Exercise-1

ONLY ONE OPTION CORRECT TYPE

Section (A) : Cathode rays, Anode rays, Basic definations and Rutherford model

1.	Cathode ray are :			
	(1) stream of electrons		(2) stream of α -particle	S
	(3) radiation		(4) stream of cations	
-				
2.		statement is wrong about		<i>.</i>
	(1) They travel in straig		(2) They produce heating	ng effect
	(3) They carry positive of	charge	(4) None of these	
3.	Which of the following is	s/are affected by electric	field :	
	(1) Anode rays	(2) Cathode rays	(3) Both (1) and (2)	(4) None of these
4.	The e/m ratio for Anode	e rays :		
	(1) varies with the elem	ent forming the anode ir	n the discharge tube.	
	(2) varies with the gas	in the discharge tube.		
	(3) is constant.			
	(4) Both (1) & (2).			
5.	Millikan's oil drop exprir	ments is used to find -		
	(1) e/m ratio of an elect		(2) Charge of an electr	ron
	(3) Mass of an electron		(4) Velocity of an elect	
			.,	
6.	Match the following :			
	Column-I		Column-II	
	Sub-atomic particles		Persons responsible	for discovery
	(1) Electron		(p) James Chadwick	
	(2) Proton		(q) J.J. Thomson	
	(3) Neutron		(r) Rutherford	
	(3) Neutron(4) Nucleus		(r) Rutherford (s) Goldstein	`
	 (3) Neutron (4) Nucleus (1) (1 - q, 2 - s, 3 - r, 4 - 	• •	 (r) Rutherford (s) Goldstein (2) (1 - p, 2 - p, 3 - q, 4) 	
	(3) Neutron(4) Nucleus	• •	(r) Rutherford (s) Goldstein	
7.	 (3) Neutron (4) Nucleus (1) (1 - q, 2 - s, 3 - r, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - 	• •	 (r) Rutherford (s) Goldstein (2) (1 - p, 2 - p, 3 - q, 4) (4) (1 - q, 2 - s, 3 - p, 4) 	
7.	 (3) Neutron (4) Nucleus (1) (1 - q, 2 - s, 3 - r, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - 	q) nic number 25 and atom	 (r) Rutherford (s) Goldstein (2) (1 - p, 2 - p, 3 - q, 4) (4) (1 - q, 2 - s, 3 - p, 4) 	- r)
7.	 (3) Neutron (4) Nucleus (1) (1 - q, 2 - s, 3 - r, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - An element having atom 	q) nic number 25 and atom	 (r) Rutherford (s) Goldstein (2) (1 - p, 2 - p, 3 - q, 4) (4) (1 - q, 2 - s, 3 - p, 4) ic weight 55 will have – 	- r)
	 (3) Neutron (4) Nucleus (1) (1 - q, 2 - s, 3 - r, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - An element having atom (1) 25 protons and 30 n (3) 55 protons 	nic number 25 and atom eutrons	 (r) Rutherford (s) Goldstein (2) (1 - p, 2 - p, 3 - q, 4) (4) (1 - q, 2 - s, 3 - p, 4) ic weight 55 will have – (2) 25 neutrons and 30 (4) 55 neutrons 	- r)
7.	 (3) Neutron (4) Nucleus (1) (1 - q, 2 - s, 3 - r, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - (3) (1 - 25 protons and 30 n) (3) 55 protons Which of the following is 	nic number 25 and atom eutrons s isoelectronic with N_2O	 (r) Rutherford (s) Goldstein (2) (1 - p, 2 - p, 3 - q, 4) (4) (1 - q, 2 - s, 3 - p, 4) ic weight 55 will have – (2) 25 neutrons and 30 (4) 55 neutrons 	- r) protons
	 (3) Neutron (4) Nucleus (1) (1 - q, 2 - s, 3 - r, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - An element having atom (1) 25 protons and 30 n (3) 55 protons 	nic number 25 and atom eutrons	 (r) Rutherford (s) Goldstein (2) (1 - p, 2 - p, 3 - q, 4) (4) (1 - q, 2 - s, 3 - p, 4) ic weight 55 will have – (2) 25 neutrons and 30 (4) 55 neutrons 	- r)
8.	 (3) Neutron (4) Nucleus (1) (1 - q, 2 - s, 3 - r, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - An element having atom (1) 25 protons and 30 n (3) 55 protons Which of the following is (1) NO 	nic number 25 and atom eutrons s isoelectronic with N_2O (2) N_2O_5	 (r) Rutherford (s) Goldstein (2) (1 - p, 2 - p, 3 - q, 4) (4) (1 - q, 2 - s, 3 - p, 4) ic weight 55 will have – (2) 25 neutrons and 30 (4) 55 neutrons : (3) CO₂ 	- r) protons (4) CO
	 (3) Neutron (4) Nucleus (1) (1 - q, 2 - s, 3 - r, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - An element having atom (1) 25 protons and 30 n (3) 55 protons Which of the following is (1) NO The charge on the atom 	nic number 25 and atom eutrons s isoelectronic with N_2O (2) N_2O_5 n having 17 protons, 18 r	(r) Rutherford (s) Goldstein (2) $(1 - p, 2 - p, 3 - q, 4)$ (4) $(1 - q, 2 - s, 3 - p, 4)$ ic weight 55 will have – (2) 25 neutrons and 30 (4) 55 neutrons : (3) CO ₂ neutrons and 18 electron	- r) protons (4) CO is is
8.	 (3) Neutron (4) Nucleus (1) (1 - q, 2 - s, 3 - r, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - An element having atom (1) 25 protons and 30 n (3) 55 protons Which of the following is (1) NO 	nic number 25 and atom eutrons s isoelectronic with N_2O (2) N_2O_5	 (r) Rutherford (s) Goldstein (2) (1 - p, 2 - p, 3 - q, 4) (4) (1 - q, 2 - s, 3 - p, 4) ic weight 55 will have – (2) 25 neutrons and 30 (4) 55 neutrons : (3) CO₂ 	- r) protons (4) CO
8. 9.	 (3) Neutron (4) Nucleus (1) (1 - q, 2 - s, 3 - r, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - An element having atom (1) 25 protons and 30 n (3) 55 protons Which of the following is (1) NO The charge on the atom (1) + 1 	nic number 25 and atom eutrons s isoelectronic with N ₂ O (2) N ₂ O ₅ n having 17 protons, 18 r (2) – 1	(r) Rutherford (s) Goldstein (2) $(1 - p, 2 - p, 3 - q, 4)$ (4) $(1 - q, 2 - s, 3 - p, 4)$ ic weight 55 will have – (2) 25 neutrons and 30 (4) 55 neutrons : (3) CO ₂ neutrons and 18 electron (3) - 2	- r) protons (4) CO s is (4) zero
8.	(3) Neutron (4) Nucleus (1) $(1 - q, 2 - s, 3 - r, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - (3) (1) 25 protons and 30 n(1) 25 protons and 30 n(3) 55 protonsWhich of the following is(1) NOThe charge on the atom(1) + 1Number of protons, neur$	nic number 25 and atom eutrons s isoelectronic with N ₂ O (2) N ₂ O ₅ n having 17 protons, 18 r (2) – 1	(r) Rutherford (s) Goldstein (2) (1 - p, 2 - p, 3 - q, 4 (4) (1 - q, 2 - s, 3 - p, 4 ic weight 55 will have – (2) 25 neutrons and 30 (4) 55 neutrons : (3) CO_2 neutrons and 18 electron (3) - 2 ne element $\frac{281}{89}$ Ac are res	- r) protons (4) CO s is (4) zero spectively :
8. 9.	 (3) Neutron (4) Nucleus (1) (1 - q, 2 - s, 3 - r, 4 - (3) (1 - r, 2 - s, 3 - p, 4 - An element having atom (1) 25 protons and 30 n (3) 55 protons Which of the following is (1) NO The charge on the atom (1) + 1 	nic number 25 and atom eutrons s isoelectronic with N ₂ O (2) N ₂ O ₅ n having 17 protons, 18 r (2) – 1	(r) Rutherford (s) Goldstein (2) $(1 - p, 2 - p, 3 - q, 4)$ (4) $(1 - q, 2 - s, 3 - p, 4)$ ic weight 55 will have – (2) 25 neutrons and 30 (4) 55 neutrons : (3) CO ₂ neutrons and 18 electron (3) – 2	- r) protons (4) CO s is (4) zero

