromosome contains DNA, RNA, histones and some non-histone proteins. (4) A single human cell has approximately 2m long thread of DNA distributed among 46 chromosomes. 6. Select one which is not true for ribosome (1) Made of two subunits (2) Form polysome (3) May attach to mRNA (4) Have no role in protein synthesis 7. Which of the following is not a function of cytoskeleton in cell? (2) Maintenance of cell shape & structure. (1) Intra cellular transport (3) Support to the organelles (4) Cell motility 8. Axoneme is present in (1) Centriole (2) Nucleolus (3) Flagella (4) Mitochondria 9. Read the following statement and select the correct option that bears true statements (i) After S-phase DNA number become twice but chromosomes remain same i.e. 2n. (ii) A cell in G_a phase in metabolically active and can enter in division phase depending on the requirement of organism. (iii) Cell division is a progressive process that shows the distinct boundries between various stages. (iv) At the end of prophase GB, ER, Nucleolus and nuclear envelope get disappear (1) i, ii & iv (2) i, ii & iii (3) ii, iii & iv (4) all of these 10. Match the columns Column-I Column-II (i) Zygotene (a) X-shape chiasmata (b) Formation of bivalent/ tetrad (ii) Pachytene (iii) Diplotene (c) Terminalization (iv) Diakinesis (d) Recombination (1) i – d ii –a (iii) –b iv – c (2) i – a ii – d iii – b iv – c (3) i – b ii – d iii – a iv – c (4) i – a ii – b iii – d iv – c 11. Identify the metaphase-I from the following figures (2) (1)(3)(4)

(2) RBCs

12. Karyokinesis is not followed by cytokinesis in the case of

(1) Zoospore

(3) Endosperm of coconut (4) Muscles fibre

13.	Resistance to antibiotic is character of – (1) All bacteria (3) All bacteria having plasmid		(2) All eukaryotes (4) Some bacteria having plasmid	
14.	Which of following do n (1) Flagella	ot help in motility– (2) Pili	(3) Fimbriae	(4) Both (2) and (3)
15.	Fluid nature of plasma (1) Selective permeabil (3) Formation of inter ce	-	o in – (2) Cell growth and divi (4) All	sion
16.	 ER, Golgi body, Iysosome and vacuoles are part of endomembrane system but mitochondria chloroplast, are not included because – (1) Endomembrane system include only single membrane bounded cell organelles. (2) In endomembrane system, organelles do not contain extra nuclear genetic material. (3) Endomembrane system organelles function in coordinated way (4) All 			
17.	Proteins synthesis by R (1) Luminal intracellular (3) Mitochondrial matrix	space	(2) Extra luminal intrace (4) All	ellular space.
18.	(3) Transport of ions in	cretory products. rge vacuoles (up to 90% vacuole is mediated aga	cell volume) inst concentration gradie particles in higher plants	
19.	Which among the follow (1) Central microtubule (3) Pheripheral doublet		nected with cilia– (2) Central sheath and (4) None of these	peripheral doublet
20.	 Which of following is incorrect (1) Flagella and centriole both have 9 peripheral fibril (2) In flagella and centriole 9 radial spokes are present (3) Centriole form basal body of cilia and flagella (4) Centriole, cilia, flagella have 9+2 fibrilar arrangement. 			
21.	Which statement is inco (1) Nucleolus is involve (2) Content of nucleolus (3) Chromatin contain I (4) All	d in r-RNA synthesis s is different from nucleo	plasm	
22.	Microbody, glyoxisome (1) Plant only	is present in (2) Animal only	(3) Both	(4) None
23.	Peroxisomes are rich ir	1		

	(1) Reductive enzymes(3) Riboxidative enzymes		(2) Lytic enzymes(4) Catalase enzymes	
24.	Lampbrush chromosom (1) Leptotene	nes found in oocytes occ (2) Zygotene	ur in (3) Pachytene	(4) Diplotene.
25.	Chromosomes appearin (1) Acrocentric	ng rod shaped during an (2) Metacentric	aphase are (3) Submetacentric	(4) Telocentric.
26.	Which one ensures ma (1) Mitosis	intenance of chromosom (2) Meiosis	e number from generatio (3) Splicing	on to generation? (4) Metamorphosis
27.	The function of peroxise (1) H_2O_2 destruction (3) detoxification of hea		(2) conversion of fats to carbohydrates (4) oxidative phosphorylation	
28.	Sister chromatids are jo (1) Chromocentre	ined at (2) Metacentre	(3) Centromere	(4) Telomere
29.	What is true for mitosis (1) It has two divisions (3) It occurs in somatic		(2) It maintains number(4) It occurs in somatic	of chromosomes cells as well as gonads
30.	In metaphase-I chroms (1) Tetrad stage	omes are in (2) Dyad stage	(3) Diploid nature	(4) Attract each other.
31.	Longest phase of meios (1) Prophase-I	sis is (2) Prophase-II	(3) Anaphase-I	(4) Metaphase-II
32.	Chemical for arresting (1) <i>Crocus</i>	cell division is extracted f (2) <i>Colchicum</i>	rom (3) <i>Chrysanthemum</i>	(4) Dalbergia
33.	A chromosome carrying (1) Acrocentric	g centromere at one end (2) Telocentric	is (3) Metacentric	(4) Submetacentric.
34.	Which is present neare (1) Secondary wall	st to plasma membrane (2) Primary wall	in plant cell? (3) Middle Iamella	(4) Tonoplast.
35.	Welded areas between (1) Interdigitations	two adjacent animal cell (2) Desmosomes	ls are (3) Gap junctions	(4) Intercellular bridges.
36.	Orange-yellow colours (1) Chloroplasts	of flowers and fruits are ((2) Leucoplasts	due to (3) Aleuroplasts	(4) Chromoplasts
37.	Cell shape is mainly de (1) Vacuole (3) Microtubules		(2) Endoplasmic reticul (4) Cell membrane	um
38.	Pairing of homologous (1) Synapse	chromosomes in zygoter (2) Synapsis	ne is called (3) Crossing over	(4) Terminalisation.

39. Exchange of segments between nonsister chromatids of homolgous chromosomes is

	(1) Crossing over	(2) Translocation	(3) Linkage	(4) Inversion.	
40.	Chiasmata are most ap (1) Diakinesis	propriately observed in m (2) Diplotene	neiosis during (3) Metaphase II	(4) Pachytene	
41.	Ribosomes that occur e (1) 70S	exclusively in mitochondri (2) 55S	a are (3) 30S	(4) 50S	
42.	Single membrane bound (1) Lysosome	d organelles are (2) Sphaerosome	(3) Glyoxysome	(4) All of these	
43.	Pectin occurs in (1) Blood proteins	(2) Plant cell walls	(3) Milk protein	(4) Liver cell	
44.	The one located inside (1) Tonoplast	a vacuole is (2) Matrix	(3) Ergastic substances	(4) Cell sap	
45.	Plant cells store fat in (1) Peroxisome	(2) Lysosome	(3) Sphaerosome	(4) Microsome	
46.	Phagosomes and pinos (1) Residual bodies	omes are collectively cal (2) Autophagic bodies	led (3) Digestive vacuoles	(4) Endosomes.	
47.	Cyclin is required for ce (1) CCK	Il cycle. Which other mo (2) CKC	lecule is essential for co (3) CDK	npletion of cell cycle? (4) CKD.	
48.	Chromosomes are leas (1) Telophase	t condensed during (2) Interphase	(3) Metaphase	(4) Anaphase	
49.	During meiosis (1) Linkage is disturbed (2) Homologous chromosomes are separated (3) Homologous chromosomes do not segregate (4) All of the above.				
50.	A plant cell has 12 chro G_2 phase of its next cell		mitosis. How many chro	pmosomes would it have in the	
	(1) 6	(2) 8	(3) 12	(4) 24	
51.	Astral rays arise from (1) Centriole	(2) Cytoplasm	(3) Chromatid	(4) Centromere	
52.	In which stage of meios (1) Prophase I	is the structures, number (2) Metaphase I	r and shape of chromoso (3) Anaphase I	mes can be observed. (4) Telophase I.	
53.	Arrangement of ciliary n (1) 9 + 2	nicrotubules is (2) 9 + 4	(3) 9 + 3	(4) 9 + 9	
54.	Which cell organelle con (1) Lysosome (3) Endoplasmic reticulu	nnect nuclear envelope v um	vith cells membrane? (2) Golgi body (4) Mitochondria		

55.	A clear zone around Go (1) Zone of separation	0 11	(3) Zone of inclusion	(4) Zone of exclusion
56.	A cell plate is laid durin (1) cytokinesis	g (2) karyokinesis	(3) interphase	(4) None of these
57.	Number of protofilamer (1) 15	nts present in a microtub (2) 13	ule is (3) 10	(4) 5
58.	Fat storing plastids are (1) Amyloplasts	(2) Aleuroplasts	(3) Elaioplasts	(4) All of these
59.	Lysosomes are the rese (1) Hydrolytic enzymes (3) Secretory glycoprote		(2) RNA and protein (4) Fats	
60.	Movement of ions or m (1) Pinocytosis (3) Active transport	olecules against electroc	themical gradient is calle (2) Diffusion (4) Brownian movemer	
61.	Spindle fibre is made u (1) tubulin (3) intermediate filamer		(2) humulin (4) flagellin	
62.	In which cell organelles (1) Ribosomes	, lipoprotein covering is a (2) Lysosomes	absent? (3) Mitochondria	(4) Peroxisomes
63.	Quantasomes are pres (1) Chloroplast	ent in (2) Mitochondria	(3) Golgi body	(4) Lysosome
64.	During cell cycle, RNA (1) S-phase	and non-histone proteins (2) G ₀ -phase	s are synthesised in (3) G ₂ - phase	(4) M-phase
65.	Balbiani rings are the c (1) DNA synthesis	entre for (2) RNA synthesis	(3) Both (1) and (2)	(4) None of the above
	Exercise -	-2		
1.	The biochemical compo (1) lipoprotein	onent of erythrocyte men (2) glycoprotein	nbrane determining blood (3) phosphoprotein	d group is (3 rd NSEB) (4) hemoprotein
2.	If the haploid number for chromatids at anaphase (1) 3	•	h dividing diploid cell du	ring mitosis will have how many (6 th CBO) (4) 12
3.	-	volume ratio in cells is im	portant because it s and gases across the c	(3rd ABO) ell membrane

