Exercise-1

ONLY ONE OPTION CORRECT TYPE

SECTION (A): DISTANCE AND DISPLACEMENT

0_0.	1011 (A) . BIOTAI101	AND DIOI EAGEIIII		
1.	A runner completes or minutes 20 seconds will be	·		onds. His displacement after 2
	(1) zero	(2) 2πr	(3) 2r	(4) 7πr
2.	A body moves along a π	curved path of a quarter $2\sqrt{2}$	circle. The ratio of distar π	nce to displacement is $\sqrt{2}$
	(1) $2\sqrt{2}$	$(2) \frac{2\sqrt{2}}{\pi}$	(3) $\sqrt{2}$	(4) $\frac{\sqrt{-}}{\pi}$
3.	A Body moves 6 m no frominitial position		• •	at is its resultant displacement
	(1) $10\sqrt{2}$ m		$\frac{10}{\sqrt{2}}$ m	(4) 10 × 2 m
4.	A person moves 30 m r displacement of the per (1) 10 m along north	son from the origin will b	ards east and finally 30 e (3) 10 m along west	² m in south-west direction. The (4) Zero
5.		ons 10 m × 10 m × 10 agnitude of its displacem		corner ends up at a diagonally
	(1) $5^{\sqrt{3}}$ m	(2) $10^{\sqrt{3}}$ m	(3) $20^{\sqrt{3}}$ m	(4) $30^{\sqrt{3}}$ m
6.	A particle starting from	the origin (0, 0) moves	in a straight line in the (x, y) plane. Its coordinates at a
	later time are ($\sqrt{3}$, 3). (1) 30°	The path of the particle n (2) 45°	nakes with the x-axis an (3) 60°	angle of : (4) 0°
SECT	ION (B) : AVERAGE	SPEED AND AVER	AGE VELOCITY	
	1			1
1.	A motor car covers $\frac{1}{3}$ ro	d part of total distance wit	$v_1 = 10 \text{km/hr}_{, \text{ secon}}$	$\frac{1}{3}_{\text{rd part with}} v_2 = 20_{\text{km/hr}}$
	and rest $\frac{3}{3}$ rd part with (1) 18 km/hr	$v_3 = 60 \text{km/hr}$. What is (2) 45 km/hr	s the average speed of th (3) 6 km/hr	ne car? (4) 22.5 km/hr
2.		of 2000m. If the first haverage velocity is 48 km. (2) 60 km/hour		40 km/hour and the second half is (4) 48 km/hour
3.		rds east for 2 sec with verage velocity of the part (2) 5 m/s		re towards north for 8 sec with (4) 10 m/s
4.	,	s a one dimensional moti ft	, ,	und the sun
5.	The ratio of the numeric (1) Unity (3) Unity or more	cal values of the average	velocity and average sp (2) Unity or less (4) Less than unity	eed of a body is always

(3) velocity zero, speed zero

6.

7.	(2) The magnitude of(3) It is possible to haveis not zero	the instantanteous veloci average velocity in an int ve a situation in which the	erval is equal to its avera e speed of a particle is al	age speed in that interval. ways zero but the average speed	
8.	A car moves from X to speed for this round tr	ip is:		,	
	(1) $V_d + V_u$	(2) $\sqrt{V_u} V_d$	(3) $V_d + V_u$	(4) 2	
SECT	TION (C) : VELOCIT	Y, ACCELERATION	I, AVERAGE ACCEI	ERATION	
1.	Find the acceleration.			hanges to 5 m/s north in 10 sec.	
	$(1) \sqrt{2} N - W$	$\frac{1}{\sqrt{2}}N - W$	$\frac{1}{\sqrt{2}}N-E$	$_{(4)} \sqrt{2} N - E$	
2.				$a_1 t + a_2 t^2$. The acceleration of the	
	(1) a ₀	(2) a ₁	(3) a ₂	(4) 2a ₂	
3.	A particle has velocity (1) uniform acceleratio (3) non uniform accele		then it has (2) uniform retardatior (4) zero acceleration	n	
4.	The displacement is g (1) 8 m/s ₂	iven by $x = 2t_2 + t + 5$, the (2) 12 m/s ₂	e acceleration at t = 5 se (3) 15 m/s ₂	ec will be (4) 4 m/s ₂	
5.	instant when its accele	eration is zero will be		•	
	(1) 3 m/s	(2) –12 m/s	` ,	,	
6.	If velocity of a particle (1) 2 m/s ₂	is given by $V = 10 + 2t^2$ (2) 4 m/s ₂	m/s . The average acc (3) 12 m/s ₂	celeration between 2 and 5 s is (4) 14 m/s ₂	
7.	(1) velocity of the part(2) velocity of the part	a particle varies with time icle is inversely porportion icle is directly proportion	nal to t		
	(3) velocity of the part(4) the particle moves	icle is proportional to \sqrt{t} with a constant accelera	tion		
8.	of the body is		·		
	(1) increases	(2) constant	(3) decreases	elocity changes to 5 m/s north in 10 sec. $(4) \sqrt{2} \text{N} - \text{E}$ $= a_0 + a_1 t + a_2 t^2 \text{. The acceleration of the}$ $(4) 2a_2$ It ardation leration $t t = 5 \text{sec will be}$ $(4) 4 \text{m/s}_2$ $3^3 - 6t^2 + 3t + 4 \text{meter.} \text{Its velocity at the}$ $(4) -9 \text{m/s}$ It arge acceleration between 2 and 5 s is $(4) 14 \text{m/s}_2$ $(4) 14 \text{m/s}_2$ $(4) t = 0$ $(4) t = 0$ with same speed. What is the change in	
9.	velocity?		est and travels with sar	ne speed. What is the change in	
	(1) $20\sqrt{2}$ ms ₋₁ south-	west	(2) 40 ms ₋₁ south wes	t	
28 Pa	age				

