Exercise-1

> Marked Questions may have for Revision Questions.

ONLY ONE OPTION CORRECT TYPE

Section (A) : Physical and Chemical properties of Group 15th elements

- 1 Which one of the following does not show allotropy ? (1) Nitrogen (2) Phosphorus (3) Arsenic (4) Antimony 2 In group 15, the melting points of the elements : (1) increase regularly on moving down the group. (2) decrease regularly on moving down the group. (3) first decrease upto As and then increase to Bi. (4) first increase from N to As and then decrease to Bi. 32 Which of the following statements is incorrect for the group 15th elements ? (1) Metallic character increases down the group with decrease in ionisation enthalpy and increase in atomic size. (2) The stability of +5 oxidation state decreases and that of +3 state increases down the group on account of inert pair effect. (3) The tendency to undergoes -3 oxidation state decreases down the group due to increase in size and metallic character. (4) In case of phosphorus compounds having +4 oxidation state disproportionates into +5 and +3 both in acid and alkali. 4 The hydrides of group 15 elements act as : (1) lewis acids (2) lewis bases (3) both (4) none 5 Nitrogen shows different oxidation states in the range : (1) 0 to 5 (2) - 3 to + 5(3) - 5 to + 3(4) - 5 to + 3Single N-N bond is weaker than the single P-P bond . This is because of : 62
 - - (1) larger N-N bond length in comparision to P-P bond length .

(2) high interelectronic repulsion of the non-bonding electrons, owing to the small N-N bond length in comparision to that in P-P single bond .

- (3) higher electronegetivity of N in comparision to P.
- (4) samaller atomic size of N as compared to that of P.
- 7 The basic strength of the hydrides of group 15 elements :
 - (1) decreases on moving down the group
 - (2) increases on moving down the group
 - (3) first decreases upto AsH₃ and then increases
 - (4) first increases upto AsH₃ and then decreases
- 82 What causes nitrogen to be chemically inert?
 - (1) Multiple bond formation in the molecule
- (2) Absence of bond polarity
- (3) Short internuclear distance
- (4) High bond energy

9.	Among the members of group 15 (N, P, As, Sb and Bi), which of the following properties show increase as we go down from nitrogen to bismuth				e following properties show an
	(1) Stability of +5 oxida(3) Electronegativity	tion state	(2) Redu (4) Acidi	ucing character	of hydrides pentoxide
10.	Which of the following t (1) Highest oxidation st (3) Stability of hydrides	endencies remains unch ate	anged on (2) Non- (4) Phys	going down in metallic charac ical state	the nitrogen family ? ter
11.	The oxidation number of	of sulphur in S_8, S_2F_2 and	l H ₂ S resp	pectively are :	
	(1) 0, + 1 and – 2	(2) + 2, + 1 and – 2	(3) 0, +	1 and + 2	(4) – 2, + 1 and – 2
12.	Red and white phospho	orus will differ but not in :	(2) colub		
	(3) exhibiting phosphore	escence	(4) react	tion with concer	ntrated HNO ₂
40			()		5
13.	(1) White phosphorus	(2) Yellow phosphorus	(3) Red	phosphorus	(4) Black phosphorus
14.	Which of the following of	oxides is the most acidic?	?		
	(1) N_2O_5	(2) P_2O_5	(3) As ₂ O	5	(4) Sb_2O_5
15.	Which of the following $(1) N_2O_3$	oxides is amphoteric in n (2) P ₄ O ₆	ature? (3) Sb ₄ C) ₆	(4) Bi ₂ O ₃
16.	The thermal stability of the hydrides of group 15 follows the order : (1) $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$ (2) $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$ (3) $PH_3 > NH_3 > AsH_3 > SbH_3 < BiH_3$ (4) $AsH_3 < PH_3 > SbH_3 > BiH_3 > NH_3$				
17.	In case of nitrogen, NCl ₃ is possible but not NCl ₅ while in case of phosphorous, PCl ₃ as well as PCl ₅ are possible. It is due to (1) Availability of vacant d-orbital in P but not in N (2) Lower electronegativity of P than N (3) Lower tendency of H bond formation in P than N (4) Occurrence of P in solid while N in gaseous state at room temperature.				
18.	The P-P-P bond angle	in white phosphorus is cl	ose to :		
	(1) 120º	(2) 109°28'	(3) 90º		(4) 60°
19.	Red phosphorus can be prepared from white phosphorus by : (1) adding red colour to white phosphorus (2) heating white phosphorus to red heat (3) heating white phosphorus at high pressure, inert atmosphere to 250°C or at low temperature in presence of sun light. (4) heating white phosphorus at low pressure to 250°C or at low temperature in the presence of sun light				⁰C or at low temperature in the e in the presence of sun light.
20.	Which of the following i (1) SeO_2	s the most basic oxide ? (2) P_2O_3		(3) Sb ₂ O ₃	(4) Bi ₂ O ₃