- (2) prevents overproduction of cell proteins due to structural limitations
- (3) allows many antigens on the surface for identification of self and non self

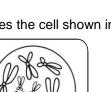
Page 69

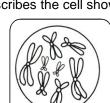
- (4) provides for better structural support to cope with externel physical pressure
- (5) allows for cell division
- 4. Which statement is false?
 - (1) During the process of exocytosis, the lumen (inner) surface of a secretory vesicle becomes the inside of the plasma (cell) membrane
 - (2) Cilia, microtubules and flagella are all associated with movement in cells
 - (3) A function of the nucleus is duplicating the genes for cell division
 - (4) Proteins that are to be secreted by the cell are generally synthesized by the membrane-bound ribo somes
- 5. Which of the following description describes the cell shown in figure?

(3) 16 chromosomes, 8 homologous pair

(1) 8 chromosomes, 4 homologous pair

- 6. Which statement best describes the process of endocytosis?
 - (1) A vesicle within a cell fuses with the plasma membrane and releases its contents to the outside
 - (2) Solid particles of liquids are taken up by a cell through invagination of the plasma membrane
 - (3) Investmemt in one cytosis reduces the ability of the parent to assist another cytosis
 - (4) One region of an embryo directs the development of a neighbouring region of an embryo through movement of cells

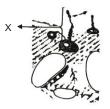

(2) 8 chromosomes, 8 homologous pairs


(4) 16 chromohomes, 4 homologous pairs

- (5) An organism obtains its energy from light and organic compounds
- 7. Match the following cellular organelles with their functions
 - A. Rough endoplasmic reticulum 1. Makes ATP B. Mitochondria 2. Convert cellular polymers to monomers C. Golgi complex 3. Synthesize proteins to be used inside the cell D. Free ribosomes 4. Synthesize proteins to be used outside the cell 5. Move materials out of the cell E. Lysosomes Codes: A B C D E (1) 2 1 5 3 4(2) 3 1 2 4 5 (3) 4 1 5 3 2 (4) 5 4 3 1 2

8. Fluid mosaic model depicts the 3-dimensional structure of cell membrane and can explain many of the vital membrane functions. Which one of the following statements is inconsistent with it? (2nd ABO)

- (1) Penetration of compounds through membrane does not depend on molecular size
- (2) Protein-lined pores traverse the lipid bilayer
- (3) Proteins and lipids of the membrane are in dynamic fluid stages
- (4) The lipid bilayer is sandwiched between proteins
- 9. Structure of plasma membrane is shown. Here 'X' indicates : (4th NSEB)

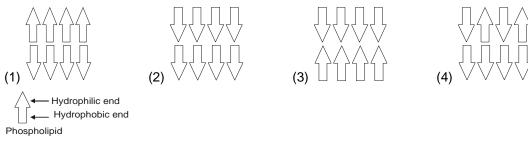

CELL BIOLOGY

(4th CBO)

(1st CBO)

(4th NSO I L)

(3rd NSO II L)


(2) cholesterol tail

(4) cytoskeleton

(1) glycoprotein

(3) peripheral protein

- 10. Centrioles
 - (1) hold sister chromatids together during metaphase
 - (2) are duplicated before cell division
 - (3) are only present during cell division
 - (4) consist of DNA and histones
 - (5) are found in plants cells
- **11.** A red blood corpuscle (RBC) was kept in a solution and treated so that it become inside-out. What will be the polarity of the phospholipid bilayer in this cell?

12. Membrane compositions of three cell types are tabulated below.

Cell Type	Membrane Composition (%)			
Centype	Protein Phospholipid		Sterol	
Rat liver cell	46	30	20	
Maize leaf cell	40	35	8	
E. coli	74	26	0	

 The % composition of inner mitochondrial membrane is likely to be

 (1) 40 : 30 : 20
 (2) 42 : 33 : 9
 (3) 43 : 33 15

- A Few cells and associated entities are listed. Which of them represents the correct ascending order of the size relative to each other (NSEB-2016)
 - (1) Mitochondrion < Paramecium < Human erythrocyte < E. coli
 - (2) Protein < Virus < Mitochondrion < Paramecium
 - (3) Chloroplast < Protein < Human sperm < frog egg
 - (4) Nuleus < protein < Paramecium < Chloroplast

14.Which of the following structure is not found in a prokaryotic cell(NSEB-2016)(i) Plasma membrane (ii) Ribosomes (iii) Endoplasmic reticulum (vi) Golgi bodies

- (1) i and ii (2) ii only (3) iii only (4) iii and iv
- 15. Which of the cellular organelles mentioned below have to import all the proteins they contains?

(8th CBO)

(4) 76 : 24 : 0

(NSEB-2016)

(1) Nucleus

(3) Chloroplast

(4) Mitochondria

16. If a fluorescing protein is attached to many free ribosomes in a cell and the cell is photographed after a time interval, the colour will appear: (NSEB-2016)

- (1) in cytoplasm only
- (2) in cytoplasm and along rough endoplasmic reticulum.
- (3) in cytoplasm, along rough endoplasmic reticulum and along wall of nucleus
- (4) in cytoplasm, along rough endoplasmic reticulum, along wall of nucleus and in the matrix of mitochondria.
- 17. Study the given illustration of a cell division. In which organ of the human body would this process take place? (NSEB-2016)

		Metaphase I	Two daughter cells	
		Centri omeres bio not divide angebere logis separ	in DNA during does not thomo-replicate	
	(1) Liver	(2) Spleen	(3) Bone marrow	(4) Gonad
18.	Which of the following	cytoskeletal structures h	ave maximum diversity o	of the component proteins?
	(1) Microtubules(3) Intermediate filame	nts	(2) Microfilaments(4) Microfibrils	(NSEB-2017)
19.	The photosynthetic pig	ment that provides effec	tive photoprotection is:	(NSEB-2017)
	(1) chlorophyll b	(2) chlorophyll e	(3) phycobilins	(4) carotenoids
20.	Which of following chan (i) presence of DNA (ii) presence of flagella (iii) presence of cytosko (iv) presence of cell wa	eleton	aryotes?	(NSEB-2017)
	(v) presence of pili			
	(v) presence of pili (1) i, ii, iii, iv and v	(2) only i, iii, and v	(3) only ii, iii and iv	(4) only i. ii, iv and v
21.	(1) i, ii, iii, iv and v	(2) only i, iii, and v f the following in increas embrane. NA.		(4) only i. ii, iv and v (NSEB-2017)

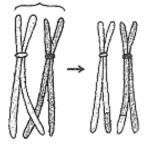
(2) Lysosomes

CELL BIOLOGY

Exercise-3

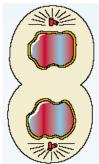
PART - I : NEET/AIPMT QUESTION (PREVIOUS YEARS)

1.	Telomeres (1) Initiate RNA synthesis (2) Help chromoatids to move towards poles (3) Seal end of chromosomes (4) Identify correct members of homologous pairs of chromosomes.				(AIPMT-2000)
2.	Which is not a compon (1) Leptotene	ent of mitosis? (2) Zygotene	(3) Pachytene	(4) All of these	(AIPMT-2000)
3.		to chromosome in the		(,),	(AIPMT-2000)
4.	Mitotic spindle is comp (1) Actin	osed of (2) Actinomyosin	(3) Myoglobin	(4) None of the	(AIPMT-2002) e above.
5.	Stage connecting meio (1) Interphase-I	sis-I and meiosis-II is (2) Interphase-II	(3) Interkinesis	(4) Anaphase-	(AIPMT-2002)
6.	At which stage chromo (1) Metaphase	smes come to lie over e (2) Anaphase	quatorial plate (3) Telophase	(4) Prophase.	(AIPMT-2003)
7.	Procaryotic and eukaryotic flagella differ in (1) Type of movement and placement (3) microtubular structure and function		(AIPM (2) Location and mode of functioning (4) Microtubular organisation and type of move		(AIPMT-2004) of movement
8.	Chlorophyll occurs in chloroplast in (1) Inner membrane (3) Outer membrane		(2) Thylakoid membran (4) Stroma	e	(AIPMT-2004)
9.	What is correct ? (1) DNA content becomes double during G_1 - phase (2) Duration of interphase is short as compared to M-phase (3) G_2 -phase follows mitotic phase (4) DNA-replication occurs in S-phase				(AIPMT-2004)
10.	 (i) Drawtreprication occurs in o prices What precedes reformation of nuclear envelope in M-phase? (1) Decondensation of chromosomes and appearance of nuclear lamina (2) Transcription of chromosomes and resassembly of phargmoplast (3) Formation of phragmoplast and contraction ring (4) Formation of contraction ring and transcription from chromosome. 				(AIPMT-2004)
11.	In choroplasts the chlor	rophyll is located in			(AIPMT-2005)