A car runs at constant speed on a circular track of radius 100 m taking 62.8 s on each lap. What is the

(2) velocity zero, speed 10 m/s

(4) velocity 10 m/s, speed zero

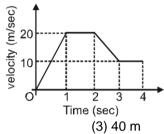
average speed and average velocity on each complete lap? (1) velocity 10m/s, speed 10 m/s (2) velocity

•							
	(3) $20\sqrt{2}$ ms ₋₁ north v	vest	(4) 40 ms ₋₁ north west				
10.	If relation between dist (1) b + 2 ct, 2 c	ance and time is $s = a +$ (2) b, 2 c	bt + ct ₂ , and initial veloc (3) 2 c, b	ity and acceleration : (4) b + 2 c, 2 c			
11.	6 m/s. At what distan direction from the same	ce will the car overtake e position)	tion $a = t$. A truck is moving with a uniform velocity of e the truck? (at $t = 0$ both start their motion in the same				
	(1) 36 m	(2) 8 m	(3) 32 m	(4) 4 m			
12.			fter an interval of 1 s. If acceleration due to gravity is ter the release of first ball? (3) 25 m (4) 20 m				
13.	velocity is			same speed. The change in its			
	(1) 20 $\sqrt{2}$ m/sNorth –	-East	$_{(2)}$ 20 $\sqrt{2}$ m/s South -	-East			
	(3) 40 $\sqrt{2}$ m/sNorth –	-East	(2) $20\sqrt{2}$ m/s South - (4) $20\sqrt{2}$ m/s North -	West			
14.	If velocity varies with ti (1) 24 m	me as v = 4t, find the dis (2) 240 m	tance travelled by the bo (3) 2.4 m	dy in the interval of 2 s to 4 s. (4) 0.24 m			
15.	from O is given by $x = 40 + 12t - 4$	t 3	, ,	ance x (in metres) of the particle			
	How long would the pa (1) 24 m	rticle travel before comin (2) 40 m	g to rest ? (3) 56 m	(4) 16 m			
16.			e t along x-axis is given by $x = 9t_2 - t_3$ where x is in metre is particle when it achieves maximum speed along the + x				
	(1) 32 m	(2) 54 m	(3) 81 m	(4) 24 m			
17.	acceleration of the bod	ly, is		e passed. The magnitude of the			
	(1) Increasing with time(3) Constant but not ze		(2) Decreasing with time(4) Zero				
18.	Velocity-time curve for (1) Ellipse	a body projected vertical (2) Parabola	lly upwards is (3) Hyperbola	(4) Straight line			
19.	The relation between ti is:	me t and distance x is t =	ax2 + bx, where a and b	are constants. The acceleration			
	(1) –2abv ₂	(2) 2bv ₂	(3) –2av₃	(4) 2av ₃			
20.		astwards with a velocity ge acceleration in this tin	by of 5 ms $_{ ext{-}1}$. In 10 second the velocity changes to 5 ms $_{ ext{-}1}$ time is :				
	$\frac{1}{\sqrt{2}}$		$\frac{1}{2}$				
	(1) $\sqrt{2}$ ms ₋₁ towards r	north-west	(2) 2 ms ₋₂ towards no	rth			
	(3) zero		(4) $\frac{1}{2}$ ms ₋₂ towards nor	th-west.			

SECTION (D): EQUATIONS OF MOTION AND MOTION UNDER GRAVITY

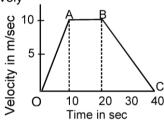
1. Which one of the following equations represent the motion of a body with finite constant non-zero acceleration. In these equations y denotes the displacement of the body at time t and a,b and c are the constant of the motion

	а			
	$(1) y = \frac{a}{t} + bt$	(2) $y = at$	(3) $y = at + bt^2$	(4) $y = at + bt^2 + ct^3$
2.	A ball is thrown upward (1) 64 ft/sec	and reaches a height of (2) 72 ft/sec	64 feet, its initial velocity (3) 32 ft/sec	y should be (g = 32 ft/sec ₂) (4) 4096 ft/sec
3.		o to drop through these		t heights, viz a and b. The ratio
	(1) a : b	$\frac{m_a}{m_b} : \frac{b}{a}$	(3) $\sqrt{a} : \sqrt{b}$	$(4) a^2 : b^2$
4.	A body thrown up with thrown up is	a finite speed is caught l	back after 4 sec. The sp	peed of the body with which it is
	(1) 10 m/sec	(2) 20 m/sec	(3) 30 m/sec	(4) 40 m/sec
5.	(1) its velocity is zero at(2) its velocity is zero be(3) its acceleration is m	d and reaches its maximated its acceleration is also ut its acceleration is max inimum acceleration is the	o zero imum	
6.				of particle at time t is given by of particle after time t is true? (4) none of these
7.	A body starting from res will be (1) 36 m	t and has uniform accele (2) 40 m	ration 8 m/sec ₂ . The dista	ance travelled by it in 5th second (4) 200 m
	(1) 00 111	(2) 40 111	(6) 100 111	(+) 200 III
8.	A body starts from rest, (1) 7/5	the ratio of distances tra (2) 5/7	avelled by the body durin (3) 7/3	g 3rd and 4th seconds is (4) 3/7
9.	The initial velocity of a fifth second of the motion		its retardation is 2 m/se	c2. The distance covered in the
	(1) 1 m	(2) 19 m	(3) 50 m	(4) 75 m
10.				ther object is released from the conds of the release of second
	(1) 4.9 m	(2) 9.8 m	(3) 19.6 m	(4) 24.5 m
11.	another stone straight of		eed u from the same po	initial speed u and then throws sition. Find the ratio of speeds, the cliff? (4) 3:1
12.	A stone is dropped from (1) 78.4 m	n a bridge and it reaches (2) 64 m	the ground in 4 seconds (3) 260 m	s. The height of the bridge is (4) 2000 m
13.		nwards from the same to		ainst the ground. Another stone locity 4 km/hr. Its velocity when
	(1) 7.0 km/hr	(2) 5.0 km/hr	(3) 3.5 km/hr	(4) 4.0 km/hr
14.		ly upwards from the top on the top on the top on the top of the too (2) 50 m		of 10 m/sec. If the ball falls on /s ₂) (4) 100 m
15.	In the above question,	what maximum height ab	ove the tower will the ba	ıll attain?