11.	An isotone of $^{16}_{8}$ O is :			
	(i) ${}^{17}_{8}$ O (ii) ${}^{12}_{6}$	C (iii) ¹⁴ ₆ C	(iv) ³² ₁₆ S	
	(1) (ii & iii)	(2) (i & ii)	(3) (iii)	(4) (ii & iii & iv)
12.	Which of the following (1) Na⁺ and Ne	are isoelectronic with or (2) K ⁺ and O	e another ? (3) Ne and O	(4) Na⁺ and K⁺
13.	Rutherford's experime (1) Electrons	ent on scattering of partic (2) Protons	les showed for the first tir (3) Nucleus	ne that the atom has (4) Neutrons
14.	undeflected. This is b (1) The force of repuls (2) The force of attrac (3) There is only one		particle is small to the oppositely charged or of electrons	-
15.	Which of the following (1) ₁₄ Si ³⁰	g elements has maximum (2) ₁₅ P ³¹	density of nucleus : (3) ₈ O ¹⁶	(4) All have same density
Secti	on (B) : Nature of	Light and photoeled	tric effects	
1.	A photon in X region i (1) IR	s more energetic than in (2) UV	the visible region ; X is : (3) Microwave	(4) Radio wave
2.	Photon of which light (1) red	has maximum energy : (2) blue	(3) violet	(4) green
3.	The frequency of yells (1) 5.0 × 10 ¹⁴ Hz	ow light having wavelengt (2) 2.5 × 10 ⁷ Hz	th 600 nm is : (3) 5.0 × 10 ⁷ Hz	(4) 2.5 × 10 ¹⁴ Hz
4.	Wave number of radia (1) 1.33 × 10 ^{–6} cm ^{–1}	ations having frequency o (2) 1.33 × 10 ⁻⁷ cm ⁻¹		(4) 4 × 10 ^{−5} cm ^{−1}
5.	A wavelength of 400 (1) frequency = $7.5 \times$ (3) velocity = 3×10^8 r		radiation is not correspo (2) wave number = 2.5 (4) λ = 40 Å	
6.	 (1) The energy is not (2) Radiation is assoc (3) Radiation energy quanta. 		hole number multiple of c	uantum. ne form of small packets called
7.	Wavelength of a phot (1) 6.2×10^{-7} m	on having an energy of 2 (2) 6.2×10^{-6} m		(4) 6.2×10^{-8} m
8.				it into X atoms. If light absorbed
	has wave length 1240 (1) 10 eV/molecule)Å, then bond energy of ≯ (2) 20 J/mole	(3) 48 eV/molecule	(4) 184 J/mol