•				•	
	(1) Stroma	(2) Grana	(3) Pyrenoid	(4) Both 1 and 2.	
12.	As per fluid mosaic model, lipids and integral proteins can diffuse randomly. The model has been modified in several aspects. Which of the following statements is incorrect (AIPMT-2005) (1) Protein of cell membrane can travel within lipid bilayer (2) Protein of cell membrane can undergo flip-flop movement in lipid bilayer (3) Protein can remain confined within certain domains of the membrane (4) Many proteins remain completely embedded within lipid bilayer.				
13.	Organelle involved in	modification and routin	g of newly synthesised	proteins to their destination is (AIPMT-2005)	
	 (1) Chloroplast (3) Mitochondrion 		(2) Lysosome (4) Endoplasmic re		
14.	Centromere is require (1) Crossing over (3) Cytoplasmic cleave		(2) Transcription (4) Movement of cl	(AIPMT-2005)	
15.	 Which of the following statements about cilia is not correct? (AIPMT-2006) (1) Organised beating of cilia is controlled by fluxes of Ca²⁺ across the membrane (2) Cilia are hair like cellular appandages (3) Cilia contain an outer ring of nine doublet microtubules surrounding two singlet microtubules (4) Microtubules of cilia are composed of tubulin. 				
16.	 Which of the following statement regarding mitochondrial membrane is not correct? (AIPMT-2006) (1) Outer membrane resembles a sieve (2) Outer membrane is permeable to all kinds of molecules (3) Enzymes of electron transport chain are embedded in outer membrane (4) Inner membrane is highly convoluted forming a series of infoldings. 				
17.	Which is not constitue (1) Glycolipids	nt of cell membrane? (2) Phospholipids	(3) Cholesterol	(AIPMT-2007) (4) Proline.	
18.	 (1) Glycolipids (2) Priospholipids (3) Cholesterol (4) Prolifie. Which is wrong? (AIPMT-2007) (1) Both chloroplast and mitochondrion have an internal compartment or thylakoid space bounded by thylakoid membrane (2) Both contain DNA (3) Chloroplast is generally larger (4) Both are covered by double membrane. 				
19.	The two subunits of ri (1) Magnesium	bosomes remain uniter (2) Calcium	d at a critical ion level o (3) Copper	f (AIPMT-2008) (4) Manganese.	

CELL BIOLOGY

20. 21.	Polysome is formed by (1) A ribosome with several subunits (2) Ribosomes attached to each other in a line (3) Several ribosomes attached to a single mR (4) Many ribosomes attached to strand of endo Vacuole in a plant cell?	NA	(АІРМТ-2008) (АІРМТ-2008)
	 (1) Lacks membrane and contains air (2) Lacks membrane and contains water and e (3) Is membrane bound and contains storage p (4) Is membrane bound and contains water and 	proteins and lipids	
22.	In germinating seeds fatty acids are degraded (1) Peroxisomes (3) Mitochondria	exclusively in the (2) Glyoxysomes (4) Proplastids	(AIPMT-2008)
23.	Keeping in view the fluid mosaic model for the statement is correct with respect to movement other (described as flip-flop movement)? (1) While proteins can flip-flop, lipids cannot (3) Both lipids and proteins can flip-flop	ts of lipids and proteins (2) Neither lipids nor p	from one lipid monolayer to the (AIPMT-2008)
24.	 Genes present in the cytoplasm of eukaryotic of (1) Lysosomes and peroxisomes (2) Mitochondria and inherited via egg cytoplas (3) Golgi bodies and smooth endoplasmic retion (4) Plastids and inherited via male gamete. 	m	(AIPMT-2008)
25.	 Plasmodesmata are (1) Connection between adjacent plant cells (2) Lignified cemented layers bewteen cells (3) Locomotary stuctures (4) Membranes connecting the nucleus with plant 	asmalemma	(AIPMT-2009)
26.	Stroma in the chloroplasts of higher plant conta (1) Chlorophyll (3) Light-dependent reaction enzymes	ains (2) Light-independent (4) Ribosomes	(AIPMT-2009) reaction enzymes
27.	Middle lamella is composed mainly of (1) Phosphoglycerides (2) Hemicellulose	(3) Muramic acid	(AIPMT-2009) (4) Calcium pectate
28.	The plasma membrane consists mainly of (1) Proteins embedded in a phospholipid bilaye (2) Proteins embedded in a polymer of glucose (3) Proteins embedded in a carbohydrate bilay (4) Phospholipids embedded in a protein bilaye	e molecules er	(AIPMT-2010)


29.	Which one of the following structures between t (1) Plastoquinones (3) Plasmalemma		two adjacent cells is an effective transpo (2) Endoplasmic reticulum (4) Plasmodesmata		oort pathway? (AIPMT-2010)
30.	During mitosis ER and (1) Early metaphase	nucleolus begin to disap (2) late metaphase	pear at (3) Early prophase	(4) Late prop	(AIPMT-2010) phase
31.	Important site for forma (1) Vacuole	tion of glycoproteins and (2) Golgi apparatus	d glycolipids in (3) Plastid	(4) Lysosom	(AIPMT-2011) ne
32.	Peptide synthesis inside (1) Chloroplast	e a cell takes place in (2) Mitochondria	(3) Chromoplast	(4) Ribosom	(AIPMT-2011)
33.	Which one of the follow (1) <i>Paramecium cauda</i> (3) <i>Euglena viridis</i>		example of eukaryotic ce (2) Escherichia coli (4) Amoeba proteus	ells?	(AIPMT-2011)
34.		component that resemb	-		(AIPMT-2011)
35.	 (1) Plasma membrane (2) Nucleus (3) Ribosomes (4) Cell wall Select the correct option with respect to mitosis. (AIPMT-2011) (1) Chromatid separate but remain in the centre of the cell in anaphase. (2) Chromatids start moving towards opposite poles in telophase. (3) Golgi complex and endoplasmic reticulurn are still visible at the end of prophase. (4) Cell wall 				
36.	What would be the nun root tip cells?	nber of chromosome of	the aleurone cells of a p	lant with 42 c	hromosomes in its (AIPMT-2011)
	(1) 42	(2) 63	(3) 84	(4) 21	
37.	Ribosomal RNA is activ (1) Lysosomes	vely synthesized in (2) Nucleolus	(3) Nucleoplasm	((4) Ribosom	AIPMT Pre. 2012) nes
38.	 What is true about ribosomes? (AIPMT Pre. 2012) (1) The prokaryotic ribosomes are 80S, where "S" stands for sedimentation coefficient (2) These are composed of ribonucleic acid and proteins (3) These are found only in eukaryotic cells (4) These are self -splicing introns of some RNAs. 				
39.	 (1) Na⁺ and K⁺ ions movies (2) Proteins make up 60 (3) Lipids are arranged 	ve across cell membrand 0 to 70% of the cell mem in a bilayer with polar he		art.	(AIPMT Pre. 2012)
40.	During gamete formatio	on, the enzyme recombir (2) Anaphase - II	nase participates during (3) Prophase - I	((4) Prophas	AIPMT Pre. 2012) e - II

41. Given below is the representation of a certain event at a particular stage of a type of cell division. Which is this stage? (AIPMT Pre. 2012)

	(1) Prophase I during meiosis(3) Prophase of Mitosis		(2) Prophase II during meiosis(4) Both prophase and metaphase of mitosis	
42.	Which one of the follow (1) Ribosome	wing structure is an orga (2) Peroxisome	anelle within an organelle (3) ER	(AIPMT Mains 2012)(4) Mesosome
43.	(1) Thylakoids - flatten(2) Centrioles - sites for(3) Ribosomes - those	or active RNA synthesis	orming the grana of chlor ger (80s) while those in th	(AIPMT Mains 2012) roplasts ne cytoplasm are smaller (70s)
44.	Identify the meiotic sta remain associated at t (1) Metaphase I	•	ogous chromosomes sep (3) Anaphase I	parate while the sister chromatids (AIPMT Mains 2012) (4) Anaphase II
45.	Meiosis takes place in (1) Conidia		(2) Gemmule	(NEET-2013)

- (3) Megaspore (4) Meiocyte 46.
 - A stage in cell division is shown in the figure. Select the answer which gives correct identification of the stage with its characteristics. (NEET-2013)

(1)	Late anaphase	Chromosomes move away from equatorial plate, Golgi complex not present
(2)	Cytokinesis	Cell plate formed, mitochondria distributed between two daughter cells
(3)	Telophase	Endoplasmic reticulum and nucleolus not reformed yet
(4)	Telophase	Nuclear envelop reforms, Golgi complex reforms

CELL BIOLOGY

- 47.The complex formed by a pair of synapsed homologous chromosomes is called(NEET-2013)(1) Kinetochore(2) Bivalent(3) Axoneme(4) Equatorial plate
- 48. Which one of the following organelle in the figure correctly matches with its function? (NEET-2013)