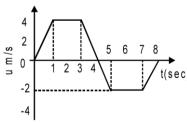

	(1) $\sqrt{5}$ m	(2) 5 m	(3) $5\sqrt{2}$ m	(4) 10 m
16. 17.	(1) 85 m	the total distance travelle (2) 75 m in what time will it reach t	(3) 100 m	turns to the ground is (4) 175 m
	(1) 1 sec	(2) 2 sec	(3) $\sqrt{2}$ sec	$_{(4)} 1/\sqrt{2}_{sec}$
18.	In the above question, (1) zero	with what velocity will the (2) 40 m/s	e ball strike the ground (3) 10 m/s	(4) 60 m/s
19.	If a body starts from res (1) 0.20 m/s ₂	st and travels 1.2 m in the (2) 0.16 m/s ₂	e 8th second then what is (3) 0.08 m/s ₂	s the acceleration (4) 0.2255 m/s ₂
20.	A body starts from rest first 8 sec (1) 160 cm	and has an acceleration (2) 640 cm	20 cm/sec ₂ . What is the (3) 1280 cm	distance covered by the body in (4) 1640 cm
	(1) 100 CIII	(2) 040 CIII	(3) 1200 CIII	(4) 1040 CIII
21.		body moving along a stra by the body in the 5th seco (2) 35 m		a uniform acceleration of 4 m/s ₂ . (4) 85 m
22.		distance and stops wher etarding force then the d (2) 100 m		ne velocity of train is just doubled rain is (4) 200 m
23.		from rest, experiences c distance covered during (2) 2s ₁		20 sec. If it covers a distance s ₁ (4) 4s ₁
24.	When two particles each times to reach the grou		d from height h and 2h re	spectively, then the ratio of their
	(1) 1 : $\sqrt{2}$	(2) $\sqrt{2}$: 1	(3) 1 : 2	(4) 2 : 1
25.		reduced from 200 m/s e retardation assuming to (2) 13.5 × 104 m/s ₂		ling through a wooden block of (4) none of these
26.	A body falls from a heig	ght h = 200 m. The ratio	of distance travelled in e	ach 2 s, during $t = 0$ to $t = 6$ s of
	the journey is : (1) 1 : 4 : 9	(2) 1 : 2 : 4	(3) 1 : 3 : 5	(4) 1 : 2 : 3
27.	moving at a speed of 1	00 km/h, the minimum st	opping distance is	r at least 6m. If the same car is
	(1) 12 m	(2) 18 m	(3) 24 m	(4) 6 m
28.	which the two cars are	stopped in the same time	Э	o of the respective distances in
	(1) 1 : 1	(2) 1 : 4	(3) 1 : 8	(4) 1 : 16
29.		ng four balls in the air cor hand, the position of the (2) 15, 20, 15		h ball attains 20 m height. When ght) will be (4) 5, 10, 20
30.	A particle is thrown upv	wards from ground. It exposite to the direction of	periences a constant air	resistance which can produce a atio of time of ascent to the time
		$\sqrt{\frac{2}{2}}$	$\frac{2}{3}$	$\sqrt{3}$
	(1) 1:1	(2) $\sqrt{3}$	(3) 3	(4) V2

•				
31.	A block is moving dow	n a smooth inclined plan	e starting from rest at tin	ne $t = 0$. Let S_n be the distance
		n the interval $t = n - 1$ to		
	<u>2n – 1</u>	(2) $\frac{2n-1}{2n+1}$	<u>2n + 1</u>	2n
	(1) 2n	(2) 2n + 1	(3) $\frac{2n-1}{}$	$(4) \frac{2n}{2n-1}$
32.				of 1 km/s. It is accelerated in the
		it with a speed of 9 km/s (2) 80×10^{-3} s		
33.	an acceleration of 1ms	⁻² , the student starts runr	ning towards the bus with	s the bus begins its motion with a uniform velocity u. Assuming the student is able to catch the
	(1) 5 ms ⁻¹	(2) 8 ms ⁻¹	(3) 10 ms ⁻¹	(4) 12 ms ⁻¹
34.		n the same speed vertical eed of the throw so that r		other at an interval of 2 seconds. In the sky at any time ?
	(1) Any speed less tha (3) more than 19.6 m/s		(2) Only with speed 19.(4) At least 9.8 m/s	6 m/s
_	A	II	-l -f 40 /l it l	
35.				eached one half of its maximum
	(1) 15 m	the ball rise ? (Taking g : (2) 10 m	= 10 m/s ₂) (3) 20 m	(4) 5 m
	(1) 13 111	(2) 10 111	(3) 20 111	(4) 5 111
36.		ass 1kg) and B (of mas of the time taken by them		m heights of 16 m and 25 m,
	(1) 5/4	(2) 12/5	(3) 5/12	(4) 4/5
				4
37.	The distance travelled second is	by a particle starting from	rest and moving with an	acceleration $\frac{3}{3}$ ms ₋₂ , in the third
			10	19
	(1) 6 m	(2) 4 m	$\frac{10}{3}$ m	$\frac{19}{3}$ m
38.	(1) 6 m	(2) 4 m cally upwards at 40 m/s, i		
00.	(1) 10 m/s	(2) 20 m/s	(3) 30 m/s	(4) 40 m/s
39.	acceleration a2. If they			ody B starts from rest with an A, the ratio a_1 : a_2 will be equal
	to:	(0)	(0) = 0	(1) = 0
	(1) 9 : 5	(2) 5 : 7	(3) 5 : 9	(4) 7 : 9
40 .	Δ narachutist after hail	ing out falls 50 m without	friction When parachute	opens, it decelerates at 2 m/s ₂ .
+0.	•	I with a speed of 3 m/s. A	•	
	(1) 91 m	(2) 182 m	(3) 293 m	(4) 111 m
	(1) 01	(2) 102 111	(0) 200 m	(.,
41.				at least 6 m. if the same car is
		00 km/hr, the minimum s		
	(1) 12 m	(2) 18 m	(3) 24 m	(4) 6 m
42 .			nt h metres. It takes T sec	conds to reach the ground. What
	is the position of the ba		(0) 71 /0	
	(1) h/9 metre from the		(2) 7h/9 metre from the	
	(3) 8h/9 metre from the	ground	(4) 17h/9 metre from the	e ground
43 .	An automobile travellin	ng with a speed of 60 km/	h can brake to stop with	in a distance of 20 m. If the car
		e. 120 km/h, the stopping		a diotarioo di 20 iii. ii tilo dai
	(1) 20 m	(2) 40 m	(3) 60 m	(4) 80 m
				· ·