9.		a metal is 4 eV. To ejec of incident light should b		o velocity from the surface of the	
	(1) 310 Å	(2) 1550 Å	(3) 155 Å	(4) 3100 Å	
10.		o remove an electron fro electron from metal X is/		0 ⁻²⁰ J. Wavelength/s of light that	
	(1) 4 μm	(2) 6 μm	(3) 7 μm	(4) 5 μm	
11.	Light of wavelength λ if :	falls on metal having wo	rk function hc/λ_0 . Photoe	electric effect will take place only	
		(2) $\lambda \geq 2\lambda_0$	(3) $\lambda \leq \lambda_0$	$(4) \lambda \leq \lambda_0/2$	
12.	Cu metal (work functio (1) λ = 5000 Å	n = 4.8 eV) can show ph (2) λ = 6000 Å		length of photon is : (4) λ = 4000 Å	
13.	Maximum kinetic energ		photon of wavelength 2	2000Å at Cu metal will be (If work	
	(1) 2.4 ev	(2) 1.4 ev	(3) 1.9 ev	(4) 3.4 ev	
14.	photoelectrons will be (1) Doubled (2) Halved	•		the maximum KE of the emitted	
15.	The number of photoelectrons emitted depends upon : (1) The intensity of the incident radiation (2) The frequency of the incident radiation (3) The product of intensity and frequency of incident radiation (4) None of these				
Secti	ection (C) : Bohr's Model				
1.	The expression for Bol	hr's radius of an atom is			
	(1) $r = \frac{n^2 h^2}{4\pi^2 m e^4 z^2}$	(2) $r = \frac{n^2 h^2}{4\pi^2 m e^2 z}$	(3) $r = \frac{n^2 h^2}{4\pi^2 m e^2 z^2}$	$(4) \ r = \frac{n^2 h^2}{4\pi^2 m^2 e^2 z^2}$	
2.	Ratio of radii of second (1) 2	d and first Bohr orbits of (2) 4	H atom is : (3) 3	(4) 5	
3.	The ratio of radii of sec	cond orbits of He $^{+}$, Li $^{2+}$ a	nd Be³+ is :		
	(1) 1 : 2 : 3	(2) 6 : 4 : 3	(3) 3 : 4 : 6	(4) none of these	
4.	If r is the radius of first (1) r n	orbit, the radius of n th or (2) r n ²	bit of H atom is given by (3) r/n	- (4) r ² n ²	
-				(<i>)</i>	
5.	If the speed of electron hydrogen atom will be		* is "v", then the speed	of electron in first Bohr orbit of	
	(1) v/2	(2) 2v	(3) v	(4) 4v	

6.	What is the ratio of spe (1) 2 : 1	eeds of electrons in 1st or (2) 8 : 3	bit of H-atom to IVth orbi (3) 3 : 2	it of He+ ion . (4) 27 : 5
7.	If the radius of I st orbit o (1) 1.27 Å	of hydrogen atom is 0.53 (2) 0.265 Å	Å then radius of I st orbit (3) 1.59 Å	of He⁺ is : (4) 0.132 Å
8.	Which state of the tripl hydrogen atom ? (1) 1	y ionized Beryllium (Be³+ (2) 2) has the same orbit radi (3) 3	ius as that of the ground state of (4) 4
9.				nat is its value in third orbit ? (4) 1.09 × 10 ⁶ m/s
10.	atom is :			o successive orbits of hydrogen
	(1) h/π	(2) h/2π	(3) h/2	(4) (n – 1)h/2π
11.	-	m of an electron in a give	n orbit is J, Its kinetic en	ergy will be :
	(1) $\frac{1}{2} \frac{J^2}{mr^2}$	(2) $\frac{Jv}{r}$	(3) $\frac{J^2}{2m}$	(4) $\frac{J^2}{2\pi}$
12.	Angular momentum in state of Li ⁺² is :	2 nd Bohr orbit of H-atom	n is x. Then angular moi	mentum of electron in I st excited
	(1) 3x	(2) 9x	(3) $\frac{x}{2}$	(4) x
14.	When an electron drop (1) energy is absorbed (3) atomic number incr		evel to a low energy leve (2) energy is emitted (4) atomic number dec	
14.	The maximum energy (1) Nucleus (3) First excited state	of an electron in an atom	will be at : (2) Ground state (4) Infinite distance fro	m the nucleus
15.	The ratio of potential e (1) 2	nergy and total energy of (2) –2	f an electron in a Bohr or (3) 1	bit of hydrogen like species is : (4) –1
16.	The ratio of energies o (1) 4/1	f hydrogen atom for first (2) 1/4	and second excited state (3) 4/9	e is : (4) 9/4
17.	In hydrogen atom, ene (1) + 3.4 eV	rgy of first excited state is (2) + 6.8 eV	s – 3.4 eV. Then, KE of (3) – 13.6 eV	same orbit of hydrogen atom is: (4) + 13.6 eV
18.	Potential energy of ele state of Hydrogen aton (1) –3.4 eV		orbit of He⁺. Then total e (3) 3.4 eV	energy of electron in first excited (4) 13.6 eV
19.				n which of the following excited
	level is electron preser (1) 1 st		(3) 3 rd	(4) 4 th