	1220				
49.	(1) High selectivity(2) Transport saturatio(3) Uphill transport	criteria does not pertain n ecial membrane proteins			(NEET-2013)
50.	A major site for synthe	esis of lipids is			(NEET-2013)
	(1) SER	(2) Symplast	(3) Nucleoplasm	(4) RER	
51.	.,	is and carbohydrates ing organelles	and glycosidation of lipic	ds	(NEET-2013)
52.	Which structures perfo	orm the function of mitoch	nondria in bacteria?		(AIPMT-2014)
	(1) Nucleoid	(2) Ribosomes	(3) Cell wall	(4) Mesosomes	5
53.	The solid linear cytos monomer are known a (1) Microtubules	•	a diameter of 6 nm ar (2) Microfilaments	nd made up of a	single type of (AIPMT-2014)
	(3) Intermediate filame	ents	(4) Lamins		
54.	The osmotic expansio	n of a cell kept in water is	s chiefly regulated by:		(AIPMT-2014)
	(1) Mitochondria	(2) Vacuoles	(3) Plastids	(4) Ribosomes	

Match the following ar	d select the cor	rect answe	er:			(AIPMT-2014)
(a) Centriole	(i) Infoldings i	n mitocho	ndria			
(b) Chlorophyll	(ii) Thylakoids	5				
(c) Cristae	(iii) Nucleic ac	cids				
(d) Ribozymes	(iv) Basal bod	ly cilia or f	flagella			
A	В	С		D		
(1) (iv)	(ii)	(i)		(iii)		
(2) (i)	(ii)	(iv)		(iii)		
(3) (i)	(iii) (iii)	(ii)		(iv)		
(4) (iv)	(iii)	(i)		(ii)		
During which phase(s) denoted as 2C ?) of cell cycle, ar	mount of I	DNA in	a cell remains a	at 4 C level if t	the initial amount is (AIPMT-2014)
(1) G_0 and G_1	(2) $\rm G_1$ and $\rm S$		(3) Or	nly G ₂	(4) G_2 and I	M
In 'S' phase of the cell	cycle:					(AIPMT-2014)
(1) amount of DNA do	ubles in each ce	ell.				
(2) amount of DNA rer	nains same in e	ach cell.				
(3) chromosome numb						
(4) amount of DNA is i		in each ce	ell.			
The enzyme recombin	ase is required a	at which s	stage of	meiosis:		(AIPMT-2014)
(1) Pachytene			-	gotene		(**************************************
(3) Diplotene				akinesis		
Which of the following	are not membra	ane-hound				(Re-AIPMT-2015)
(1) Ribosomes				sosomes		
(3) Mesosomes			.,	icuoles		
(3) Mesosonies			(4) Va	icuoles		
The function of the ga	o junction is to					(Re-AIPMT-2015)
(1) facilitate communi				by connecting th	ne cytoplasm f	or rapid transfer of
ions, small molecu	iles and some la	arge moleo	cules.			
(2) separate two cells	from each other	r				
(3) stop substance fro	m leaking acros	s a tissue	;			
(4) performing cemen	ting to keep neig	ghbouring	cells to	ogether.		
Which of the following	structure is not	found in a	a proka	ryotic cell?		(Re-AIPMT-2015)
(1) Ribosome	(2) Mesosome		•	asma membrane	e (4) Nuclear	envelope
The structures that he	lo somo bactoria	to attach	to roc	ks and / or bost t	tissues are:	(Re-AIPMT-2015)
	-					. ,
(1) Fimbriae	(2) Mesosome	35	(3) HC	oldfast	(4) Rhizoids	5
Chromatophores take	part in :					(Re-AIPMT-2015)
(1) Growth	(2) Movement	t	(3) Re	espiration	(4) Photosy	nthesis

64. Identify the correct order of organisation of genetic material from largest to smallest : (Re-AIPMT-2015)

	 (1) Genome, chromosome, nucleotide, gene (2) Genome, chromosome, gene, nucleotide (3) Chromosome, genome, nucleotide, gene (4) Chromosome, gene, genome, nucleotide 							
65.	(1) wi	toplast is thout nuc thout cel	cleus			(2) undergoing divisio (4) without plasma me		
66.	(1) Nu	ani rings icleotide NA and p	synthes	sis		(Re-AIPMT-2015) (2) Polysaccharide synthesis (4) Lipid synthesis		
67.	Colur (a) Th (b) Cr (c) Cis	nn-l Iylakoids	5	d identif (c) (i) (iv) (ii) (i)	y the correct o (d) (ii) (ii) (i) (i)	ption. Column-II (i) Disc-shaped sacs i (ii) Condensed structu (iii) Flat membranous (iv) Infoldings in mitoc	are of DNA sacs in stroma	
68.	Cellul (1) ch (2) en (3) lys (4) nu	ar organ ormosor doplasm cosomes clei, ribo	elles wit mes, ribo nic reticu , Golgi a psomes a	h memb psomes a llum, ribo apparatu and mito	aranes are: and endoplasn psomes and nu s and mitochol chondria	uclei	(Re-AIPMT-2015) (Re-AIPMT-2015)	
69.	(a) Cr (b) Sy (c) Te (d) Dia	ge the fo ossing o napsis rminalisa sappeara), (a), (c)	ation of ance of	chiasma nucleolu	ta	·		
70.	Water		pigmen	ts found	in plant cell va inthophylls	(3) (b), (c), (d), (a) acuoles are: (3) Chlorophylls	(4) (b), (a), (d), (c) (NEET-1-2016) (4) Carotenoids	

71.	Mitochondria and chlore	oplast are:			(NEET-1-2016)	
	(a) Semi-autonomous organelles(b) Formed by division of pre-existing organelles and they contain DNA but lack protein					
	machinery.					
	Which one of the follow	ring options is correct?				
	(1) Both (a) and (b) are		(2) Both (a) and (b) are			
	(3) (b) is true but (a) is t	false.	(4) (a) is true but (b) is	false.		
72.	Which of the following i	s not a feature of the pla	smids?		(NEET-1-2016)	
	(1) Single - stranded		(2) Independent replica	tion		
	(3) Circular structure		(4) Transferable			
73.	In meiosis crossing ove	er is initiated at:			(NEET-1-2016)	
	(1) Diplotene		(2) Pachytene			
	(3) Leptotene		(4) Zygotene			
74.	Which of the following i	s not a characteristic fea	ture during mitosis in sor	matic cells?	(NEET-1-2016)	
	(1) Synapsis		(2) Spindle fibres			
	(3) Disappearance of n	ucleolus	(4) Chromosome move	ment		
75.	Microtubules are the co	onstituents of:			(NEET-1-2016)	
	(1) Centrosome, Nucleo	osome and Centrioles	(2) Cilia, Flagella and P	eroxisomes		
	(3) Spindle fibres, Cent	rioles and Cilia	(4) Centrioles, Spindle	fibres and Chro	matin.	
76.	Spindle fibres attach or	n to:			(NEET-1-2016)	
	(1) Kinetosome of the c	hromosome	(2) Telomere of the chr	omosome		
	(3) Kinetochore of the c	chromosome	(4) Centromere of the c	hromosome		
77.	Which one of the follow	ring cell organelles is end	closed by a single memb	rane?	(NEET-1-2016)	
	(1) Nuclei		(2) Mitochondria			
	(3) Chloroplasts		(4) Lysosomes			
78.	that this cell is not like	other cells at telophase	ent in a plant brought fro stage. There is no form as as compared to other	nation of cell pla	ate and thus the	
	(1) Polyteny		(2) Aneuploidy			
	(3) Polyploidy		(4) Somaclonal variatio	n		
79.	A cell organelle contain	ing hydrolytic enzymes i	S		(NEET-2-2016)	
	(1) mesosome	(2) lysosome	(3) microsome	(4) ribosome		
80.	During cell growth, DNA	A synthesis takes place i	n		(NEET-2-2016)	
	(1) M phase	(2) S Phase	(3) G1 phase	(4) G2 phase		
81.	When cell has stalled D	NA replication fork, whic	ch checkpoint should be	predominantly a	activated? (NEET-2-2016)	
	(1) Both G2/M and M	(2) G1/S	(3) G2/M	(4) M	(

83.

84.

85.

86.

87.

88.

89.

82. Match the stages of meiosis in Column-I to their characteristic features in Column-II and select the correct option using the codes given below: (NEET-2-2016)