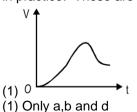
- 44. A particle is moving along straight line with initial velocity 48 m/sec and acceleration -10m/s₂. The distance travelled by particle in 5th second is:
 - (1) 3m
- (2) 115 m
- (3) $\frac{17}{5}$ m
- $\frac{14}{5}$ m

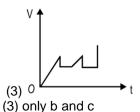

SECTION (E): GRAPH RELATED QUESTIONS

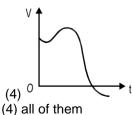
- 1. The displacement-time graph for the two particles A and B are straight lines inclined at angles 30₀ and 60₀ with the time axis. The ratio of the velocities of A to B will be
 - (1) 1 : 2
- (2) $1:\sqrt{3}$
- (3) $\sqrt{3}:1$
- (4) 1 : 3
- 2. The variation of velocity of a particle moving along straight line is shown in figure. The distance traversed by the body in 4 seconds is



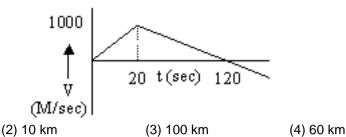
- (1) 70 m
- (2) 60 m

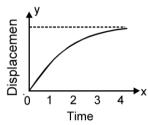

- (4) 55 m
- 3. The adjoining curve represents the velocity-time graph of a particle, its acceleration values along OA, AB and BC in metre/sec₂ are respectively


- (1) 1,0,-0.5
- (2) 1,0,0.5
- (3) 1,1,0.5
- (4) 1,0.5,0
- 4. The velocity-time graph of a linear motion is shown below. The displacement from the origin after 8 seconds is

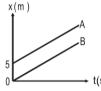


- (1) 18 m
- (2) 16 m
- (3) 6 m
- (4) 6 cm
- **5.** The following figures show some velocity V versus time t curves. But only some of these can be realised in practice. These are

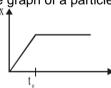

(2) 0 (2) only a,b,c



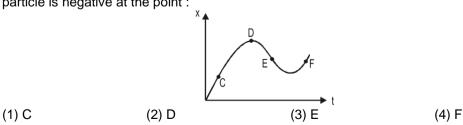
(1) 1 km


6. A rocket is projected vertically upwards and its time velocity graph is shown in the figure. The maximum height attained by the rocket is

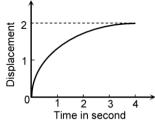
7. The displacement of a particle as a function of time is shown in fig. The fig. indicates that

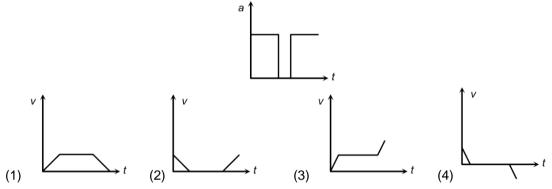


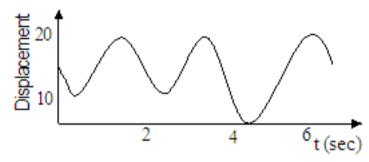
- (1) the particle starts with a certain velocity, but the motion is retarded and finally the particle stops
- (2) the velocity of particle is constant throught
- (3) the acceleration of the particle is constant throughout
- (4) the particle starts with a constant velocity, the motion is accelerated and finally the particle moves with another constant velocity.
- **8.** Figure shows position-time graph of two cars A and B.

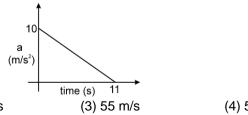


(1) Car A is faster than car B.

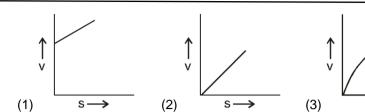

- (2) Car B is faster than car A.
- (3) Both cars are moving with same velocity.
- (4) Both cars have non zero positive acceleration.
- **9.** Fig. shows the displacement time graph of a particle moving on the X-axis.