ocon		s of Millogen and p	neopherus		
1.	Thermal decomposition (1) NH ₃	of ammonium dichroma (2) N_2	te yields : (3) NO ₂	(4) O ₂	
224	In the manufacture of a (1) oxide of iron only (3) oxide of iron ,K ₂ O ar	mmonia by Haber's proc nd Al ₂ O ₃	ess, the catalyst used is (2) oxide of iron and K ₂ (4) oxide of vanadium o	: D nly	
32	N_2O is formed : (1) by heating NH_4NO_2 (3) by heating $CsNO_3$		(2) by heating NH_4NO_3 (4) by heating $Ca(NO_3)_2$	2	
4.	Which of the following r (1) Zn	netals gives N ₂ O gas wit (2) Cu	h dilute HNO ₃ ? (3) Au	(4) Pb	
5.	Which of the following v (1) N_2O	vill combine with Fe(II) ic (2) NO	on to form a brown compl (3) N ₂ O ₃	ex compound ? (4) NO ₂	
6.	NO_2 can be prepared b (1) NH_4NO_3	y heating : (2) NaNO ₃	(3) Pb(NO ₃) ₂	(4) KNO ₃	
7.	Which of the following a (1) Hyponitrous acid	acids can form two types (2) Nitrous acid	of salts? (3) Nitric acid	(4) Pernitric acid	
82	Concentrated nitric acid (1) PH ₃	l oxidises P into : (2) P ₂ O ₅	(3) HPO ₃	(4) H ₃ PO ₄	
9.	Which of the following r (1) Pb	netals does not dissolve (2) Cu	in concentrated HNO ₃ ? (3) Au	(4) Hg	
10.	$HNO_3 + P_4O_{10} \longrightarrow HP$ in the above reaction th (1) NO_2	O ₃ + X e product X is : (2) N ₂ O ₃	(3) N ₂ O ₄	(4) N ₂ O ₅	
11.	Which one of the follow (1) Red	ing allotropic forms of ph (2) Black	nosphorus does glow in d (3) White	ark ? (4) All of these	
12.	When P_4O_{10} is dissolve (1) H_3PO_2	d in water, the acid form (2) H ₃ PO ₄	ed finally is : (3) H ₃ PO ₃	(4) H ₄ P ₂ O ₇	
13.	Metaphosphoric acid ex (1) a linear structure (3) both linear as well a	kists in polymeric form ar s cyclic structures	nd may have : (2) a cyclic structure (4) none		
14.	(3) both linear as well as cyclic structures (4) none Which of the following statements are correct ? (a) NH_3 has higher boiling point than SbH_3 dues to H-bonding . (b) NH_3 produces deep blue colouration with soluble copper (II) salts. (c) Pure nitrogen can be obtained by the thermal decomposition of sodium or barium azide (d) N_2 is used for creating inert atmosphere in iron and steel industry. (1) (b) and (c) only (2) (b), (c) and (d) only (3) (a), (b) and (c) only (4) All of these				

15.	The solution of phosph	ine in water decompo	nposes in presence of light to give :			
	(3) phosphorus pentao	xide and H _a	(4) phosphorus hy	vdroxide.		
16	Which of the following	acida ia monohacia?				
10.	(1) H_3PO_2	(2) H_3PO_4	(3) H ₄ P ₂ O ₇	(4) H ₄ P ₂ O ₆ .		
17.	Amongst the following H_3PO_2 , H_3PO_3 , H_3PO_4 ,	oxo-acids of phosph $H_4P_2O_5$	norus , how many of the	em are dibasic in nature ?		
	(1) 1	(2) 2	(3) 3	(4) 4		
18.	Amongst the following (1) H_3PO_2	acids, which one has (2) H ₃ PO ₄	strong reducing proper (3) (HPO ₃) ₃	rty ? (4) H ₄ P ₂ O ₆		
Section	on (C) : Physical ar	nd Chemical pro	perties of Group 1	6 th elements :		
1.	Which of the following s (1) Oxygen is a gas wh (2) Sulphur exists as st (3) Density in solid stat (4) First ionisation ener	statements is false fo ile other elements ex aggered 8-atom ring ble decreases from o gy of sulphur is high	or group 16 th elements ? kist as solids. s. xygen to tellurium. er than that of selenium	٦.		
224	Which of the following a (1) S	acts as semi metal ? (2) Te	(3) Po	(4) O		
3.	Which element of chalo (1) Oxygen	cogens has maximum (2) Selenium	n tendency to show cate (3) Sulphur	enation ? (4) Tellurium		
4.	Which one of the follow (1) H_2S	ving hydrides is the s (2) H ₂ Se	trongest acid ? (3) H₂Te	(4) H ₂ O		
5.	Which of the following ((1) H ₂ O	compounds is the str (2) H ₂ S	ongest reducing agent ' (3) H ₂ Se	? (4) H ₂ Te		
6.	If X is a member of cha (1) oxygen	alcogen family, the hig (2) selenium	ghest stability of X ^{2–} is 6 (3) tellurium	exhibited by : (4) sulphur		
722	Which of the following l (1) Se—Se	bonds has the highes (2) Te—Te	st energy ? (3) S—S	(4) O—O		
824	 Which one of the follow (1) Because of the consulptur. (2) Next to fluorine, oxy group). (3) There is large differences as diatomic for the consult of the consult of	ving statements is fal- mpact nature of oxy ygen has the highest erence in the melting molecules (O ₂) where	se ? gen atom, it has less r electronegativity value and boiling points of c as sulphur exists as po	negative electron gain enthalpy than amongst the elements (exclude zero oxygen and sulphur because oxygen olyatomic molecules (S ₈).		
0~	The correct order of the	thormal stability of t	bo following bydrides is	х		
7 A	H_2O	H_2 Se H_2 Se	S H ₂ Te).		
	(I)	(II) (II	I) (IV)			

	(1) > > > V	(2) > > > V	(3) > > V >	(4) IV > III > II > I			
10.	The boiling points of hy (1) $H_2Te > H_2Se > H_2Se$ (3) $H_2O > H_2Te > H_2Se$	ydrides of group 16 are ir S > H ₂ O e > H ₂ S	the order : (2) $H_2O > H_2S > H_2Se$ (4) $H_2O > H_2Se > H_2S$	> H ₂ Te > H ₂ Te			
11.	The increasing therma (1) H_2O , H_2S , H_2Se , H_2 (3) H_2S , H_2O , H_2Se , H_2	I stability of the hydrides ₂ Te ₂ Te	of group 16 follows the s (2) H ₂ Te, H ₂ Se, H ₂ S, H (4) H ₂ Se, H ₂ S, H ₂ O, H ₂	equence : I ₂ O ₂ Te			
12.	Which of the following (1) H ₂ Te	hydride is most acidic ? (2) H ₂ Se	(3) H ₂ O	(4) H ₂ S			
13≿	The correct order of de (1) $SF_6 > SeF_6 > TeF_6$	ecreasing stability of hexa (2) $\text{TeF}_6 > \text{SeF}_6 > \text{SF}_6$	a fluorides of group 16 m (3) $SF_6 > TeF_6 > SeF_6$	embers is : (4) TeF ₆ > SF ₆ > SeF ₆			
14.	Which of the following (1) Rhombic sulphur	allotropes of sulphur has (2) Monoclinic sulphur	maximum Sº at 0 K (3) Plastic sulphur	(4) None of these			
15.	Correct statement about (1) Monoclinic sulphur (2) Both Monoclinic and (3) Rhombic sulphur ex (4) None of these	ut allotropy of sulphur is a is more stable than Rhor d Rhombic sulphur have xists at room temperature	nbic sulphur at room tem same ring structures and e.	nperature. d crystalline structure.			
16.	Which of the following (1) Superoxides give h (2) CrO_3 is an acidic ox (3) SnO_2 is an amphoto (4) KO_2 is peroxide wh	statement is false ? ydrogen peroxide and ox kide. eric oxide. ich with H ₂ O forms hydro	aygen with water. Agen peroxide only.				
17.	 H₂S is far more volatile than water because : (1) sulphur atom is more electronegative than oxygen atom. (2) oxygen being more electronegative than sulphur forms hydrogen bond. (3) H₂O has bond angle of nearly 105°. (4) hydrogen atom is loosely bonded with sulphur. 						
18.24	 It is possible to obtain oxygen from air by fractional distillation because (1) Oxygen is in a different group of the periodic table from nitrogen (2) Oxygen is more reactive than nitrogen (3) Oxygen has higher b.p. than nitrogen (4) Oxygen has a lower density than nitrogen 						
19.	The most abundant ele (1) aluminium	ement in the earth's crust (2) oxygen	is : (3) silicon	(4) iron			
Secti	Section (D) : Compounds of Oxygen and sulphur						