20.	•••	for the H-atom is 13.6 e\ to next higher state will b		rgy in eV to excite the electron it
	(1) 3.4	(2) 10.2	(3) 12.1	(4) 1.5
21.	The energy of an elect orbit will be	ron in an excited H-atom	n is −1.51 eV. Angular mo	omentum of electron in the given
	(1) 3h/π	(2) 3h/2π	(3) 2h/π	(4) h/π
22.	The ionization energy	of H-atom is 13.6 eV. Th	e ionization energy of Li*	⁻² ion will be :
	(1) 54.4 eV	(2) 122.4 eV	(3) 13.6 eV	(4) 27.2 eV
23.	If the binding energy o	f 3 rd orbit of a H-like spec	ies is 13.6 eV, then the s	species must be :
	(1) Be ³⁺	(2) Li⁺	(3) He⁺	(4) None of these
24.		e that a hydrogen atom ns of energy 12.75 eV, w		und state can reach when it is
	(1) 4	(2) 2	(3) 3	(4) No transition will occur.
25.	If the binding energy atomic number Z of the		a hydrogen like sample	is 54.4 eV, then determine the
	(1) 1	(2) 2	(3) 3	(4) 4
26.	remove the electron from	om ground state of the io	n is :	40.8 eV. The energy needed to (4) 40.0 eV
	(1) 54.4 eV	(2) 122.4 eV	(3) 40.8 eV	(4) 13.6 eV
27.	Match the following	tata af llat		
	(1) Energy of ground s(2) Potential energy of		(i) + 6.04 e∨ (ii) –27.2 eV	
	(3) Kinetic energy of II		(iii) 54.4 V	
	(4) Ionisation potential	of He ⁺	(iv) – 54.4 eV	
	(1) A – (i), B – (ii), C –	., .,	(2) A – (iv), B – (iii), C	
	(3) A – (iv), B – (ii), C -	– (I), D – (III)	(4) A – (ii), B – (iii), C -	- (I), D – (IV)
Secti	on (D) : Atomic Sp	ectrum		
1.	(1) No. of electrons un(2) The nuclear charge(3) The velocity of an electronic	0 0	sition	elated to :
2.	Different lines in Lyma	n series of hydrogen spe	ctrum lie in :	
	(1) UV	(2) Visible	(3) IR	(4) None of these
3.	The spectral lines corr orbits to second orbit b		on emitted by an electro	n jumping from 6th, 5th and 4th
	(1) Lyman series	(2) Balmer series	(3) Paschen series	(4) Pfund series

4.	The transition of electron in H (1) $n_3 = n_2$ (2) r	H-atom that will emi n ₄ ३ n ₃	t maximum energy is : (3) n ₅ ३ n₄	(4) All have same energy
5.	Which transition emits photo (1) 2 nd spectral line of Balme (3) 5 th spectral line of Humph	er series	uency in hydrogen like sp (2) 2 nd spectral line of F (4) 5 th spectral line of Ly	Paschen series
6.	The shortest λ for the Brake	ett series for H is : (G	Given R _H = 109678 cm ⁻¹)	
	(1) 1459 Å (2) 4	4052 Å	(3) 4052 nm	(4) 1459 nm
7.	Wavelength of 1 st line of Bala (1) 6656 Å (2) 6	lmer series in hydrog 6266 Å	gen spectrum is : (3) 6626 Å	(4) 6566 Å
8.	When an electron in an exci in theregion and in			bit the spectral line is observed
	(1) Visible, Balmer (2)	Visible, Lyman	(3) Infrared, Paschen	(4) Infrared, Balmer
9.	No. of visible lines when an e (1) 5 (2) 4		n 5th orbit to ground stat (3) 3	e in H spectrum - (4) 10
10.	•	al lines in Lyman ser n – 1	ies will be if electron ma (3) n – 2	kes transistion from n th orbit : (4) n (n + 1)
11.	In a isolated H-atom, electro (1) 6 (2)		rbit to 2 nd orbit maximum (3) 4	number of spectral lines will be (4) 0
12.	number of first line of Balme		s of hydrogen atom is (3) 76000 cm ⁻¹	15200 cm ⁻¹ . What is the wave (4) 13680 cm ⁻¹
13.	Calculate number of possib electrons present in 9 th excit	•	•	n bracket series in H atom, if
	(1) 4 (2) 5	5	(3) 6	(4) 7
14.	Ratio of wavelength of second(1) 1/8(2) 2	•	ries to that of series limit (3) 8/9	of Paschen series of H-atom. (4) 9/8
Secti	on (E) : de-Broglie conc	cept & Heisenbe	ergs uncertainity pr	inciple
1.	The de Broglie equation sug	gests that an electro	on has	
	(1) Particle nature(3) Both Particle & wave nate	ure	(2) Wave nature(4) Radiation behaviour	
2.	The wavelength of a charged it is accelerated :	d particlet	the square root of the po	tential difference through which
	(1) is inversely proportional t(3) is independent of	to	(2) is directly proportion(4) is unrelated with	al to
3.	If the kinetic energy of an associated with it would beca		sed 4 times, the wave	length of the de-Broglie wave
	(1) four times (2) t	two times	(3) half times	(4) one fourth times