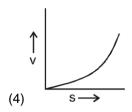

- (1) the particle is continuously going in positive x direction
- (2) the particle is at rest
- (3) the velocity increases up to a time to, and then becomes constant.
- (4) the particle moves at a constant velocity up to a time t₀, and then stops.
- **10.** The displacement–time graph of a moving particle is shown below. The instantaneous velocity of the particle is negative at the point :

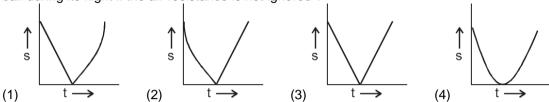

11. The displacement of a particle as a function of time is shown in the figure. The figure shows that


- (1) The particle starts with certain velocity but the motion is retarded and finally the particle stops
 - (2) The velocity of the particle is constant throughout
 - (3) The acceleration of the particle is constant throughout.
 - (4) The particle starts with constant velocity, then motion is accelerated and finally the particle moves with another constant velocity
- 12. Acceleration-time graph of a body is shown. The corresponding velocity-time graph of the same body is

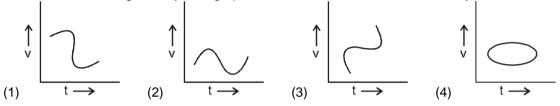
13. Figure shows the position of a particle moving on the x-axis as a function of time




- (1) the particle has come to rest 6 times
- (2) the maximum speed is at t = 6 sec
- (3) the velocity remains positive for t = 0 to t = 6 sec
- (4) the average velocity for the total period show in negative
- **14.** A particle is initially at rest, It is subjected to a linear acceleration a, as shown in the figure. The maximum speed attained by the particle is


- (1) 605 m/s
- (2) 110 m/s

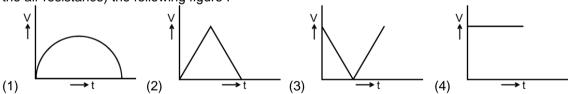
- (4) 550 m/s
- **15.** A body starting from rest moves along a straight line with a constant acceleration. The variation of speed (v) with distance (s) is represented by the graph :



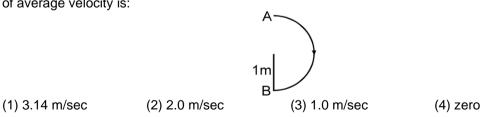
16. A ball is thrown vertically upwards. Which of the following plots represents the speed-time graph of the ball during its flight if the air resistance is not ignored?

17. Which of the following velocity time graphs shows a realistic situation for a body in motion?

18. When a ball is thrown up vertically with velocity υ_0 , it reaches a maximum height of h. If one wishes to triple the maximum height then the ball should be thrown with velocity :



- A particle is thrown above, then correct v-t graph will be


 (1)

 (2)

 (3)
- A particle is thrown vertically upwards. The graph between its speed v and time t is given by (neglecting the air resistance) the following figure:

21. In 1.0 sec. a particle goes from point A to point B moving in a semicircle of radius 1.0 m. The magnitude of average velocity is:

Exercise-2

1. Between two stations a train accelerates uniformly at first, then moves with constant speed and finally retards uniformly to come to rest. If the ratios of time taken are 1 : 8 : 1 and the greatest speed is 60 km/hour. Then the average speed over the whole journey

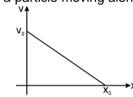
(1) 45 km/hr

- (2) 54 km/hr
- (3) 35 km/hr
- (4) 53 km/hr
- 2. A ball is thrown vertically upwards with a velocity of 30 m/s. If the acceleration due to gravity is 10 m/s₂, what will be the distance travelled by it in the last second of motion before again come to his hand:

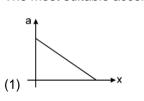
(1) 5 m

- (2) 10 m
- (3) 25 m
- (4) 30 m
- 3. Two balls are dropped from different heights. One ball is dropped 2 sec after the other but they both strike the ground at the same time, 3 sec after the first is dropped. The difference in the heights at which they were dropped is

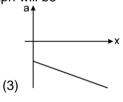
(1) 7.8 m

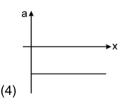

- (2) 78 m
- (3) 15.6 m
- (4) 39.2 m
- **4.** Two bodies are thrown vertically upward, with the same initial velocity of 98 m/s but 4 sec apart. How long after the first one is thrown when they meet?

(1) 10 sec


- (2) 11 sec
- (3) 12 sec
- (4) 13 sec
- 5. A particle moves with constant speed v along a regular hexagon ABCDEF in same order (ie., A to B, B to C, C to D, D to E, E to F, F to A....) Then magnitude of average velocity for its motion from A to C

(1) V

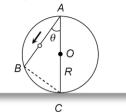

- (2) V/2
- $(3) \sqrt{3} V/2$
- (4) None of these
- A ball is dropped from a height of 20 m and rebounds with a velocity which is 3/4th of the velocity with which it hits the ground. What is the time interval between the first and second bounces (g = 10 m/s_2) (1) 3 sec (2) 4 sec (3) 5 sec (4) 6 sec
- 7. The velocity displacement graph of a particle moving along a straight line is shown.



The most suitable acceleration-displacement graph will be

(2)

8. An electron starting from rest has a velocity that increases linearly with the time that is v = kt, where $k = 2m / sec^2$. The distance travelled in the first 3 seconds will be


(1) 9 m

- (2) 16 m
- (3) 27 m
- (4) 36 m
- 9. A body is moving from rest under constant acceleration and let S_1 be the displacement in the first (p-1) sec and S_2 be the displacement in the first p sec. The displacement in $(p^2-p+1)^{th}$ sec. will be $(1) S_1 + S_2$ $(2) S_1 S_2$ $(3) S_1 S_2$ $(4) S_1 / S_2$
- **10.** Two cars A and B are traveling in the same direction with velocities v_1 and v_2 ($v_1 > v_2$). When the car A is at a distance d ahead of the car B, the driver of the car A applied the brake producing a uniform retardation a There will be no collision when

(1) $d < \frac{(v_1 - v_2)}{2a}$

- $d < \frac{v_1^2 v_2^2}{2a}$
- $d > \frac{(v_1 v_2)^2}{2a}$
- $d > \frac{v_1^2 v_2^2}{2a}$