Colu									
	mn-i		Colu	mn-ll					
a. Pa	chytene		(i) Pa	iring of homo	logous chromosomes				
b. Metaphase I			(ii) Te	(ii) Terminalization of chiasmata -					
c. Dia	akinesis		(iii) C	rossing-over	takes place				
d. Zyg	gotene		(iv) C	hromosomes	align at equatorial plate				
Code	es:								
	а	b	С	d					
(1)	(iv)	(iii)	(ii)	(i)					
(2)	(iii)	(iv)	(ii)	(i)					
(3)	(i)	(iv)	(ii)	(iii)					
(4)	(ii)	(iv)	(iii)	(i)					
Whicl ATP ²		followin	g cell o	rganells is re	esponsible for extracting	energy from carb	oohydrates to for (NEET-201		
(1) Ly	/sosome	!	(2) R	ibosome	(3) Chloroplast	(4) Mitochor	ndrion		
					ill agour				
Whicl (1) C (2) C –	h of the f Condensa Condensa → segreg	following ation \rightarrow ation \rightarrow pation \rightarrow) options nuclear nuclear telopha	membrane di membrane di se	rrect sequences of event isassembly \rightarrow crossing c isassembly \rightarrow arrangeme	over \rightarrow segregation ent at equator \rightarrow c	n → telophase entromere divisio		
Whicl (1) C (2) C (3) C	h of the f Condensa Condensa → segreg Condensa	following ation \rightarrow ation \rightarrow pation \rightarrow o	options nuclear nuclear telopha crossing	gives the commembrane di membrane di membrane di se over \rightarrow nucle	rrect sequences of even isassembly \rightarrow crossing c	over \rightarrow segregation ent at equator \rightarrow c bly \rightarrow segregation	n → telophase entromere divisio → telophase		
Whicl (1) C (2) C (3) C (4) C	h of the f Condensa Condensa → segreg Condensa Condensa	following ation \rightarrow ation \rightarrow ation \rightarrow o ation \rightarrow	options nuclear nuclear telopha crossing arrangei	gives the commembrane di membrane di membrane di se over \rightarrow nucle ment at equat	rrect sequences of event isassembly \rightarrow crossing of isassembly \rightarrow arrangement ear membrane disassem	over \rightarrow segregation ent at equator \rightarrow c bly \rightarrow segregation on \rightarrow segregation -	a → telophase entromere divisio → telophase → telophase		
Whicl (1) C (2) C (2) C (3) C (4) C Whicl	h of the f Condensa Condensa → segreg Condensa Condensa	following ation \rightarrow ation \rightarrow ation \rightarrow o ation \rightarrow	options nuclear nuclear telopha crossing arrangei	gives the commembrane di membrane di membrane di se over \rightarrow nucle ment at equat	rrect sequences of event isassembly \rightarrow crossing of isassembly \rightarrow arrangement ear membrane disassem tor \rightarrow centromere divisio	over \rightarrow segregation ent at equator \rightarrow c bly \rightarrow segregation in \rightarrow segregation - bacterial cell?	a → telophase entromere divisio → telophase → telophase		
Whicl (1) C (2) C (3) C (4) C Whicl (1) C	h of the f Condensa Condensa > segreg Condensa Condensa h of the f	following ation \rightarrow ation \rightarrow ation \rightarrow c ation \rightarrow following	options nuclear telopha crossing arrangei compoi	gives the commembrane di membrane di membrane di se over \rightarrow nucle ment at equat	rrect sequences of event isassembly \rightarrow crossing of isassembly \rightarrow arrangeme ear membrane disassem tor \rightarrow centromere division as sticky character to the	over \rightarrow segregation ent at equator \rightarrow c bly \rightarrow segregation in \rightarrow segregation - bacterial cell?	a → telophase entromere divisio → telophase → telophase		
Whicl (1) C (2) C (3) C (4) C (4) C (4) C (3) pla (3) pla (3) pla (1) Pr	h of the f Condensa Condensa Sondensa Condensa h of the f ell wall asma me	following ation \rightarrow ation \rightarrow ation \rightarrow ation \rightarrow following following ding	options nuclear telopha crossing arranger compor	gives the commembrane di membrane di se over \rightarrow nucle ment at equat nents provide does <i>not</i> occ	prrect sequences of event isassembly \rightarrow crossing c isassembly \rightarrow arrangeme ear membrane disassem tor \rightarrow centromere divisio es sticky character to the (2) Nuclear memb	over \rightarrow segregation ent at equator \rightarrow c bly \rightarrow segregation in \rightarrow segregation $-$ bacterial cell? rane reticulum? ynthesis	n → telophase entromere divisio → telophase → telophase (NEET-2017		
Whicl (1) C (2) C (3) C (4) C (4) C (4) C (3) pla (3) pla (1) Pr (3) Cl	h of the f Condensa Condensa Sondensa Condensa Condensa h of the f ell wall asma ma h of the f	following ation \rightarrow ation \rightarrow ation \rightarrow ation \rightarrow following ding of signa	options nuclear telopha crossing arrangei compoi	gives the commembrane di membrane di se over \rightarrow nucle ment at equat nents provide does <i>not</i> occ	rrect sequences of event isassembly → crossing of isassembly → arrangeme ear membrane disassem tor → centromere divisio es sticky character to the (2) Nuclear memb (4) Glycocalyx cur in rough endoplasmic (2) Phospholipid s	over \rightarrow segregation ent at equator \rightarrow c bly \rightarrow segregation in \rightarrow segregation $-$ bacterial cell? rane reticulum? ynthesis	n → telophase eentromere divisio → telophase → telophase (NEET-2017 (NEET-2018		
Whicl (1) C (2) C (3) C (4) C (4) C (4) C (4) C (3) pl: (3) pl: (3) pl: (3) cl (3) C (1) La (2) Pc (3) Su	h of the f condensa condensa condensa condensa condensa condensa condensa h of the f ell wall asma ma h of the f rotein fol leavage ct the <i>inc</i> ampbrus olytene c	following ation \rightarrow ation \rightarrow ation \rightarrow ation \rightarrow following ding of signa correct m h Chrom chromos entric ch	options nuclear telopha crossing arrangei compoi compoi e overts l peptide natch: nosome omes - nromoso	gives the commembrane di membrane di se over \rightarrow nucle ment at equat nents provide does <i>not</i> occ does <i>not</i> occ biplotene bi Oocytes of an mes - L-shap	rrect sequences of event isassembly → crossing of isassembly → arrangeme ear membrane disassem tor → centromere divisio es sticky character to the (2) Nuclear memb (4) Glycocalyx cur in rough endoplasmic (2) Phospholipid s (4) Protein glycosy ivalents	over \rightarrow segregation ent at equator \rightarrow c bly \rightarrow segregation in \rightarrow segregation $-$ bacterial cell? rane reticulum? ynthesis	entromere divisio \rightarrow telophase		
Whicl (1) C (2) C (3) C (4) C (4) C (4) C (3) pl: (3) pl: (3) pl: (3) cl (3) cl (1) La (2) Pc (3) Su (4) Al	h of the f condensa condensa condensa condensa condensa condensa h of the f ell wall asma ma h of the f rotein fol leavage ct the <i>inc</i> ampbrus olytene c ubmetac losomes	following ation \rightarrow ation \rightarrow ation \rightarrow ation \rightarrow following ding of signa forrect m h Chrom chromos entric ch s - Sex c	options nuclear telopha crossing arrangei compoi compoi e vevents l peptide natch: nosome omes - nromoso hromoso	gives the commembrane di membrane di se over \rightarrow nucle ment at equat nents provide does <i>not</i> occ does <i>not</i> occ b Diplotene bi Oocytes of ar mes - L-shap omes	rrect sequences of event isassembly → crossing of isassembly → arrangeme ear membrane disassem tor → centromere divisio es sticky character to the (2) Nuclear memb (4) Glycocalyx cur in rough endoplasmic (2) Phospholipid s (4) Protein glycosy ivalents mphibians	over \rightarrow segregation ent at equator \rightarrow c bly \rightarrow segregation in \rightarrow segregation - bacterial cell? trane reticulum? ynthesis ylation	n → telophase eentromere divisio → telophase → telophase (NEET-2017 (NEET-2018 (NEET-2018		
Whicl (1) C (2) C (3) C (4) C (4) C (4) C (1) C (3) pla (1) Pr (3) Cl (1) Pr (3) Cl (2) Pc (3) S (2) Pc (3) S (4) Al Many	h of the f condensa c	following ation \rightarrow ation \rightarrow ation \rightarrow ation \rightarrow c ation \rightarrow c ation \rightarrow following of signa orrect m h Chrom chromos entric ch s - Sex c mes may	options nuclear telopha crossing arrangei compoi compoi e ocompoi ocome oc	gives the co membrane di membrane di se over → nucle ment at equat nents provide does <i>not</i> occ o - Diplotene bi Oocytes of ar mes - L-shap omes te with a sing	rrect sequences of event isassembly → crossing of isassembly → arrangeme ear membrane disassem tor → centromere divisio es sticky character to the (2) Nuclear memb (4) Glycocalyx cur in rough endoplasmic (2) Phospholipid s (4) Protein glycosy ivalents mphibians ped chromososmes	over \rightarrow segregation ent at equator \rightarrow c bly \rightarrow segregation in \rightarrow segregation - bacterial cell? trane reticulum? ynthesis ylation	n → telophase eentromere divisio → telophase → telophase (NEET-2017 (NEET-2018 (NEET-2018		

CELL BIOLOGY

90.	The stage during whi (1) Pachytene	ich separation of the paire (2) Zygotene	d homologous chromo (3) Diakinesis	osomes begins is (4) Diplotene	(NEET-2018)
91.	(1) Larger nucleoli ar				(NEET-2018)
92.	The Golgi complex p (1) Fatty acid breakd (3) Respiration in bac	own	(2) Activation of am (4) Formation of see		(NEET-2018)
93.	Cells in G ₀ phase : (1) terminate the cell (3) enter the cell cycl	•	(2) exit the cell cycl (4) suspend the cel	e	Г-1-2019)
94.	The concept of "Omr (1) Aristotle	nis cellula-e cellula"regard (2) Rudolf Virchow	cell division was first (3) Theodore Schw		T-1-2019)
95.	The shorter and long (1) m-arm and n-arm (3) p-arm and q-arm		ric chromosome are re (2) s-arm and l-arm (4) q-arm and p-arn	respectively	T-1-2019)
96.	The correct sequence (1) $G1 \rightarrow S \rightarrow G_2 \rightarrow I$ (3) $G_1 \rightarrow G_2 \rightarrow S \rightarrow I$		3 : (2) M→G ₁ →G ₂ → S (4) S → G ₁ → G ₂ →		⁻ 1-2019)
97.	Which of the followin (1) Nuclear envelope (3) Chloroplast and V		not contain DNA? (2) Mitochondria an (4) Lysosomes and	d Lysosome	r-1-2019)
98.	 Which of the following statements is not correct (NEET-1-2019) (1) Lysosornes are formed by the process of packaging in the endoplasmic reticulum (2) Lysosomes have numerous hydrolytic enzymes. (3) The hydrolytic enzymes of lysosomes are active under acidic pH. (4) Lysosomes are membrane bound strucutres 				
		zymes of lysosomes are a	ctive under acidic pH.		