 $1 \times \qquad 4\text{HCl} + \text{O}_2 \xrightarrow{(X)} 2\text{Cl}_2 + 2\text{H}_2\text{O}$

	X is : (1) COCl ₂	(2) CuCl ₂	(3) V ₂ O ₅	(4) FeO
2.	Pure ozone is : (Select (1) a pale blue gas	correct option) (2) a dark blue liquid	(3) a violet black solid	(4) all
3.	Which of the following i (1) Nitrogen oxide emit (2) Aerosol sprays (3) Refrigerants (4) All of these	s responsible for the dep ted from the exhaust sys	eletion of ozone layer ? tems of supersonic jet.	
4.	The compound which c (1) AgNO ₃	n strong heating gives o (2) BaO ₂	xygen is : (3) Pb(NO ₃) ₂	(4) all of these
522	Ozone is obtained from (1) by oxidation at high (3) by silent electric dis	i oxygen : temperature charge	(2) by oxidation using a (4) by conversion at hig	a catalyst gh pressure
6.	Ozone with KI solution (1) Cl_2	produces : (2) I ₂	(3) HI	(4) IO ₃ ⁻
7.	A considerable part of because high above the (1) O_3	the harmful UV rays of t e earth's atmosphere , th (2) CO ₂	the sun does not reach t ere is a layer of : (3) SO ₂	the surface of the earth. This is (4) NO
8.	Which one of the follow (1) ZnSO ₄	ring gives mixture of SO ₂ (2) CuSO ₄	and SO ₃ on heating ? (3) $Fe_2(SO_4)_3$	(4) FeSO ₄
9.	SO_2 can reduce : (1) HCIO ₃ to HCI	(2) $\operatorname{Cr}_2 \operatorname{O}_7^{2-} / \operatorname{H}^+$ to Cr^{3+}	(3) MnO ₄ ⁻ / H+ to Mn ²⁺	(4) all of these
10.	The following catalyst is (1) NO	s used in the manufactur (2) NO ₂	ing of sulphuric acid by l (3) Pt	ead chamber process. (4) V ₂ O ₅
11.	Which of the following I (1) H_2SO_4	behaves as both oxidising (2) SO ₂	g and reducing agents ? (3) H ₂ S	(4) HNO ₃
12.	The acid which has a p (1) sulphurous acid	eroxy linkage is : (2) pyrosulphuric acid	(3) dithionic acid	(4) Caro's acid
13.	Out of $H_2S_2O_3$, $H_2S_4O_6$ (1) $H_2S_2O_3$, $H_2S_4O_6$, H_2SO_5 and $H_2S_2O_8$ perc (2) $H_2S_4O_6$, H_2SO_5	bxy acids are : (3) H_2SO_5 , $H_2S_2O_8$	(4) H ₂ S ₂ O ₃ , H ₂ S ₂ O ₈
14æ	 Which of the following s (1) It is harmful becaus (2) It is beneficial becaus (3) It is beneficial becaus (4) It is beneficial becaus (4) It is beneficial becaus 	statemetn is true about o e ozone is dangerous to use oxidaiton reaction ca use ozone cuts out the ul cause ozone cuts out t	zone layer ? living organism. n proceed faster in the p ltraviolet radiation of the he important radiation	resence of ozone. sun. of the sun which are vital for
15 🔈	Identify the incorrect sta	atement with respect to c	ozone.	

(1) Ozone is formed in the upper atmosphere by a photochemical reaction involving dioxygen.