A 0.66 kg ball is moving with a speed of 100 m/s. The associated wavelength will be : (h = 6.6×10^{-34} Js) 4. (3) 1.0 x 10⁻³⁵ m (4) 1.0×10^{-32} m (1) $6.6 \times 10^{-32} \text{ m}$ (2) 6.6 \times 10⁻³⁴ m 5. The de-broglie wavelength associated with a ball of mass 1 kg having kinetic energy 0.5 J is. (1) 6.626×10^{-34} m (2) 13.20×10^{-34} m (3) 10.38×10^{-21} m (4) 6.626 × 10⁻³⁴ Å The speed of a proton is one hundredth of the speed of light in vacuum. What is its de-Broglie of proton 6. wavelength? Assume that one mole of protons has a mass equal to one gram $[h = 6.626 \times 10^{-27} \text{ erg}]$ secl: (3) $13.13 \times 10^{-2} \text{ Å}$ (4) $1.31 \times 10^{-2} \text{ Å}$ (1) 13.31 × 10⁻³ Å (2) 1.33 × 10^{−3} Å 7. What possibly can be the ratio of the de Broglie wavelengths for two electrons each having zero initial energy and accelerated through 50 volts and 200 volts ? (4) 2 : 1(1) 3 : 10 (2) 10 : 3 (3) 1 : 2A helium molecule is moving with a velocity of 2.40 x 10² ms⁻¹ at 300K. The de-Broglie wave length is 8. about (2) 0.83 nm (3) 803 Å (4) 8000 Å (1) 0.416 nm 9. If wavelength is equal to the distance travelled by the electron in one second, then -(3) $\lambda = \sqrt{\frac{h}{n}}$ (4) $\lambda = \sqrt{\frac{h}{m}}$ (2) $\lambda = \frac{h}{m}$ (1) $\lambda = \frac{p}{b}$ de-Broglie wavelength of electron in second orbit of Li2+ ion will be equal to de-Broglie of wavelength of 10. electron in (1) n = 3 of H-atom (2) n = 4 of C^{5+} ion (3) n = 6 of Be³⁺ ion (4) n = 3 of He⁺ ion What is the de-Broglie wavelength associated with the electron in 3rd orbit of hydrogen : 11. (2) 9.96×10⁻⁸cm (1) 9.96×10^{-10} cm (3) 9.96×10^4 cm (4) 9.96×10^8 cm 12. Select the incorrect relationship among the following : (1) $\Delta x \times \Delta p \ge \frac{h}{4 \pi}$ (2) $\Delta x \times \Delta p \ge \frac{h}{4 \pi m}$ (3) $\Delta x \times \Delta V \ge \frac{h}{4 \pi m}$ (4) $\Delta E \times \Delta t \ge \frac{h}{4 \pi}$ 13. It the uncertainity in position of a moving particle is 0 then uncertainity in momentum will be : (1) 0(2)1(3) ∞ (4) Can not predict The Uncertainity in the momentum of an electron is 1.0×10^{-10} kg m s⁻¹. The Uncertainity in its 14. position will be: (h = $6.62 \times 10^{-34} \text{ Js}$) (3) 5.27×10^{-25} m (4) 5.25×10^{-28} m (1) 1.05×10^{-28} m (2) 1.05 × 10⁻²⁶ m 15. What is the minimum uncertainty in position of a proton whose velocity is given by $1.5 \times 10^6 \pm 1500$ m/s (1) 21 m (2) 21 cm (3) 21 μm (4) 21 pm Section (F) : Quantum Numbers and Electronic configuration 1. Magnetic quantum number specifies -(2) Shape of orbitals (1) Size of orbitals (3) Orientation of orbitals (4) Nuclear stability

				Pagel 45
14.	The orbital angular motion (1) $\frac{h}{4\pi}$	omentum of an electron in (2) zero	n 2s-orbital is - (3) $\frac{h}{2\pi}$	(4) $\sqrt{2} \frac{h}{2\pi}$
13.		(2) $\sqrt{2s (s+1)} \frac{h}{2\pi}$		(4) None
13	(3) 3 1 (4) 3 0	+1 0 -1 +½	n 00 i	
12.	n l (1) 3 2	uantum numbers for unpa m s $0 + \frac{1}{2}$ $0 + \frac{1}{2}$	aired electron in CI-atom	1:
	(1) 18	(2) 6	(3) 24	(4) 1
11.	(1) 3 Maximum number of e	(2) 1 electrons that can have n	(3) 2 = 3. ℓ = 2. m = +2. s = +	(4) 0 -% in an atom are :
10.		aving $\ell = 1$ and m=0 in F	-	
	(1) $\sum_{\ell=1}^{\ell=n} 2 (2\ell+1)$	(2) $\sum_{\ell=1}^{\ell=n-1} 2 (2\ell+1)$	(3) $\sum_{\ell=0}^{\ell=n+1} 2(2\ell+1)$	(4) $\sum_{\ell=0}^{\ell=n-1} 2(2\ell+1)$
9.	-	ctively the principal and imber of electrons in any	-	umbers, then the expression for
•	(1) 10	(2) 3	(3) 5	(4) 7
8.		r of 3d-electrons that car		
7.	The electrons present (1) principal quantum (3) magnetic quantum		ll differ in (2) azimuthal quantun (4) spin quantum num	
6.	The maximum numbe (1) 4 <i>l</i> – 2	r of electrons in a subshe (2) 4 <i>l</i> + 2	ell is given by the expres (3) 2 <i>l</i> + 2	sion (4) 2 <i>n</i> ²
•	(1) 3s orbital	(2) 3p orbital	(3) 4d orbital	(4) 4f orbital
5.	An orbital containing e	lectron having quantum	number n = 4. <i>l</i> = 3. m =	$\frac{1}{2}$ 0 and s = $-\frac{1}{2}$ is called
	-	(2) 4, 2, 1, 0	-	
4.	(1) s - orbital Which of the following	(2) p-orbital represents the correct s	(3) d-orbital	(4) f-orbital
3.	A given orbital is label	ed by the magnetic quan	tum number $m = -1$. Th	is could not be
2.	A p-orbital can accom (1) 4 electrons (3) 2 electrons with pa		(2) 6 electrons (4) 2 electrons with or	pposite spins