100.	Which of the following	cell organelles is pres	ent in the highest number	-
	(1) Mitochondria (3) Endoplasmic retice	ulum	(2) Golgi complex (4) Lysosomes	(NEET-2-2019)
101.	Non-membranous nue	cleoplasmic structures	in nucleus are the site for	active synthesis of (NEET-2-2019)
	(1) protein synthesis	(2) mRNA	(3) rRNA	(4) tRNA
102.	Which of the following	nucleic acids is prese	nt in an organism having	70 S ribosomes only? (NEET-2-2019)
	、 <i>)</i>	-		х <i>У</i>
103.	(1) same amount of D(2) twice the amount of D(3) same amount of D	sultant daughter cells h NA as in the parent ce of DNA in comparison t NA in comparison to h ount of DNA in compari	II in S phase. o haploid gamete.	(NEET-2-2019)
104.	Match the column I with Column I (a) Golgi apparatus (b) Lysosomes (c) Vacuoles (d) Ribosomes Choose the right match (1)(a)-(iii), (b)-(iv), (c)- (2) (a)-(iv), (b)-(iii), (c)- (3) (a)-(iii), (b)-(ii), (c)- (4) (a)-(i), (b)-(ii), (c)-(a)	Column II (i) Synthesis of protection (ii) Trap waste and ec- (iii) Formation of gly (iv) Digesting biomo (iv) Digesting biomo ch from options given b (ii), (d)-(i) -(i), (d)-(ii) (iv), (d)-(i)	excretory products coproteins and glycolipids lecules	(NEET-2-2019)
105.	Crossing over takes p	lace between which ch	romatids and in which sta	age of the cell cycle? (NEET-2-2019)
	(2) Non-sister chroma (3) Non-sister chroma	tids of homologous chi tids of homologous chi	s chromosomes at Zygote romosomes at Pachytene romosomes at Zygotene s s chromosomes at Pachy	ene stage of prophase I. stage of prophase I.
	PAR	T - II : AIIMS QUE	STION (PREVIOUS)	(EARS)
1.	Which of the following (1) Lomasome	is present between ce (2) Microsome	ell walls of the plant cell (3) Lysosome	(AlIMS-1999) (4) Middle lamella
2.	Shape of metacentric	chromosome in anaph	ase is	(AIIMS-1999)

3.	Cell wall is absent in

(1) L-shaped

(1) Amoeba

(2) V-shaped

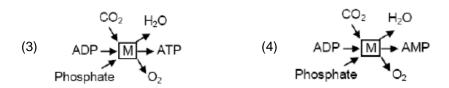
(2) Chara

(3) Yeast

(3) J-shaped

(4) *E. Coli*

(4) I-shaped


CELL BIOLOGY

4.	During cell cycle, two	molecules of DNA are p	present in chromsome d	uring	(AIIMS-2001)	
	(1) G ₁ phase		(2) Beginning of S-p	hase		
	(3) G ₂ phase		(4) End of M-phase.			
5.	The organelle connec	ted with β -oxidation or	fat digestion is		(AIIMS-2002)	
	(1) Glyoxysome	(2) Sphaerosome	(3) Peroxisome	(4) Mitochondr	ian.	
6.	Plasmodesmata conne	ections help in			(AIIMS-2003)	
	(1) Cytoplasmic strear	ning	(2) Synchronous mit	totic divisions		
	(3) Locomotion of unic	ellular organisms	(4) Movement of sub	ostances between o	cells.	
7.		g statement regarding	-		(AIIMS-2005)	
	(1) Lysosomes are de enzymes	ouble membraned ves	cles budded off from C	Golgi bodies and c	ontain digestive	
	(2) Endoplasmic retion synthesis and sec		etwork of membranous	s tubules and help	os in transport,	
	•	ounded by two membra	anes, lack pigments but	contain their own [ONA and protein	
	(4) Sphaerosomes an lipids.	re single membrane b	ound and are associat	ed with synthesis	and storage of	
8.	When synapsis is com	plete all along the chro	mosomes, the cell is sa	id to have entered a	a stage called? (AIIMS-2005)	
	(1) Diakinesis	(2) Diplotene	(3) Pachytene	(4) Zygotene.		
9.	Which is common betw	ween chloroplasts, chro	moplasts and leucoplas	ts ?	(AIIMS-2006)	
	(1) Presence of pigme	nts	(2) Presence of thyla	akoids and grana		
	(3) Storage of starch,	proteins and lipids.	(4) Ability to multiply	by a fission-like pr	ocess	
10.	Enzyme catalase is fo	und in			(AIIMS-2006)	
	(1) Lysosome	(2) Spherosome	(3) Peroxisome	(4) All of these		
11.	The telomeres of euka	aryotic chromosomes co	onsists of short sequenc	es of	(AIIMS-2007)	
	(1) Cytosine rich repea	ats	(2) Thymine rich rep	(2) Thymine rich repeats		
	(3) Adenine rich repea	ts	(4) Guanine rich rep	eats.		
12.	Match the following -				(AIIMS-2007)	
	(a) tRNA		1. Linking of amino	acids		
	(b) mRNA		2. Transfer of gener	tic information		
	(c) rRNA		3. Nucleolar organis	ing region		
	(d) Peptidyl transferas	е	4. Transfer of amine	o acid from cytoplas	sm to ribosome.	
	(1) a–4, b–2,c–3, d–1		(2) a–1, b–4,c–3, d–	-2		
	(3) a–1, b–2,c–3, d–4		(4) a–1, b–3,c–2, d–	-4		

13.	What is correct about the movement of substance across the membrane in facilitated diffusion?					
	(1) It is an active transport					
	(2) It causes transport of molecules from low concentration to high concentration					
	(3) It is insensitive to inhibitors					
	(4) It is a very specific	transport				
14.	Who invented electror	n microscope?			(AIIMS 2010)	
	(1) Janssen	(2) Edison	(3) Knoll & Ruska	(4) Landsteine	r	
15.	The percentage of cel	I surface that is imperme	able for ions is		(AIIMS 2011)	
	(1) 1%	(2) 99.9%	(3) 90%	(4) 73%	(**********	
			()			
16.	Satellite of chromosor				(AIIMS 2011)	
	(1) rich in RNA and de	ficient in DNA	(2) rich in DNA and de	eficient in RNA		
	(3) rich in protein		(4) lacks DNA			
17.	Which of the following	ions are necessary for a	assembly of microtubules	?	(AIIMS 2011)	
	(1) Na ⁺ and K ⁺	(2) Ca ²⁺ and Cl ⁻	(3) Ca ⁺ and Mg ²⁺	(4) Na⁺ and Ca	l ²⁺	
18.	Basis of life are				(AIIMS 2011)	
	(1) nucleic acids	(2) proteins	(3) nucleoproteins	(4) amino acida	5	
19.	Which chromosome m	nay lost during cell divisio	on?		(AIIMS 2012)	
	(1) Giant chromosome	9	(2) Acentric chromoso	ome		
	(3) Polycentric chromo	osome	(4) Telocentric chromo	osome		
20.	Three morphological f	orms of Golgi complex a	re		(AIIMS 2012)	
	(1) Lamellae, tubules	and vesicles	(2) Cisternae, tubules	and vesicles		
	(3) Cisternae, tubules	and lamellae	(4) Granum, thalykoids and vesicles			
21.	Which is the longest p	hase of the cell cycle?			(AIIMS - 2014)	
	(1) M-phase	(2) Interphase	(3) Leptotene	(4) S-phase	(/	
22.		lls may vary with the fun	ction they perform		(AIIMS-2015)	
	II. Human RBC is abo					
		ain arena of cellular acti				
	IV. Various chemical r	eactions' occur in cytopl	asm to keep the cell in th	e living stage		
	(1) All are correct		(2) Only I and II are co	orrect		
	(3) Only IV is correct		(4) All are wrong			

23. Which of the following representation correctly explain the function of mitochondrion? (AIIMS-2015)

- 24. Which of the following statements are correct?
 - (i) In prokaryotic cells, a special membranous structure formed by the extension of the plasma membrane into the cell is known as polysome.
 - (ii) The smooth endoplasmic reticulum is the major site for synthesis of glycoproteins.
 - (iii) RuBisCO is the most abundant protein in the whole biosphere.
 - (iv) Mitochondria, chloroplasts and peroxisomes are not considered as part of endomembrane system.
- (1) (iii) and (iv) (2) (i) and (ii) (3) (ii) and (iii) (4) (i) and (iv) .25. How many mitotic divisions are needed for a single cell to make 128 cells? (AIIMS-2016) (1)7(2) 14 (3) 28(4) 6426. Mitochondria and chloroplast are believed to be bacterial endoymbiont because (AIIMS-2017) I. they have self nucleic acid i.e., circular ds, DNA and RNAs II. 70s ribosomes III. their membrane resembles that of bacteria, having pour proteins. IV. ETS and ATP forming machienary is present. (1) I and II (2) I, II and III (3) All of these (4) I and IV 27. Identify the correct matched pair (AIIMS-2017) (1) Exchange of segments of chromatids-Zygotene (2) Terminalisation of chiasmata-Diakinesis (3) Appearance of chiasmata-Leptotene
 - (4) Synapsis of homologous chromosomes-Diplotene