16.	 (2) Ozone is more read (3) Ozone is diamagne (4) Ozone protects the Which one of the follow (1) It oxidises lead sulp (3) It oxidises mercury. 	ctive than oxygen. tic whereas disoxygen is earth's inhabitants by ab ving property is not corre- phide.	paramagnetic. sorbing γ radiations. ct for ozone. (2) It oxidises potassiun (4) It cannot act as blea	m iodide. aching agent.
17.	In the reaction $O_3 + I_2$ (1) HIO ₃	$_{2} + H_{2}O \longrightarrow (X) + O_{2} . T$ (2) HI	The compound (X) is : (3) HIO ₄	(4) I ₂ O ₅
18.	Which of the following (1) K_2MnO_4	is oxidised by O ₃ ? (2) Fe ₂ (SO ₄) ₃	(3) KMnO ₄	(4) K ₂ Cr ₂ O ₇
19.	About H ₂ SO ₄ which is (1) Reducing agent (3) Sulphonating agent	incorrect ?	(2) Dehydrating agent (4) Highly viscous	
20 ๖	Which of the following (1) $2PCI_5 + H_2SO_4$ — (2) $2NaOH + H_2SO_4$ — (3) $NaCI + H_2SO_4$ — (4) $2HI + H_2SO_4$ —	reactions depict the oxidi $\rightarrow 2POCI_3 + 2HCI + SO_2 (1)$ $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow NaHSO_4 + HCI$ $I_2 + SO_2 + 2H_2O$	sing behaviour of H ₂ SO ₂ Cl ₂	, ?
	Exercise	-2		
🖎 Mar	ked Questions may ha	ve for Revision Questic	ons.	
1.	What are the covalenc (1) 5,5	e and oxidation state of n (2) 4,5	itrogen in N ₂ O ₅ ? (3) 4,4	(4) None
2.24	Which statement is not (1) It is obtained by he (3) It is a typical non-m	correct for nitrogen ? ating (NH ₄) ₂ Cr ₂ O ₇ letal	(2) It does not readily re (4) d-orbitals are availa	eact with O ₂ ble for bonding
3.	A mixture of alumina obtained is treated with (1) N ₂	and coke is heated in a n water. A gas is evolved (2) N ₂ O	a current of nitrogen to . The gas is : (3) NH ₃	about 1800ºC and the product (4) NO
4.	When ammonia is oxid (1) N ₂ O	sed by oxygen in the pre (2) NO	sence of platinum at 800 (3) NO ₂	0ºC, the gas obtained is : (4) N ₂ O ₅
5.	Which of the following (1) NO	is a mixed acid anhydride (2) NO ₂	e ? (3) N ₂ O ₅	(4) N ₂ O
6.	The boiling points of th (1) SbH ₃ > NH ₃ > AsH ₃ (3) NH ₃ > SbH ₃ > AsH ₃	e following hydrides follo > PH ₃ > PH ₃	w the order (2) NH ₃ > PH ₃ > AsH ₃ > (4) SbH ₃ > AsH ₃ > NH ₃	> SbH ₃ > PH ₃
7.æ	Which of the following (1) White phosphorus ((2) α- black phosphoru (3) Red phosphorus is	statements is false for the readily catches fire in air s can be sublimed in air insoluble in water but sol	e various allotropic forms but α -black phosphorus and has opaque monocli luble in carbon disulphide	s of phosphorus ? does not oxidise in air. nic or rhombohedral cystals. e.

(4) Amongst all allotropic forms, black phosphorus is thermodynamically most stable and white phosphorus is least stable.

- 8. Which of the following products is formed when phosphine is absorbed in copper sulphate solution? (1) $Cu(OH)_2$ (2) $[Cu(PH_3)_4] SO_4$ (3) Cu_3P_2 (4) $Cu_3(PO_4)_2$
- 9. Which of the following statement is incorrect for phosphine ?
 - (1) It is not very soluble in water and aqueous solutions are neutral.
 - (2) The solution of PH_3 in water is stable even in presence of sun light.
 - (3) It does react with gaseous HI to form PH_4I .
 - (4) The spontaneous combustion of phosphine is technically used in Holme's signals.
- **10.** Holme's signals can be given by using (1) $CaC_2 + CaCN_2$ (2) $CaC_2 + Ca_3P_2$ (3) $CaC_2 + CaCO_3$ (4) $Ca_3P_2 + CaCN_2$

11. Column -I contains the different oxo-acids of phosphorus and Column- II contains their methods of preparation. Match the column-I with column-II and give the correct answer using the codes given.

	Colu	mn – I			Column – II				
(a) H ₃	PO ₂				(p) P ₄ O ₁₀ + H ₂	0			
(b) H ₃	PO_4				(q) $P_2O_3 + H_2O$				
(c) H ₃	PO_3				(r) $H_{3}PO_{3} + B_{1}$	r ₂ , heat i	n a seale	ed tube	
(d) (H	PO ₃) ₃				(s) White P_4 +	- Alkali			
	(a)	(b)	(c)	(d)		(a)	(b)	(c)	(d)
(1)	(p)	(q)	(r)	(s)	(2)	(r)	(p)	(q)	(s)
(3)	(s)	(r)	(q)	(p)	(4)	(s)	(p)	(q)	(r)

- **12.** Which of the following is not correctly matched with respect to the oxidation state of phosphorus atoms? (1) POF_3 ; +5 (2) NaH_2PO_2 ; +1 (3) Hg_3P_2 ; -3 (4) $H_4P_2O_6$; +5
- Phosphorus trichloride, PCl₃ undergoes, hydrolysis at room temperature to produce an oxoacid. It has the formula :
 (1) HPO₃
 (2) H₃PO₃
 (3) H₃PO₄
 (4) H₃PO₂
- **14.** The true statement for the acids of phosphorus, H_3PO_2 , H_3PO_3 and H_3PO_4 is :
 - (1) H₃PO₃ on heating does not disproportionate
 - (2) H_3PO_2 and H_3PO_3 both have two P–OH bonds.
 - (3) all of them are tribasic acids
 - (4) H_3PO_2 is obtained by alkaline hydrolysis of P_4 (white)
- **15.** Which among the following statements are correct ?
 - (a) Rhombic sulphur transforms to monoclinic sulphur when heated above 369 K.
 - (b) Solution of roll sulphur in CS_2 , on evaporation gives the crystals of rhombic sulphur.
 - (c) Both rhombic and monoclinic sulphur have S_8 molecules.
 - (d) Both rhombic and monoclinic sulphur are soluble in carbon disulphide.
 - (1) (a) and (b) only (2) (a), (b) and (c) only
 - (3) (b), (c) and (d) only (4) (a), (b), (c) and (d)
- **16.** Which of the following reactions represents the reducing behaviour of SO₂?
 - (1) 2NaOH (aq) + SO₂(g) \longrightarrow Na₂SO₃ (aq) + H₂O (ℓ)
 - (2) $SO_2(g) + CI_2(g) \xrightarrow{\text{charcoal}} SO_2CI_2(I)$
 - (3) $2Fe^{3+} + SO_2(g) + 2H_2O \longrightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$
 - (4) $2H_2S + SO_2 \longrightarrow 2H_2O + 3S$