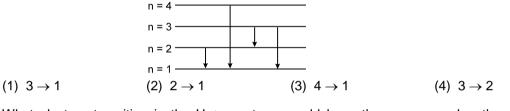
15.	Which of the follow (1) n = 3, <i>l</i> = 2, m = (3) n = 2, <i>l</i> = 2, m =		pers is permitted (2) n = 3, <i>l</i> = 2, m (4) n = 2, <i>l</i> = 2, m	
16.	(1) Aufbau principle	• •	(2) Pauli's exclusi	of electrons in an orbital to two on principle uncertainty principle
17.	Which is not correc	ct for an electron having r	n = 5, m = 2 :	
	(1) $\ell = 4$	(2) ℓ = 0, 1, 2, 3		(4) ℓ = 2, 3, 4
18.	Which of the follo subshell:	wing orbital quantum nu	umber value is not po	ssible for an electron present in 4d
	(1) n = 4	(2) ℓ = 1	(3) m = 1	(4) m = 2
19.	shell in its ground s	state are is :		ontaining electron pairs in the valency
	(1) 8	(2) 2	(3) 3	(4) 6
20.	Nitrogen has the	electronic configuration	$1s^2, 2s^22p_x^12p_y^12p_z^1$ a	nd not $1s^2$, $2s^22p_x^22p_y^12p_z^0$ which is
	determined by (1) Aufbau's princip (3) Hund's rule	ble	(2) Pauli's exclusi (4) Uncertainty pr	
21.	For sodium atom th (1) 2	ne number of electrons w (2) 7	ith m = 0 will be : (3) 9	(4) 8
22.	Which of the follow (1) Zn ²⁺	ring ions has the maximu (2) Fe²+	m number of unpaired ((3) Ni ³⁺	d-electrons? (4) Cu⁺
23.		lting from a d ⁷ configurati (2) 2		(4) 3/2
24.	In hydrogen atom, (1) 1s < 2p	which is incorrect order o (2) 2p = 2s	of their energies. (3) 2p > 2s	(4) 2p < 3s
25.	For a given subshe values be y.	ell let maximum number o	of electrons with same	spin be x and number of possible m ℓ
	(1) x = 2y	(2) x = y	$(3) \frac{x}{2} = y$	$(4) x = \frac{y}{2}$
26.	Ratio of number of (1) 1.2	unpaired electrons in Fe (2) 3	²⁺ to that of Ti is (3) 2	(4) 4
27.	Orbital angular mo	mentum of 2s orbital is		
	(1) $\frac{h}{2\pi}$	(2) $\frac{\sqrt{2}h}{2\pi}$	$(3) \frac{\sqrt{3}h}{2\pi}$	(4) Zero

Section (G) : Shape of orbitals

1.	Which orbital is non-di	rectional		
	(1) s	(2) p	(3) d	(4) All
2.	An orbital with $\ell = 0$ is	symmetrical about the :		
	(1) x-axis only	(2) y-axis only	(3) z-axis only	(4) All
3.	Which orbital has two a	angular nodal planes		
01	(1) s	(2) p	(3) d	(4) f
4.	Which d-orbital does n	ot have four lobes		
	(1) $d_{x^2-y^2}$	(2) d _{xy}	(3) d _{z²}	(4) d _{xz}
-	The second second section is the	· · · · · · · · · · · · · · · · · · ·		
5.		odes of 5s atomic orbital (2) 2		(4) 4
	(1) 1	(2) 2	(3) 3	(4) 4
6.	The number of angula	r nodes of 3d _{yz} atomic or	bital are	
	(1) 1	(2) 2	(3) 3	(4) 4
7.	The sum of angular no	des and radial nodes of 4	4d _{xy} atomic orbital are	
	(1) 1	(2) 2	(3) 3	(4) 4
8.	The number of angula	r nodes of 3p atomic orb	ital are	
	(1) 1	(2) 2	(3) 3	(4) 4
9.	3p, orbital hasno	odal plane ·		
01	(1) XY	(2) YZ	(3) ZX	(4) All of these
10.	A 3p-orbital has (1) Two non-spherical	nadaa	(2) Two opherical pade	
	.,	one non spherical nodes	(2) Two spherical node(4) One spherical and t	
11.	-	d-orbitals has dough-nut	•	
	(1) d _{xy}	(2) d _{yz}	(3) $d_{x^2-y^2}$	(4) d_{z^2}
40				
12.	(1) 4	on to the schrodinger wav	(3) 2	al of quantum number (4) 1
	(), -	(2) 5	(0) 2	(=)

Exercise-2

1.	Which is not true with respect (1) Cathode rays consist of f (2) For production of cathode (3) For production of cathode be high. (4) None of these	ast moving electror e rays in a discharg	e tube, the gas filled sho	ould be at a low pressure. The electrodes should
2.	(i) ${}^{54}_{26}$ Fe, ${}^{56}_{26}$ Fe, ${}^{57}_{26}$ Fe, ${}^{58}_{26}$ Fe (ii) ${}^{3}_{1}$ H, ${}^{3}_{2}$ He (iii) ${}^{76}_{32}$ Ge, ${}^{77}_{33}$ As (iv) ${}^{235}_{92}$ U, ${}^{231}_{90}$ Th (v) ${}^{1}_{1}$ H, ${}^{2}_{1}$ D, ${}^{3}_{1}$ T Match the above correct terr (1) (i – a), (ii – d), (iii – b), (iv (3) (i – a), (ii – d), (iii – b), (iv	− c), (v − a)	(2) (i – a), (ii – c), (iii –	
3.	The ratio of the "e/m" (specif (1) 2 : 1 (2)		of a electron and an α-pa (3) 1 : 2	rticle is - (4) None of these
4.	An oil drop has 6.4 × 10 ⁻¹⁹ C (1) 2 (2) 4	•	er of electrons in this oil (3) 6	drop are : (4) 8
5.	fraction of atom is occupied		uclear radius is of the or (3) 10 ⁻¹²	rder of 10 ⁻¹³ cm. Calculate what (4) None
6.	The radius of nucleus of $^{27}_{13}$ A (1) 1.2 × 10 ⁻¹⁵ m (2) 2	l is approximetely: 2.7 × 10⁻¹⁵ m	(3) 10.8 × 10⁻¹⁵ m	(4) 4 × 10 ⁻¹⁵ m
7	If the ratio of radius of two di (1) $\frac{8}{27}$ (2)	-	in the ratio 2 : 3, then rat (3) $\frac{4}{9}$	tio of their mass numbers will be (4) $\frac{4}{27}$
8.	For a broadcasted electrom formed in 2 km distance are (1) 8 (2) 8	:	ng frequency of 1200 KH (3) 12	Iz, number of waves that will be (4) 120
9.		needed by the int 50 nm) needed to s	erior of human eye to s	(4) 120 see an object. The number of (4) 30
10.		aving a wavelength	n of 5000 Å are necessa	ry to provide 1 joule of energy.