- 11. The engine of a motorcycle can produce a maximum acceleration 5 m/s². Its brakes can produce a maximum retardation 10 m/s². What is the minimum time in which it can cover a distance of 1.5 km (1) 30 sec (2) 15 sec (3) 10 sec (4) 5 sec
- **12.** A frictionless wire AB is fixed on a sphere of radius R. A very small spherical ball slips on this wire. The time taken by this ball to slip from A to B is

- $\frac{2\sqrt{gR}}{g\cos\theta}$
- $2\sqrt{gR} \cdot \frac{\cos\theta}{g}$
- $2\sqrt{\frac{R}{g}}$
- $\frac{gR}{\sqrt{g\cos\theta}}$
- 13. The acceleration of a particle is increasing linearly with time t as bt. The particle starts from the origin with an initial velocity v_0 . The distance travelled by the particle in time t will be
 - (1) $v_0 t + \frac{1}{3} b t^2$
- (2) $v_0 t + \frac{1}{3} b t^3$
- (3) $v_0 t + \frac{1}{6} b t^3$
- (4) $v_0 t + \frac{1}{2} b t^2$
- 14. A particle located at x = 0 at time t = 0, starts moving along the positive x-direction with a velocity v that varies as $v = \frac{\alpha\sqrt{x}}{x}$ The displacement of the particle varies with time as (1) $t_{1/2}$ (2) t_3 (3) t_2 (4) t
- The velocity of a particle is $v = v_0 + gt + ft_2$. If its position is x = 0 at t = 0, then its displacement after unit time (t = 1) is
 - (1) $v_0 + 2g + 3f$
- (2) $v_0 + \frac{g}{2} + \frac{7}{3}$
- (3) $v_0 + g + \frac{1}{2}$
- $(4) v_0 + \frac{g}{2} +$
- **16.** The distance (x) travelled by a particle in time, t, is given by $t = 2x_2 + 3x$. If 'v' is the velocity. Then acceleration will be
 - $(1) 4v_3$
- $(2) 3v_4$
- (3) 4_{V2}
- $(4) -3v_3$
- 17. A particle moving along x-axis has acceleration f, at time t, given by $f = f_0 \left(1 \frac{t}{T}\right)$, where f_0 and T are constants. The particle at t = 0 has zero velocity. In the time interval between t = 0 and the instant when f = 0, the particle's velocity (v_x) is :
 - (1) f₀T
- (2) $\frac{1}{2} f_0 T_2$
- (3) f₀ T₂
- (4) $\frac{1}{2}$ f₀ T
- 18. A point initially at rest moves along x-axis. Its acceleration varies with time as $a = (6t + 5) \text{ m/s}_2$. If it starts from origin, the distance covered in 2 s is.
 - (1) 20 m
- (2) 18 m
- (3) 16 m
- (4) 25 m
- 19. The displacement x of a particle varies with time t as $x = ae_{-\alpha t} + be_{\beta t}$, where a, b, α and β are positive constants. The velocity of the particle will :
 - (1) go on decreasing with time
- (2) be independent of α and β

(3) drop to zero when $\alpha = \beta$

- (4) go on increasing with time
- **20.** The coordinates of a moving particle at any time t are given by $x = \alpha t_3$ and $y = \beta t_3$. The speed of the particle at time t is given by :
 - (1) $\sqrt{\alpha^2 + \beta^2}$
- (2) $3t_2 \sqrt{\alpha^2 + \beta^2}$ (3) $t_2 \sqrt{\alpha^2 + \beta^2}$
- $(4) \sqrt{\alpha^2 + \beta^2}$

21.	A car, starting from rest, accelerates at the rate f through a distance S, then continues at constant speed
	for time t and then decelerates as the rate f/2 to come to rest. If the total distance travelled is 15 S, then

(2)
$$S = \frac{1}{6}$$
 ft

(3)
$$S = \frac{1}{72} ft_2$$

$$(4) S = \frac{1}{4} ft_2$$

22. A ball is projected upwards from a height h above the surface of the earth with velocity v. The time at which the ball strikes the ground is

$$\frac{v}{g} + \frac{2hg}{\sqrt{2}}$$

$$\frac{v}{g} \left[1 - \sqrt{1 + \frac{2h}{g}} \right]$$

$$\left[\frac{2h}{g}\right]$$
 $\frac{v}{g}\left[1+\sqrt{1+\frac{2gh}{v^2}}\right]$

$$\frac{v}{g}\left[1+\sqrt{v^2+\frac{2g}{h}}\right]$$

Exercise-3

PART - I: NEET / AIPMT QUESTION (PREVIOUS YEARS)

1. A bus is moving with a speed of 10 ms-1 on a straight road. A scooterist wishes to overtake the bus in 100 s. If the bus is at a distance of 1 km from the scooterist, with what speed should the scooterist chase the bus? [AIPMT screening 2009]

(1) 20 ms₋₁

(2) 40 ms-1

(3) 25 ms₋₁

(4) 10 ms-1

2. A particle starts its motion from rest under the action of a constant force. If the distance covered in first 10s is s₁ and that covered in the first 20 s is s₂, then [AIPMT screening2009]

(1) $s_2 = 2s_1$

(2) $s_2 = 3s_1$

(3) $s_2 = 4s_1$

(4) $S_2 = S_1$

3. A ball is dropped from a high rise platform at t = 0 starting from rest. After 6 seconds another ball is thrown downwards from the same platform with a speed v. The two ball meet at t = 18s. What is the value of v? [AIPMT 2010] [take $g = 10 \text{ ms}_{-2}$] $[g = 10 \text{ ms}_{-2}]$

(1) 75 ms₋₁

(2) 55 ms-1

(3) 40ms₋₁

(4) 60ms₋₁

A body is moving with velocity 30 m/s towards east. After 10 seconds its velocity becomes 40 m/s towards 4. north. The average acceleration of the body is: [AIPMT Screening 2011]