17.	The thermal stability of (1) $H_2Po < H_2Te < H_2S$ (3) $H_2S < H_2O < H_2Te$	hydrides of oxygen fam Se < $H_2S < H_2O$ < $H_2Se < H_2Po$	ily is in order : (2) H ₂ Po < H ₂ O < H ₂ T (4) H ₂ O < H ₂ S < H ₂ Te	$\overline{e} < H_2 Se < H_2 Se$ $e < H_2 Se < H_2 Po$	
18.	The gas respectively a (1) O_2, O_3	bsorbed by alkaline pyrc (2) SO ₂ , O ₃	ogallol and oil of cinnamo (3) O ₃ , CH ₄	on is : (4) N ₂ O, O ₃	
19.১	Consider the following (i) sulphur dioxide Among these compour (1) 1 and 3	compounds : (ii) hydrogen peroxide nds, those which can act (2) 2 and 3	(iii) ozone as bleaching agents wo (3) 1 and 2	ould include : (4) 1, 2 and 3	
20.	When an article is blea (1) exposure to air	ached by SO ₂ it loses its (2) heating	colour. The colour can b (3) dilution	e restored by : (4) none of the	ese
21.	A gas that can not be a (1) N ₂	collected over water is : (2) O ₃	(3) SO ₂	(4) PH ₃	
22.๖	Which of the following (1) It reacts with dry ch (2) It in acidic medium (3) Burning magnesiun (4) All above are corre	statement is true for sulp lorine in absence of moi reduces halogens to cor n and potassium continu ct.	ohur dioxide? sture to form sulphuryl o responding halides. e to burn in its atmosph	chloride. ere.	
23.	Which of the following (1) $S_2O_8^{2-}$	does not have S–S linka (2) S ₂ O ₆ ^{2–}	age but have O—O linka (3) S ₂ O ₅ ^{2–}	ge ? (4) S ₂ O ₃ ^{2–}	
24.	There is no S–S bond (1) $S_2O_4^{2-}$	in : (2) S ₂ O ₅ ^{2–}	(3) S ₂ O ₃ ^{2–}	(4) S ₂ O ₇ ²⁻	
	Exercise	-3			
	PART - I : N	EET / AIPMT QU	ESTION (PREVI	OUS YEARS	6)
1.	Which of the following (1) N_2O_5	oxides is the most acidic (2) P_2O_5	; ? (3) As ₂ O ₅	(4) Sb ₂ O ₅	[AIPMT 1999]
2.	Which of the following (1) NO_3^-	has $p\pi - d\pi$ bonding ? (2) SO_3^{2-}	(3) BO ₃ ³⁻	(4) CO ₃ ²⁻	[AIPMT 2002]
3.	In NO ₃ ⁻ ion, the numbe (1) 2, 2	r of bond pairs and lone (2) 3, 1	pair of electrons on nitro (3) 1, 3	ogen atom are (4) 4, 0	[AIPMT 2002]
4.	On boiling phosphorus (1) Potassium sulphate (3) Phosphorus hydro>	ः with KOH solution, prod ३ ৻ide	luct formed is (2) Phosphorus pento (4) Phosphine	xide	[AIPMT 2003]
5.	Which one of the follo negative sign) of the g (1) F < CI < O < S	wing arrangements rep iven atomic species ? (2) S < O < Cl < F	resents the correct orde (3) O < S < F < Cl	er of electron gain (4) Cl < F < S	n enthalpy (with [AIPMT 2005] < O
6.	Which one of the follow	wing oxides is expected t	to exhibit paramagnetic	behaviour?	[AIPMT 2005]

CHE	MISTRY FOR NE	:E1		P-BLOCK	ELEMENIS	
•	(1) CO ₂	(2) CIO ₂	(3) SO ₂	(4) SiO ₂	·	
7.	Which of the follow (1) N_2O_5	ing oxides of nitrogen is (2) N ₂ O	s thermally most stable ? (3) NO	(4) N ₂ O ₃	[AIPMT 2006]	
8.	Which of the follow (1) SeO ₂	ing is the most basic o (2) Al ₂ O ₃	xide ? (3) Sb ₂ O ₃	(4) Bi ₂ O ₃	[AIPMT 2006]	
9.	Which one of the	following ionic species	has the greatest proton a	affinity to form st	table compound?	
	(1) ŀ-	(2) HS⁻	(3) NH ₂ ⁻	(4) F-	[AIPMT 2007]	
10.	In which of the follo $(1) \operatorname{BrO}_3^-$ and XeO ₃	wing pairs, the two spectrum (2) SF_4 and XeF_4	ecies are isostructural ? (3) SO_3^{2-} and NO_3^{-}	(4) BF_{3} and	[AIPMT 2007] NF ₃	
11.	The angular shape (1) 1 sigma and 1 τ (3) 1 sigma and 2 τ	of ozone molecule (O ₃ t bond t bond) consists of (2) 2 sigma and 1 π (4) 2 sigma and 1 π	bond bond	[AIPMT 2008]	
12.	The correct order c (1) NO ₂ ⁺ < NO ₂ < N	f increasing bond angle O_2^- (2) $NO_2^+ < NO_2^-$	es in the following triatomic $< NO_2$ (3) $NO_2^- < NO_2^+ < N$	species is IO_2 (4) $NO_2^- < N_2$	[AIPMT 2008] NO ₂ < NO ₂ ⁺	
13.	Oxidation states of (1) +3, +5, +4	P in H ₄ P ₂ O ₅ , H ₄ P ₂ O ₆ , H (2) +5, +3, +4	$I_4P_2O_7$ are respectively : (3) +5, +4, +3	(4) +3, +4, +	[AIPMT 2010]	
14.	Sulphur trioxide ca (1) CaSO ₄ + C $-$ (3) S + H ₂ SO ₄ $-$	n be obtained by which $\xrightarrow{\Delta}$ $\xrightarrow{\Delta}$	of the following reaction : (2) $\operatorname{Fe}_2(\operatorname{SO}_4)_3 \longrightarrow$ (4) $\operatorname{H}_2\operatorname{SO}_4$ + PCI_5	$\xrightarrow{\Lambda} \rightarrow$	[AIPMT 2012]	
15.	In which of the following arrangements the given sequence is not strictly according indicated against it ? (1) HF < HCl < HBr < HI : increasing acidic strength (2) $H_2O < H_2S < H_2Se < H_2Te$: increasing pK _a values (3) NH ₃ < PH ₃ < AsH ₃ < SbH ₃ : increasing acidic character (4) CO ₄ < SiO ₄ < SnO ₄ < PbO ₄ : increasing oxidising power					
16.	Which of the follow (1) Zn $(ClO_3)_2$	ing does not give oxyge (2) K ₂ Cr ₂ O ₇	en on heating ? (3) (NH ₄) ₂ Cr ₂ O ₇	(4) KCIO ₃	[AIPMT-2013]	
17.	Acidity of diprotic a (1) $H_2S < H_2Se < H_2Se < H_2Se < H_2S < H_2Se < H_2S$	cids in aqueous solutio I ₂ Te I ₂ Se	ns increases in the order: (2) $H_2Se < H_2S < H_2$ (4) $H_2Se < H_2Te < H_2$	Te ₂ S	[AIPMT-2014]	
18.	(a) $H_2O_2 + O_3 \rightarrow H$ (b) $H_2O_2 + Ag_2O \rightarrow$ Role of hydrogen p (1) oxidizing in (a) a	$_{2}O + 2O_{2}$ $2Ag + H_{2}O + O_{2}$ eroxide in the above re and reducing in (b)	eactions is respectively: (2) reducing in (a) a	nd oxidizina in (b	[AIPMT-2014]	