(AIIMS-2016)

28.	Interphase divides in	(AIIMS-2018-I)			
	(1) G ₁ , S, G ₂				
	(2) Mitosis				
	(3) Prophase, meta	ohase, Anaphase, Teloph	ase		
	(4) Cytokinesis				
29.	Synthesis of lipids 8	carbohydrates is regulate	ed by-		(AIIMS-2018-II)
	(1) SER	(2) RER	(3) Ribosomes	(4) Lysosor	nes
30.	Choose the incorrec	t about mitochondria -			(AIIMS-2018-II)
	(1) Has 80S riboson	ne	(2) Naked circular D	NA	
	(3) ETS on inner mi	tochondrial membrane	(4) Power house of t	he cell	
31.	Where does glycosy	/lation of protein occur?			(AIIMS-2018-II)
	(1) Endoplasmic ret	iculum	(2) Lysosomes		
	(3) Mitochondria		(4) Chloroplast		
32.	Function of smooth	endoplasmic reticulum is			(AIIMS-2018-III)
	(1) Synthesis of lipio		(2) Synthesis of min	erals	(**************************************
	(3) Synthesis of pro		(4) None		
33.	All the digestive enz	zymes like carbohydrase,	protease, lipase, DNase	e, RNase are for	
					(AIIMS-2018-IV)
	(1) Lysosome	(2) peroxisome	(3) Glyoxysome	(4) Vacuole	9
34.	RNA is found in :				(AIIMS-2018-IV)
	(1) Chloroplast, mito	ochondria	(2) Golgibody, Chlor	oplast	
	(3) Lysosome, Mitor	chondria	(4) Centrioles, Mitoc	hondria	

Answers

EXERCISE - 1													
SECT	FION - A												
1.	(4)	2.	(4)	3.	(4)	4.	(4)	5.	(4)	6.	(4)	7.	(1
8.	(2)												
SECT	TION - B												
1.	(3)	2.	(4)	3.	(3)	4.	(3)	5.	(2)	6.	(3)	7.	(1
SECT	TION - C												
1.	(3)	2.	(2)	3.	(4)	4.	(4)	5.	(1)	6.	(4)		
SECT	TION - D												
1.	(4)	2.	(4)	3.	(2)	4.	(3)	5.	(4)	6.	(4)	7.	(2
SEC	TION - E												
1.	(4)	2.	(1)	3.	(3)	4.	(4)	5.	(2)	6.	(3)	7.	(3
8.	(3)	9.	(4)	10.	(4)	11.	(3)	12.	(3)	13.	(3)	14.	(4
15.	(4)												
	TION - F												
1.	(3)	2.	(1)	3.	(2)	4.	(3)	5.	(1)	6.	(1)	7.	(2
8.	(4)	9.	(1)	10.	(3)								
	FION - G												
1.	(4)	2.	(4)	3.	(1)	4.	(2)	5.	(3)	6.	(2)	7.	(3
8.	(1)	9.	(3)										
	TION - H												
	(3)	2.	(1)	3.	(2)	4.	(4)	5.	(4)	6.	(2)		
	FION - I	_				_		_	(-)	_		_	
1.	(1)	2.	(4)	3.	(4)	4.	(3)	5.	(3)	6.	(3)	7.	(4
8.	(1)	9.	(4)										
	FION - J	2	$\langle 0 \rangle$	2	(1)	4	(0)	F	(1)	~	(1)	7	14
	(1)	Ζ.	(3)	3.	(4)	4.	(3)	5.	(4)	6.	(4)	7.	(1
5EC1	(2)	n	(2)	2	(2)	A	(1)	E	(1)	c	(2)	7	10
ı. 8.	(3) (4)	2. 9.	(2) (4)	3. 10.	(2) (3)	4. 11.	(4) (4)	5.	(4)	6.	(3)	7.	(3
	(4) FION - L	э.	(+)	10.	(3)	11.	(4)						
1.	(3)	2.	(2)	3.	(1)	4.	(1)	5.	(2)	6.	(4)	7.	(3
ı. 8.	(3)	£.	(4)	5.	(1)	7.	(1)	5.	(4)	0.	(*)		(J
	(<i>ב</i>) ۲ ΙΟΝ - Μ												
1	(1)	2.	(1)	3.	(1)	4.	(2)	5.	(2)	6.	(1)	7.	(1
8.	(4)	2. 9.	(1)	10.	(1)	 11.	(2)	12.	(2)	13.	(1)	14.	(4
15.	(1)	16.	(3)	17.	(3)	18.	(4)	19.	(2)	20.	(4)	21.	(4
22.	(2)	23.	(4)	24.	(3)	25.	(1)	26.	(4)	27.	(4)	28.	(2
29.	(4)	30.	(4)	31.	(2)	32.	(3)	33.	(3)	34.	(2)		(

				M	SCEL	LANEC	OUS Q	UESTIC	ONS				
1.	(1)	2.	(1)	3.	(3)	4.	(2)	5.	(2)	6.	(4)	7.	(1)
8.	(3)	9.	(1)	10.	(3)	11.	(3)	12.	(3)	13.	(4)	14.	(4)
15.	(1)	16.	(3)	17.	(2)	18.	(4)	19.	(4)	20.	(4)	21.	(2)
22.	(1)	23.	(4)	24.	(4)	25.	(4)	26.	(2)	27.	(1)	28.	(3)
29.	(4)	30.	(1)	31.	(1)	32.	(2)	33.	(2)	34.	(1)	35.	(2)
36.	(4)	37.	(3)	38.	(2)	39.	(1)	40.	(2)	41.	(2)	42.	(4)
43.	(2)	44.	(4)	45.	(3)	46.	(4)	47.	(3)	48.	(2)	49.	(2)
50.	(3)	51.	(1)	52.	(2)	53.	(1)	54.	(3)	55.	(4)	56.	(1)
57.	(2)	58.	(3)	59.	(1)	60.	(3)	61.	(1)	62.	(1)	63.	(1)
64.	(3)	65.	(2)										
						EXER	CISE -	2					
1.	(2)	2.	(4)	3.	(1)	4.	(1)	5.	(1)	6.	(2)	7.	(3)
8.	(4)	9.	(1)	10.	(2)	11.	(1)	12.	(4)	13.	(1)	14.	(4)
15.	(2)	16.	(3)	17.	(4)	18.	(3)	19.	(4)	20.	(4)	21.	(2)
						EXER	CISE -	3					
						PA	RT- I						
1.	(3)	2.	(4)	3.	(4)	4.	(4)	5.	(3)	6.	(1)	7.	(4)
8.	(2)	9.	(4)	10.	(1)	11.	(2)	12.	(2)	13.	(4)	14.	(4)
15.	(1)	16.	(3)	17.	(4)	18.	(1)	19.	(1)	20.	(3)	21.	(4)
22.	(2)	23.	(4)	24.	(2)	25.	(1)	26.	(2)	27.	(4)	28.	(1)
29.	(4)	30.	(4)	31.	(2)	32.	(4)	33.	(2)	34.	(1)	35.	(4)
36.	(2)	37.	(2)	38.	(2)	39.	(4)	40.	(3)	41.	(1)	42.	(1)
43.	(1)	44.	(3)	45.	(4)	46.	(4)	47.	(2)	48.	(3)	49.	(3)
50.	(1)	51.	(3)	52.	(4)	53.	(2)	54.	(2)	55.	(1)	56.	(4)
57.	(1)	58.	(1)	59.	(1)	60.	(1)	61.	(4)	62.	(1)	63.	(4)
64.	(2)	65.	(3)	66.	(3)	67.	(1)	68.	(3)	69.	(1)	70.	(1)
71.	(4)	72.	(1)	73.	(2)	74.	(1)	75.	(3)	76.	(3)	77.	(4)
78.	(3)	79.	(2)	80.	(2)	81.	(3)	82.	(2)	83.	(4)	84 .	(3)
85.	(2)	86.	(4)	87.	(2)	88.	(2)	89.	(1)	90.	(4)	91.	(2)
92.	(4)	93.	(2)	94.	(2)	95.	(3)	96.	(1)	97.	(4)	98.	(1)
99.	(3)	100.	(2)	101.	(3)	102.	(2)	103.	(2)	104.	(1)	105.	(2)
						РА	RT- II						
1.	(4)	2.	(2)	3.	(1)	4.	(3)	5.	(1)	6.	(4)	7.	(1)
8.	(3)	9.	(4)	10.	(3)	11.	(4)	12.	(1)	13.	(4)	14.	(3)
15.	(2)	16.	(1)	17.	(3)	18.	(1)	19.	(2)	20.	(2)	21.	(2)
22.	(1)	23.	(1)	24.	(1)	25.	(1)	26.	(3)	27.	(2)	28.	(1)
29.	(1)	30.	(1)	31.	(1)	32.	(1)	33.	(1)	34.	(1)		

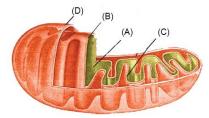
Self Practice Paper (SPP)