 $(1) 1 m/s_2$

 $(2) 7 m/s_2$

 $(3) m/s_2$

 $(4) 5 \text{ m/s}_2$

5. The motion of a particle along a straight line is described by equation:

 $x = 8 + 12 t - t_3$

where x is in metre and t in second. The retardation of the particle when its velocity becomes zero, is:

(1) 24 ms₋₂

(2) zero

(3) 6 ms-2

(4) 12 ms₋₂

6. A stone falls freely under gravity. It covers distances h₁, h₂ and h₃ in the first 5 seconds, the next 5 seconds and the next 5 seconds respectively. The relation between h₁, h₂ and h₃ is: [NEET 2013]

(1)
$$h_1 = \frac{h_2}{3} = \frac{h_3}{5}$$

(2) $h_2 = 3h_1$ and $h_3 = 3h_2(3)$ $h_1 = h_2 = h_3$

(4) $h_1 = 2h_2 = 3h_3$

[AIPMT Pre 2012]

7. A particle is moving such that its position coordinates (x,y) are [AIPMT 2014]

(2m, 3m) at time t = 0,

(6m, 7m) at time t = 2s and (13m, 14m) at time t = 5 s,

Average velocity vector (V_{av}) from t = 0 to t = 5 s is :

(3) $2(\hat{i} + \overrightarrow{j})$

 $\frac{11}{5}(\hat{i} + \vec{j})$

8. A particle of unit mass undergoes one-dimensional motion such that its velocity varies according to: $v(x) = b x_{-2n}$

where b and n are constants and x is the position of the particle. The acceleration of the particle as [AIPMT-2015] function of x, is given by:

 $(1) -2nb_2 x_{-4n-1}$

 $(2) -2b_2 x_{-2n+1}$

 $(3) -2nb_2 e_{-4n+1}$

(4) -2nb₂ x -2n - 1

The position vector of a particle R as a function of time is given by: 9.

$$\vec{R} = 4\sin(2\pi t) \hat{i} + 4\cos(2\pi t)$$

[AIPMT-2015]

[AIPMT-2015]

Where R is in meters, t is seconds and i and denote unit vectors along x-and y-directions, respectively. Which one of the following statements is wrong for the motion of particle?

- (1) Magnitude of acceleration vector is $\overline{\mbox{R}}$, where v is the velocity of particle
- (2) Magnitude of the velocity of particle is 8 meter/second
- (3) path of the particle is a circle of radius 4 meter.
- (4) Acceleration vector is along R
- Two particles A and B, move with constant velocities $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$. At the initial moment their position vector 10. are r_1 and r_2 respectively. The condition for particles A and B for their collision is:

$$(1)$$
 $\vec{r_1}$. $\vec{v_1} = \vec{r_2}$. $\vec{v_2}$

$$\vec{r_1} - \vec{r_2} = \vec{v_1} - \vec{v_2}$$

$$\frac{|\mathbf{r}_1 - \mathbf{r}_2|}{|\mathbf{r}_1 - \mathbf{r}_2|} = \frac{|\mathbf{v}_2 - \mathbf{v}_1|}{|\mathbf{v}_2 - \mathbf{v}_1|}$$

- 11. The x and y corrdinates of the particle at any time are $x = 5t - 2t^2$ and y = 410t respectively, where x and y are in meters and t in seconds. The acceleration of the particle at t = 2s is: [NEET 2017]
 - (1) 0

- (2) 5 m/s²
- $(3) 4m/s^2$
- $(4) 8 \text{ m/s}^2$
- 12. A person standing on the floor of an elevator drops a coin. The coin reaches the floor in time t1 if the elevator is moving uniformly. Then [NEET_2019-II]
 - (1) $t_1 < t_2$ or $t_1 > t_2$ depending upon whether the lift is going up or down
 - (2) $t_1 < t_2$
 - (3) $t_1 > t_2$
 - (4) $t_1 = t_2$

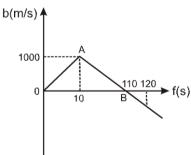
PART - II: AIIMS QUESTION (PREVIOUS YEARS)

1. The displacement of a particle, starting from rest (at t = 0) is given by

 $s = 6t_2 - t_3$

The time in seconds at which the particle will attain zero velocity again is

[AIIMS 2009]


(1)2

(2)4

(3)6

(4)8

The graph shows the variation of velocity of a rocket with time. The time of burning of fuel from the graph 2. [AIIMS 2009]

(1) 10 s

(2) 110 s

(3) 120 s

(4) Data insufficient

PART - III: JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1. A car, starting from rest, accelerates at the rate f through a distance S, then continues at constant speed

for time t and then decelerates at the rate $\frac{1}{2}$ to come to rest. If the total distance travelled is 15 S, then :

[AIEEE 2005, 4/300]

(2)
$$S = \frac{1}{6} ft_2$$

(3)
$$S = \frac{1}{72} ft_2$$

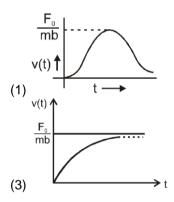
(4)
$$S = \frac{1}{4} ft_2$$

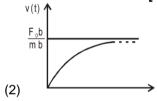
2. A parachutist after bailing out falls 50 m without friction. When parachute opens, it decelerates at 2 m/s₂. He reaches the ground with a speed of 3 m/s. At what height approximately, did he bail out?

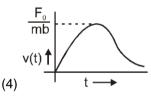
[AIEEE 2005, 4/300]

3. An object moving with a speed of 6.25 m/s, is decelerated at a rate given by :

$$\frac{d\upsilon}{dt} = -2.5\sqrt{\upsilon}$$


[AIEEE - 2011, 4/120, -1]


where υ is the instantaneous speed. The time taken by the object, to come to rest, would be :

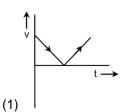

A particle of mass m is at rest at the origin at time t = 0. It is subjected to a force $F(t) = F_0e_{-bt}$ in the x direction. Its speed v(t) is depicted by which of the following curves?