Page| 38

	(3) reducing in (a) and	(b)	(4) oxidizing in (a) and (b)	
19.	Nitrogen dioxide and s one of these compound (1) is a reducing agent (3) is used as a food-p	sulphur dioxide have sor ds, but not by the other ? reservative	ne properties in commo (2) is soluble in water (4) form 'acid-rain'	n. Which	property is shown by [AIPMT-1-2015]
20.	Strong reducing behav (1) Presence of one –C (2) High electron gain e (3) High oxidation state (4) Presence of two –C	iour of H ₃ PO ₂ is due to : DH group and two P–H bo enthalpy of phosphourus e of phosphorus DH groups and one P–H b	onds oond.		[AIPMT-2-2015]
21.	When copper is heated (1) $Cu(NO_3)_2$ and N_2O (3) $Cu(NO_3)_2$ and NO	I with conc. HNO_3 it produ	uces : (2) Cu(NO ₃) ₂ and NO ₂ (4) Cu(NO ₃) ₂ , NO and	NO ₂	[NEET-2016]
22.	Which is the correct sta (1) Phosphinic acid is a (2) Phosphinic acid is a (3) Both are diprotic ac (4) Both are triprotic ac	atement for the given acio a diprotic acid while phos a monoprotic acid while p ids. ids	ds? phonic acid is a monopro hosphonic acid is a dipro	otic acid. otic acid.	[NEET-2016]
23.	The product obtained a (1) Ca_2CN	as a result of a reaction of (2) Ca(CN) ₂	f nitrogen with CaC_2 is : (3) CaCN	(4) CaC	[NEET-2016]
24.	Name the gas that can	readily decolourise acidi	fied KMnO₄ solution: (3) NO₂	(4) P ₂ O	[NEET-2017]
25.	 (1) U 22 The correct order of N- (1) HNO₃, NO, N₂, NH₄ (3) HNO₃, NH₄CI, NO, I 	compounds in its decrea Cl N ₂	sing order of oxidation st (2) NH4Cl, N2, NO, HN0 (4) HNO3, NO, NH4Cl, I	ates is D ₃ N ₂	。 [NEET-2018]
26.	Identify the incorrect statement related to PCI₅ from the following (1) PCI₅ molecule in non-reactive (2) Three equatorial P–CI bonds make an angle of 120° with each other (3) Two axial P–CI bonds make an angle of 180° with each other (4) Axial P–CI bonds are longer than equatorial P–CI bonds				[NEET-1-2019]
27.	Which is the correct the (1) $H_2Se < H_2Te < H_2P$ (2) $H_2S < H_2O < H_2Se$ (3) $H_2O < H_2S < H_2Se$ (4) $H_2Po < H_2Te < H_2Se$	ermal stability order for H o < H ₂ O < H ₂ S < H ₂ Te < H ₂ Po < H ₂ Te < H ₂ Po e < H ₂ S < H ₂ O	₂E (E=O, S, Se, Te and I	Po)?	[NEET-1-2019]
28.	Which of the following (1) $H_4P_2O_7$	oxoacids of phosphorus I (2) H ₃ PO ₃	nas strongest reducing p (3) H ₃ PO ₂	roperty? (4) H ₃ P	[NEET-2-2019] O4

29.	Identify the corre	ct formula of 'oleum' from	[NEET-2-2019]	
	(1) H ₂ S ₂ O ₇	(2) H ₂ SO ₃	(3) H ₂ SO ₄	(4) $H_2S_2O_8$