11.	A light source of wavelength λ illuminates a metal and ejects photo-electrons with (K.E.)_{max} = 1 eV	
	Another light source of wavelength $\frac{\lambda}{3}$, ejects photo-electrons from same metal with (K.E.) _{max} = 4eV	
	Find the value of work function ?(1) 1 eV(2) 2 eV(3) 0.5 eV(4) None of these	
12.	A photon of 300 nm is absorbed by a gas and then emits two photons. One photon has a wavelength 400 nm then the wavelength of second photon in nm : (1) 1200 (2) 1600 (3) 800 (4) 400	I
13.	The ratio of radius of two different orbits in a H-atom is 4 : 9. Then, the ratio of the frequency of revolution of electron in these orbits is :(1) 2 : 3(2) 27 : 8(3) 3 : 2(4) 8 : 27	F
14.	The ratio of the time period of electrons in 2 nd Bohr orbit of He ⁺ and 4 th Bohr orbit of Li ²⁺ is. (1) $\frac{9}{32}$ (2) $\frac{3}{8}$ (3) $\frac{9}{8}$ (4) $\frac{27}{32}$	
15.	If the ionisation potential of a hydrogen like species is 20V, its I st excitation potential will be : (1) 5 V (2) 10 V (3) 15 V (4) 20 V	
16.	The amount of energy required to excite the electron from 3rd to 4th Bohr's orbit in B4+ will be :(1) 4.5 eV(2) 8.53 eV(3) 25 eV(4) 16.53 eV	
17.	A single electron orbits a stationary nucleus of charge +Ze, where Z is a constant. It requires 47.2 eV to excite electron from second Bohr orbit to third Bohr orbit, find the value of Z : (1) 1 (2) 3 (3) 5 (4) 4	1
18.	The ionization energy of He+ is 19.6×10^{-18} J atom ⁻¹ . The energy of the first stationary state of Li+2 will be:(1) 84.2×10^{-18} J/atom(2) 44.10×10^{-18} J/atom(3) 63.2×10^{-18} J/atom(4) 21.2×10^{-18} J/atom]
19.	Energy required to pull out an electron from 1 st orbit of hydrogen atom to infinity is 100 units. The amount of energy needed to pull out the electron from 2nd orbit to infinity is : (1) 50 units (2) 100 units (3) 25 units (4) Zero	;
20.	If the I excitation potential of a hypothetical H-like atom is 10.2x V, then the value of II excitation energy is about : (1) 13.6x eV (2) 12.09x eV (3) -10.2x eV (4) 40.5x eV	1
21.	The kinetic energy of the electron present in the ground state of Li ²⁺ ion is represented by : (1) $\frac{3e^2}{8\pi \in_0 r}$ (2) $-\frac{3e^2}{8\pi \in_0 r}$ (3) $\frac{3e^2}{4\pi \in_0 r}$ (4) $-\frac{3e^2}{4\pi \in_0 r}$	
22.	If the energy of an electron in hydrogen atom is given by expression, -1312/n ² kJ mol ⁻¹ , then the energy required to excite the electron from ground state to second orbit is (1) 328 kJ/mol (2) 656 kJ/mol (3) 984 kJ/mol (4) 1312 kJ/mol	;
23.	The frequency of radiation emitted when the electron falls from $n = 2$ to $n = 1$ in a hydrogen atom will be ($h = 6.625 \times 10^{-34}$ Js)	
	(1) $2.46 \times 10^{15} \text{s}^{-1}$ (2) $2.00 \times 10^{15} \text{s}^{-1}$ (3) $1.54 \times 10^{15} \text{s}^{-1}$ (4) $1.03 \times 10^{15} \text{s}^{-1}$	

24. The kinetic energy of an electron in the 2^{nd} orbit of hydrogen atom is : (a_0 is Bohr radius of 1^{st} orbit)

(1)
$$\frac{h^2}{4\pi ma_0^2}$$
 (2) $\frac{h^2}{16\pi^2 ma_0^2}$ (3) $\frac{h^2}{32\pi^2 ma_0^2}$ (4) $\frac{h^2}{64\pi^2 ma_0^2}$

- 25. If the series limit of wavelength of the Lyman series for the hydrogen atoms is 912Å, then the series limit of wavelength for the Balmer series of the hydrogen atom is :
 (1) 912 Å
 (2) 912 x 2 Å
 (3) 912 x 4 Å
 (4) 912/2 Å
- **26.** The difference between the wave number of 1st line of Balmer series and last line of paschen series for Li²⁺ ion is
 - (1) $\frac{R}{36}$ (2) $\frac{5R}{36}$ (3) 4R (4) $\frac{R}{4}$
- 27. If the shortest wave length of Lyman series of H atom is x, then the wave length of the first line of Balmer series of H atom will be -

28. Suppose that a hypothetical atom gives a red, green, blue and violet line spectrum . Which jump according to figure would give off the red spectral line.

29. What electron transition in the He⁺ spectrum would have the same wavelength as the first Lyman transition of hydrogen.