1.	Which function is performed by Golgi body?									
	(1) Protein synthesis		(2) Formation of acrosome(4) Intracellular digestion							
	(3) Lipid synthesis									
2.	Which of the following	is found in cyanobacteria	for nitrogen fixation							
	(1) Mesosome	(2) Gas vacuoles	(3) Chromatophores	(4) Heterocyst						
3.	Sphaerosome perform	S								
	(1) Synthesis of polype	eptides	(2) Extracellular digest	ion						
	(3) Transformation of r	nembrane	(4) Synthesis and stora	age of lipids						
4.	Membrane less structu	ure is								
	(1) Lysosome	(2) Peroxisome	(3) Ribosome	(4) Glyoxysome						
5.	What is not common ir	n both chloroplast and mi	tochondria							
	(1) Presence of DNA 8	& RNA	(2) Presence of 70S ribosomes							
	(3) Presence of oxidati	ive phosphorylation	(4) Presence of double covering membranes							
6.	Acid phosphatase is m	arker enzyme of								
	(1) ER	(2) Lysosome	(3) Mitochondria	(4) Golgibody						
7.	Cytoplasmic streaming	g or cyclosis is due to								
	(1) Microfilament		(2) Intermediate filament							
	(3) Endoplasmic reticu	lum	(4) Microtubules & Endoplasmic reticulum							
8.	Which of the following	is found in E.coli bacteria	à							
	(1) Nuclear membrane		(3) Plasmid	(4) 80S Ribosome						
9.	Which of the following	is not a function of ER.								
	-	gen and retinal pigments	(2) Formation of nuclear membrane							
	(3) Detoxification of tox	xic substances	(4) Maintain shape and size of cell							
10.	Synthesis of glycolipid	and glycoprotein is a fun	ction of							
	(1) SER	(2) Ribosome	(3) Dictyosome (4) Ch	ondriosome						
11.	Which of the following	protein form Cilia/Flagella	a in prokarvotes							
	(1) Flagellin	(2) Tubulin	(3) Pilin	(4) Glycoprotein						
12.	The concentration of M	/lg⁺⁺ ion required for asso	ciation of sub units of rib	osome is						
	(1) 0.01 M	(2) 0.001 M	(3) 0.05 M	(4) 0.1 M						
13.	Some functions like m	aintenance of the shape	of cell, motility and mech	anical support are performed by						
15.		of filamentous proteinac	•							
	(1) Endoplasmic reticu		(2) Golgibody							
	(3) Endomembrane sy	stem	(4) Cytoskeleton							
14.	Which of the following	is not a part of endomerr	brane system							
	(1) Golgi-complex	(2) Vacuole	(3) Lysosome	(4) Mitochondria						
			-							

E

15.	The two neighbouring (1) Gap junction	plants cells are connecte (2) Desmosome	d by (3) Plasmodesmata	(4) Tight junction					
16.	The lateral diffusion of (1) Flexibility	protein in the lipid bilaye (2) Fluidity	r occurs because lipid bil (3) Stability	ayer has (4) None					
17.	70S type of ribosomes (1) Mitochondria (3) Bacteria	are absent in	(2) Chloroplast (4) Rough endoplasmic	; reticulum					
18.		the main area of cellula cur in it to keep the cell in (2) Cell membrane		olant and animal cells. Various (4) Deutoplasm					
19.	. ,			with Mitochondria in function-					
	(1) Chromatophore	(2) Mesosome	(3) Ribosome	(4) cell membrane					
20.	 Select the correct option (1) Both protein and lipid can perform flip-flop movement (2) GERL system help in formation of lysosomes & ribosomes (3) Chlorophyll lies in the thylakoid of chloroplast (4) Bounded ribosomes synthesize those proteins that are used inside the cell 								
21.	Which of the following (1) Presence of gas va (3) Presence of hetero		h blue green algae. (2) Presence of flagellated gametes (4) Presence of chromatophores						
22.	 The cell wall of algae is made of (1) Peptidoglycan, lipopolysaccharide, cellulose (2) Cellulose, galactans, mannans, CaCO₃ (3) Cellulose, hemicellulose, mannans, CaCO₃ (4) Mucopeptide, xylan, galactan, CaCO₃ 								
23.	 Which of the following is wrong about cell membrane. (1) The membrane of erythrocyte has approximately 52% protein & 40% lipids. (2) Cholesterol provides stability to the cell membrane (3) The diameter of cell membrane is about 75 nm (4) Singer and Nicolson(1972) proposed fluid mosaic model for it. 								
24.	products, water, pigme Here (i), (ii), (iii) are rea (1) (i) zone of exclusio	ents & is covered by a sin spectively n (ii) Matrix (iii) Unit mem culus (iii) Unit membrane sap (iii) Tonoplast	gle membrane called	_(ii) contains excretory (iii)					
25.	In animal cells steroid (1) Golgi body	hormones are synthesize (2) SER	ed by (3) RER	(4) Ribosomes					

- **26.** Select the incorrect pair
 - (1) Mesosome Infolding of cell membrane
 - (2) Microsomes Ribosomes of Bacteria
 - (3) Polysome m-RNA + ribosomal RNA
 - (4) Amyloplast Storage of starch
- 27. In which feature prokaryotic cell shows resemblance with eukaryotic cell.
 - (1) Ribosome (2) Mesosome (3) Cell membrane (4) Cell wall
- **28.** Select the wrong pair


	Type of Cells	Shape of cells
(1)	Red blood cells	Round & biconcave
(2)	Columner epithelial cells	Long & narrow
(3)	Nerve cell	Unbranched & long
(4)	Mesophyll Cells	Round & Oval

- 29. Movement of polar molecule across plasma membranes is possible through
 (1) Diffusion
 (2) Osmosis
 (3) Carrier proteins
 (4) All of above
- **30.** Arrangement of golgi apparatus in a cell is:
 - (1) Convex Cis/forming face is towards cell membrane
 - (2) Concave Cis/forming face is towards cell membrane
 - (3) Convex Cis/forming face is towards Nucleus while concave trans or maturing face is towards plasma membrane.
 - (4) Convex Cis/forming face is towards Plasma membrane while concave trans or maturing face is towards Nucleus.

(3) Amyloplast

(4) Aleuroplast

- **31.** Zone of exclusion is found around
 - (1) Mitochondria(2) Golgibody(3) Endoplasmic reticulum(4) Chloroplast
- 32. Which of the plastid stores protein(1) Elaioplast(2) Chloroplast
- 33. Cell recognition and adhesion occurs due to the following component of the plasma membrane
 (1) Protein
 (2) Lipids
 (3) Proteins and lipids
 (4) Glycoproteins & glycolipids
- **34.** The figure below shows the structure of a mitochondrion with its four parts labelled (A), (B), (C) and (D). Select the part correctly matched with its function.

- (1) Part (D): Outer membrane gives rise to inner membrane by splitting
- (2) Part (B): Inner membrane forms infoldings called cristae
- (3) Part (C): Cristae possess single circular DNA molecule and ribosomes
- (4) Part (A): Matrix major site for respiratory chain enzymes

35.	Prokaryotic cell memb	rane differs from eukary	otic cell membrane in at	osence of -					
	(1) Extrinsic protein	(2) Intrinsic protein	(3) Phospholipids	(4) Cholesterol					
36.	The diameter of mitocl	nondria is							
	(1) 0·2 – 1 μm	(2) 5 – 20 μm	(3) 500 – 1000 μm	(4) 150 – 300 μm					
37.	Most abundant lipid of	cell membrane is							
	(1) Cholesterol	(2) Phosphoglycerides	s (3) Glycolipid	(4) Cerebroside					
38.	A plant cell differs from	n animal cell in the abser	nce of -						
	(1) Mitochondria	(2) Ribosomes	(3) ER	(4) Centrioles					
39.	Which of the following	involve in photorespirati	on						
	(1) Chloroplast	(2) Peroxisome	(3) Mitochondria	(4) All of the above					
40.		esponsible for ageing. Th	·						
	(1) Golgibody		(2) Secondary lysoso						
	(3) Tertiary lysosome		(4) Autophasic vacuole						
41.				bacteria, they are known to help					
	attach the bacteria to r (1) Pili	ocks in streams and als		•					
	(1) PIII	(2) Cilia	(3) Flagella	(4) Fimbriae					
42.			ella, and spindle fibres.	They help in spindle apparatus					
	during cell division in a (1) Microfilaments	nimai cens.	(2) Centrioles						
	(3) Intermediate filame	ent	(4) Microfibrils						
43.									
43.	Plasma membrane is a (1) Oligosacharides or	•	(2) Proteins and phos	nholinids					
	(3) Glycoproteins and	-	(4) Oligosacharides,						
44.			., .	l green photosynthetic bacteria					
	(1) Presence of gas va	-	(2) Presence of heter						
	(3) Presence of flagella		(4) Presence of cilia						
45.	9 + 0 arrangement of f	ilaments is observed in							
	(1) Cilia	(2) Flagella	(3) Centriole	(4) Both 1 and 2					
	. /	., .	. /						
	SPP Answ	vers							
	٩								
1.	(2) 2. (4)	3. (4) 4.	(3) 5. (3)	6. (2) 7. (1)					

8.	(3)	9.	(4)	10.	(3)	11.	(1)	12.	(2)	13.	(4)	14.	(4)
15.	(3)	16.	(2)	17.	(4)	18.	(3)	19.	(2)	20.	(3)	21.	(2)
22.	(2)	23.	(3)	24.	(3)	25.	(2)	26.	(2)	27.	(3)	28.	(3)
29.	(3)	30.	(3)	31.	(2)	32.	(4)	33.	(4)	34.	(2)	35.	(4)
36.	(1)	37.	(2)	38.	(4)	39.	(4)	40.	(3)	41.	(4)	42.	(2)
43.	(4)	44.	(1)	45.	(3)								