	PART -	II : AIIMS QUES	TION (PREVIOU	S YEARS)		
1.	The true statement for (1) The order of their (2) All of them are rec (3) All of them are trib (4) The geometry of p	The acids of phosphoru acidity is $H_3PO_4 > H_3PO_4$ ducing in nature basic acids bhosphorus is tetrahedral	s, H_3PO_2 , H_3PO_3 and $H_3P_3 > H_3PO_2$ in all the three	PO₄ is	[AIIMS 2003]	
2.	Which of the following (1) NH ₃ , PH ₃ , AsH ₃	g is the increasing order (2) AsH ₃ , PH ₃ , NH ₃	of enthalpy of vaporization (3) NH ₃ , AsH ₃ , PH ₃	on ? (4) PH ₃ , AsH	[AIIMS 2004] ₃ , NH ₃	
3.	The shape of O_2F_2 is	similar to that of :	(3) H F	(4) C H	[AIIMS 2004]	
4.	(1) $O_2 I_2$ The element which fo (1) N	(2) H ₂ O ₂ orms oxides in all oxidatic (2) P	(3) H ₂ F ₂ on states +I to +V is : (3) As	(4) Sb	[AIIMS 2004]	
5.	The number of P–O- respectively (1) 6, 6	-P bonds in the structur (2) 5, 5	e of phosphorus pento: (3) 5, 6	xide and phospł (4) 6, 5	horus trioxide are [AIIMS 2005]	
6.	The compound which (1) PCI ₅	has molecular nature in (2) CCI_4	gas phase but ionic in s (3) PCl ₃	olid state is (4) POCl ₃	[AIIMS 2006]	
7.	In the reaction : P_2O_5 (1) N_2O_4	+ 2HNO ₃ \longrightarrow 2HPO ₃ + (2) H ₂ O only	x, the term x is : (3) N_2O_5	(4) PNO ₃	[AIIMS-2010]	
8.	N_2 and O_2 are converted into monocations, N_2^+ and O_2^+ respectively. Which of the following is wrong?					
	(1) In N_2^+ , N — N bond weakens (3) In O_2^+ , paramagnetism decreases		(2) In O_2^+ , the O – O (4) N_2^+ becomes dian	 (2) In O₂⁺, the O – O bond order increa (4) N₂⁺ becomes diamagnetic 		
9.	The oxidation numbe (1) 0, + 1 and – 2	r of sulphur in S_8 , S_2F_2 , H (2) + 2, + 1 and – 2	I_2 S respectively are : (3) 0, + 1 and + 2	(4) – 2, + 1 a	[AIIMS-2012] and – 2	
10.	P_4O_{10} is not used to dry NH_3 gas because : (1) P_4O_{10} reacts with moisture in NH_3 (3) P_4O_{10} is acidic and NH_3 is basic		(2) P_4O_{10} is not a drying agent (4) P_4O_{10} is basic and NH_3 is acidic		[AIIMS-2012]	

11. Identify the wrong statement in the following :

- (1) Chlorofluorocarbons are responsible for ozone layer depletion
- (2) Greenhouse effect is responsible for global warming
- (3) Acid rain is mostly because of oxides of nitrogen and sulphur
- (4) Ozone layer does not permit infrared radiation from the sun to reach the earth

P-BLOCK ELEMENTS

12.	Assertion : When a metal is treated with c	onc. HNO_3 it generally yield a nitrate, NO_2 a	and H_2O .				
	Reason: Cons. HNO_3 reacts with metal an	nd first produces a metal nitrate and nasce	ent hydrogen. The				
	nascent hydrogen then further reduces HN	O_3 to NO_2 .	[AIIMS-2013]				
	(1) Both A and R are true and R is the corre	ect explanation of A.					
	(2) Both A and R are true but R is not corre	ect explanation of A					
	(3) A is true but R is false						
	(4) A and R are false						
13.	Assertion (A) Elementary phosphorus ex	ists in three principal allotropic forms. i.e.,	white (or yellow),				
	red (or violet) and black.		[AIIMS-2015]				
	Reason (R) Of the three forms, white phos	phorus is the most important and most read	ctive.				
	(1) Both A and R are true and R is the corre	ect explanation of A.					
	(2) Both A and R are true but R is not corre	ect explanation of A					
	(3) A is true but R is false						
	(4) A and R are false						
14.	The true statement for the acids of phosphere	orus, H_3PO_2 , H_3PO_3 and H_3PO_4 is :	[AIIMS-2016]				
	(1) the order of their acidity is $H_3PO_2 > H_3P$	$O_3 > H_3 PO_4$					
	(2) all of them are reducing in nature						
	(3) all of them are tribasic acids						
	(4) the geometry of phosphorus is tetrahed	ral in all the three					
15.	Assertion (A) : Mg continues to burn in nit	ric oxide.	[AIIMS-2017]				
	Reason (R) : During the burning, the heat	evolved does not decompose NO.					
	(1) Both A and R are true and R is the corre	ect explanation of A.					
	(2) Both A and R are true but R is not corre	ect explanation of A					
	(3) A is true but R is false						
	(4) A and R are false						
16.	Which of the following is true for N_2O_5		[AIIMS-2018]				
	(1) Paramagnetic	(2) Anhydride of HNO2					
	(3) Brown gas	(4) Exist in solid state In form of [NO	⁺ ₂] [NO ₃ ⁻]				
17.	Assertion : HCOOH formic acid react with	H ₂ SO ₄ form CO.	[AIIMS-2018]				
	Reason : H ₂ SO ₄ is mild (moderate) oxidizin	ng agent					
	(1) If both assertion and reason are true an	d reason is the correct explanation of asse	rtion.				
	(2) If both assertion and reason are true bu	it reason is not the correct explanation of as	ssertion.				
	(3) If assertion is true but reason is false.						
	(1) If both apportion and reasons are false						

(4) If both assertion and reason are false.

18. Assertion : Pure N₂ is formed from Ba(N₃)₂

[AIIMS-2018]

Reason : Mass of Barium is high

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

19. Assertion : Red phosphorous on heating changes its colour into black [AIIMS-2018] **Reason :** Black phosphorous contain P4 units [AIIMS-2018]

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

PART - III : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1.	The number of hydroge	en atom (s) attached to p	phosphorus atom in hypo	phosphorus aci	d is :
	(1) zero	(2) two	(3) one	(4) three	[AIEEE 2005]
2.	Which of the following	chemical reactions depic	cts the oxidizing behaviou	ur of H ₂ SO ₄ ?	[AIEEE 2006]
	(1) 2HI + $H_2SO_4 \rightarrow I_2$ +	$SO_2 + 2H_2O$	(2) $Ca(OH)_2 + H_2SO_4 -$	\rightarrow CaSO ₄ + 2H ₂ C)
	(3) NaCl + $H_2SO_4 \rightarrow Na$	aHSO ₄ + HCI	$(4) 2PCI_5 + H_2SO_4 \rightarrow 2$	POCI ₃ + 2HCl +	SO ₂ Cl ₂
3.	Regular use of which o	f the following fertilizers	increases the acidity of s	soil? [AIE	EE 2007, 3/120]
	(3) Potassium nitrate	line	(4) Urea	e	
4.*	Which of the following	statement is wrong?		[AIE	EE 2011, 4/120]
	(1) The stability of hydr	ides increase from NH ₃	to BiH ₃ in group 15 of the	e periodic table	:
	(2) Nitrogen cannot for	m d π -p π bond.			
	(3) Single $N - N$ bond i	s weaker than the single	P − P bond.		
	(4) N_2O_4 has two resor	nance structure			
5.	Which of the following	statements regarding su	lphur is incorrect ?	[AIE	EE 2011, 4/120]

- (1) S_2 molecule is paramagnetic.
- (2) The vapour at 200°C consists mostly of S_8 rings.
- (3) At 600°C the gas mainly consists of S_2 molecules.
- (4) The oxidation state of sulphur is never less than +4 in its compounds.