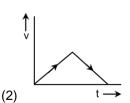
Hint : Acceleration = Force Mass

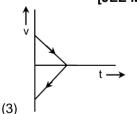
[AIEEE 2012; 4/120, -1]

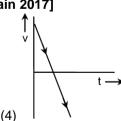
From a tower of height H, a particle is thrown vertically upwards with a speed u. The time taken by the particle, to hit the ground, is a n times that taken by it to reach the highest point of its path.

The relation between H, u and n is:

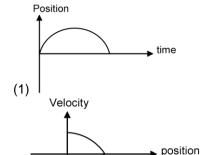

(1)
$$2 g H = n_2 u_2$$

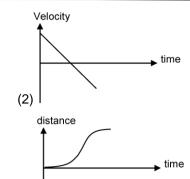

(2)
$$g H = (n-2)_2 u_2$$


(3)
$$2 g H = nu_2(n-2)$$


(4)
$$g H = (n - 2)u_2$$

6. A body is thrown vertically upwards. Which one of the following graphs correctly represent the velocity vs time?





7. All the graphs below are intended to represent the same motion. One of them does it incorrectly. Pick it up. [JEE-Main-2018]

8. The position co-ordinates of a particle moving in a 3-D coordinate system is given

by $x = a \cos \omega t$ $y = a \sin \omega t$ [JEE-Main-2019]

and

(3)

 $z = a \omega t$

The speed of the particle is :

by $x = a \cos \omega t$ $y = a \sin \omega t$ $z = a\omega t$

and z

(1) √3aω

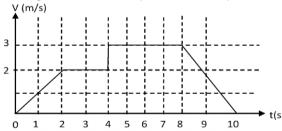
(2) 2a₀

(3) √2aω

(4)

(4) aω

9. In a car race on straight road, car A takes a time t less than car B at the finish and passes finishing point with a speed 'v' more that that of car B. Both the cars start from rest and travel with constant acceleration a₁ and a₂ respectively. Then 'v' is equal [JEE-Main-2019]


 $\frac{2a_{1}a_{2}}{a_{1}+a_{2}}$

(2) $\sqrt{2a_1a_2}$ t

(3) $\frac{a_1 + a_2}{2}$

(4) $\sqrt{a_1 a_2} t$

10. A particle starts from origin at time t = 0 and moves along the positive x-axis. The graph of velocity with respect to time is shown in figure. What is the position of the particle at time t = 5s ?[JEE-Main-2019]

(1) 6 m

(2) 9 m

(3) 3 m

(4) 16 m

11. A passenger train of length 60 m travels at a speed of 80 km/hr. Another freight train of length 120 m travels at a speed of 30 km/hr. the ratio of times taken by the passenger train to completely cross the freight train when: (i) they are moving in the same direction and (ii) in the opposite directions is:

[JEE-Main-2019]

 $\frac{25}{11}$

(2) $\frac{3}{2}$

 $(3) \frac{5}{2}$

 $\frac{11}{5}$

n	SI	V	æ	rs
	-		•	_

	EXERCISE - 1												
SECT	ION (A)												
1.	(3)	2.	(1)	3.	(1)	4.	(3)	5.	(2)	6.	(3)		
SECT 1. 8.	(1) (1)	2.	(2)	3.	(2)	4.	(4)	5.	(2)	6.	(2)	7.	(1)
SECTION (C) 1. (2) 2. (4) 3. (3) 4. (4) 5. (4) 6. (4) 7. (4) 8. (2) 9. (1) 10. (2) 11. (1) 12. (3) 13. (2) 14. (1) 15. (4) 16. (2) 17. (1) 18. (4) 19. (3) 20. (1)													
SECT	ION (D)												
1. 8. 15. 22. 29. 36. 43.	(3) (2) (2) (4) (2) (4) (4)	2. 9. 16. 23. 30. 37. 44.	(1) (1) (1) (3) (2) (3) (3)	3. 10. 17. 24. 31. 38.	(3) (4) (1) (1) (2) (2)	4. 11. 18. 25. 32. 39.	(2) (3) (2) (1) (4) (3)	5. 12. 19. 26. 33. 40.	(4) (1) (2) (3) (3) (3)	6. 13. 20. 27. 34. 41.	(2) (2) (2) (3) (3) (3)	7. 14. 21. 28. 35. 42.	(1) (3) (1) (2) (2) (3)
SECT 1. 8. 15.	(4) (3) (3)	2. 9. 16.	(4) (4) (4)	3. 10. 17.	(1) (3) (2)	4. 11. 18.	(3) (1) (1)	5. 12. 19.	(1) (3) (1)	6. 13. 20.	(4) (1) (3)	7. 14. 21.	(1) (3) (2)
	(0)		(- /						(· /		(0)		(-/
						EXER	CISE	- 2					
1. 8. 15. 22.	(2) (1) (2) (3)	2. 9. 16.	(3) (1) (1)	3. 10. 17.	(4) (3) (4)	4. 11. 18.	(3) (1) (2)	5. 12. 19.	(3) (3) (4)	6. 13. 20.	(1) (3) (2)	7. 14. 21.	(2) (3) (3)
						EXER	CISE	- 3					
						PA	RT - I						
1. 8.	(1) (1)	2. 9.	(3) (2)	3. 10.	(1) (4)	4. 11.	(4) (3)	5. 12.	(4) (4)	6.	(1)	7.	(4)
1.	(2)	2.	(1)			PA	RT - II						
1. 8.	(3) (3)	2. 9.	(3) (4)	3. 10.	(2) (2)	PA 4. 11.	(3) (4)	5.	(3)	6.	(4)	7.	(4)