P-BLOCK ELEMENTS

[JEE(Main) 2013, 4/120]

[JEE(Main) 2014, 4/120]

- 6. Which of the following is the wrong statement ?
 - (1) ONCI and ONO^{-} are not isoelectronic.
 - (3) Ozone is violet-black in solid state (4) Ozone is diamagnetic gas.
- 7. Which of the following properties is not shown by NO?
 - (1) It is dimagnetic in gaseous state
 - (2) It is a neutral oxide
 - (3) It combines with oxygen to form nitrogen dioxide
 - (4) It's bond order is 2.5
- **8.** From the following statements regarding H_2O_2 , choose the **incorrect** statement :

[JEE(Main) 2015, 4/120]

- (1) It can act only as an oxidizing agent
- (2) It decomposed on exposure to light
- (3) It has to be stored in plastic or wax lined glass bottles in dark
- (4) It has to be kept away from dust
- Assertion : Nitrogen and Oxygen are the main components in the atmosphere but these do not react to form oxides of nitrogen. [JEE(Main) 2015, 4/120]

Reason : The reaction between nitrogen and oxygen requires high temperature.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion

(2) O_3 molecule is bent

- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- 10. The pair in which phosphorous atoms have a formal oxidation state of +3 is: [JEE(Main) 2016, 4/120]
 - (1) Pyrophosphorous and hypophosphoric acids
 - (2) Orthophosphorous and hypophosphoric acids
 - (3) Pyrophosphorous and pyrophosphoric acids
 - (4) Orthophosphorous and pyrophosphorous acids
- **11.** The reaction of zinc with dilute and concentrated nitric acid, respectively, produces:

			[JEE(Main) 2016, 4/120]
(1) NO_2 and NO	(2) NO and N_2O	(3) NO_2 and N_2O	(4) N_2O and NO_2

12. The compound that does not produce nitrogen gas by the thermal decomposition is :

			[JEE(Main) 2018, 4/120]
(1) NH4NO2	(2) (NH ₄) ₂ SO ₄	(3) Ba(N ₃) ₂	(4) (NH ₄) ₂ Cr ₂ O ₇

2. 9

9.

(1)

(1)

(2)

(4)

4.*

11. (4)

(1,4)

5.

12.

3.

10.

(2)

(1)

1.

8.

		nsv	lers										
						EXER	CISE	- 1					
SEC	TION (A)												
1	(1)	2	(4)	3	(4)	4	(2)	5	(2)	6	(2)	7	(1)
8	(4)	9.	(2)	10.	(1)	11.	(1)	12.	(4)	13.	(4)	14.	(1)
15.	(3)	16.	(2)	17.	(1)	18.	(4)	19.	(3)	20.	(4)		
SEC	TION (B)												
1.	(2)	2	(3)	3	(2)	4.	(1)	5.	(2)	6.	(3)	7.	(1)
8	(4)	9.	(3)	10.	(4)	11.	(3)	12.	(2)	13.	(3)	14.	(2)
15.	(2)	16.	(1)	17.	(2)	18.	(1)						
SEC	TION (C)												
1.	(3)	2	(2)	3.	(3)	4.	(3)	5.	(4)	6.	(1)	7	(3)
8	(4)	9	(2)	10.	(3)	11.	(2)	12.	(1)	13	(1)	14.	(3)
15.	(3)	16.	(4)	17.	(2)	18.	(3)	19.	(2)				
SEC	TION (D)												
1	(2)	2.	(4)	3.	(4)	4.	(4)	5	(3)	6.	(2)	7.	(1)
8.	(4)	9.	(4)	10.	(1)	11.	(2)	12.	(4)	13.	(3)	14	(3)
15	(4)	16.	(4)	17.	(1)	18.	(1)	19.	(1)	20	(4)		
						EXER	CISE	- 2					
1.	(2)	2.	(4)	3.	(3)	4.	(2)	5.	(2)	6.	(1)	7.	(3)
8.	(3)	9	(2)	10.	(2)	11.	(4)	12.	(4)	13.	(2)	14.	(3)
15	(4)	16	(2)	17	(1)	18	(1)	19	(4)	20	(1)	21	(3)
22.	(4)	23.	(1)	24.	(4)	101	(')	101	(')	201	(')		(0)
						EXER	CISE	- 3					
						PA	ART-I						
1.	(1)	2.	(2)	3.	(4)	4.	(4)	5.	(3)	6.	(2)	7.	(3)
8.	(4)	9.	(4)	10.	(1)	11.	(2)	12.	(4)	13.	(4)	14.	(2)
15.	(2)	16.	(3)	17.	(1)	18.	(3)	19.	(3)	20.	(1)	21.	(2)
22.	(2)	23.	(Bonu	s) 24 .	(2)	25.	(1)	26.	(1)	27.	(4)	28.	(3)
29.	(1)	_0.	(20110)	-,	(-)	_0.	(.)		(.)		(')	_0.	(-)
	(.)					PA	RT-II						
1.	(1)	2.	(4)	3.	(2)	4.	(1)	5.	(1)	6.	(1)	7.	(3)
8.	(4)	9.	(1)	10.	(3)	11.	(4)	12.	(1)	13.	(2)	14.	(4)
15.	(3)	16.	(4)	17.	(2)	18.	(2)	19.	(3)		. /		
					. /	PA	RT-III		. /				

(4)

(2)

6. (All)

7. (1)