(1) n = 4 to n = 2 (2) n = 6 to n = 4 (3) n = 6 to n = 2 (4) n = 4 to n = 1

30. What will be the KE of photoelectrons ejected, when photon of 13eV is absorbed by H-atom in 3rd excited state.

(1) 12.15 eV (2) 11.49 eV (3) 12.46 eV (4) 12.63 eV

- What is the ratio of the wave lengths of last lines of Balmer and Lyman series for any hydrogen like species.
 (1) 2
 (2) 3
 (3) 4
 (4) 5
- **32.** An atom has n energy level then total number of lines in its spectrum are :

(1) 1 + 2 + 3 (n + 1)	(2) $1 + 2 + 3$ (n) ²
(3) 1 + 2 + 3 (n − 1)	(4) (n + 1) (n + 2) (n + 4)

- **33.** A certain electronic transition from an excited state to ground state in a sample of H-atoms gives rise to maximum three lines in the ultra violet region of the spectrum. How many lines does this transition produce in the infrared region of the spectrum :
 - (1) 1 (2) 2 (3) 3 (4) 4
- What minimum number of atoms/ions should be present in a sample of H-like species, so that a maximum of 6 spectral lines can be produced of electronic transition from fifth excited state upto n = 2 ?
 (1) 1
 (2) 2
 (3) 3
 (4) 4
- 35. A particle X moving with a certain velocity has a de Brogile wavelength of 1Å. If particle Y has a mass of 25% that of X and velocity 75% that of X, deBroglies wavelength of Y will be :
 (1) 3Å
 (2) 5.33 Å
 (3) 6.88 Å
 (4) 48 Å

36.	Number of de Broglie (1) 4	waves formed in the 4th (2) 5	orbit of H are : (3) 0	(4) 1		
37.		glie wave length of the el 3.6 eV - (1eV = 1.602 x 1 (2) 2.338 x 10 ⁻¹⁰ m	0 ^{- 19} J)	ate of hydrogen atom , given that (4) 2.338 x 10m		
38.	In H-atom, if 'x' is the	radius of the first Bohr or	bit, de Broglie waveleng	th of an electron in 3 rd orbit is :		
	(1) 3 π x	(2) 6 π x	(3) $\frac{9x}{2}$	(4) $\frac{x}{2}$		
39.		sition of an electron & he D ⁵ , then the uncertainty in (2) 16 × 10 ⁵		the uncertainty in momentum for tom will be : (4) None		
40.	-	s of 40 g and a speed of in position will be approxi (2) 10 ⁻⁴⁰ m	-	be measured within accuracy of (4) 10 ⁻⁵⁰ m		
41.	Which of the following	g transition neither shows	s absorption nor emissic	on of energy in case of Hydrogen		
	atom: (1) 3p, ३ 3s	(2) 3d _{xy} ३3d _{yz}	(3) 3s ३ 3d _{xv}	(4) All the above		
		, ,	,			
42.	The number of electro	ons in the M-shell of the e (2) 12	element with atomic num (3) 8	ber 24 are : (4) 13		
43.	Magnetic moment of respectively are : (1) 4, 2	X^{n+} (Z = 26) is $\sqrt{24}$ B. (2) 2, 4	M. Hence number of ur (3) 3, 1	npaired electrons and value of n (4) 0, 2		
44.		l quantum number n = 4	 4 , which is incorrect : (2) 4 subshells (4) ℓ = 0, 1, 2, 3, 4 			
45						
45.	(1) C, Cu ²⁺ , Zn	me number of s-electrons (2) Cu ²⁺ , Fe ²⁺ ,Ni ²⁺		(4) None of these		
46.	Which electronic conf (1) 1s ² , 2s ² 2p ⁴	iguration does not follow (2) 1s ² , 2s ² 2p ⁴ 3s ²	the pauli's exclusion prir (3) 1s ² , 2p ⁴	nciple (4) 1s ² , 2s ² 2p ⁶ 3s ³		
47.	For a d-electron, the	orbital angular momentun	n is			
	(1) √6 <i>ħ</i>	(2) √2 <i>ħ</i>	(3) ħ	(4) 2 ħ		
48.	Which of the above st	atement (s) is/are <u>false.</u>				
	I Orbital angul	ar momentum of the ele	ectron having n = 5 and	d having value of the azimuthal		
	quantum num	ber as lowest for this prir	nciple quantum number i	$s \frac{h}{\pi}$.		
	Ⅱ If n = 3, ℓ = be 12 or 13.	0, m = 0, for the last vale	ence shell electron, then	the possible atomic number may		
		electrons for the atom ₂₅ N	In is $\pm \frac{7}{2}$.			
		c moment of inert gas is (
	(1) I, II and III	(2) II and III only	(3) I and IV only	(4) None of these		
		· · · · · ·	•	· · ·		

49.	49. Consider the ground state of Cr atom ($Z = 24$). The numbers of electrons with the azimuthal q										nal quantum
	numb	ers, $\ell = \ell$	1 and 2	are, res	pectively :						
	(1) 16	and 5		(2) 12	2 and 5	(3) 16 and 4			(4) 12	2 and 4	
50.	Matcl	n List-I w	ith List-	II and se	elect the correct a	nswer u	ising the	codes	given be	elow the lists (ℓ and m are
	respe	ectively th			d magnetic quant						
	List-I					List-I					
	(1) N	umber of	value o	of ℓ for a	n energy level	(1) 0,	1, 2,	(r	n - 1)		
	(2) Value of ℓ for a particular type of orbital					(2) + ℓ	to $-\ell$ th	rough z	ero		
	(3) Number of values of m for $\ell = 2$					(3) 5					
	(4) Va	alue of 'm	n' for a p	oarticula	r type of orbital	(4) n					
	Code :										
		А	В	С	D		А	В	С	D	
	(1)	4	1	2	3	(2)	4	1	3	2	
	(3)	1	4	2	3	(4)	1	4	3	2	
51.	The c	orbital an	gular m	omentur	n corresponding t	o n = 4	and m =	= –3 is :			
	(1) 0			(2) _	$\frac{h}{2\pi}$	$(3) \frac{\sqrt{6}h}{2\pi}$		(4) -	$(4) \frac{\sqrt{3h}}{\pi}$		
52.	A cor	npound o	of Vana	dium ha	s a spin magentio	: mome	nt 1.73 E	3M. Wo	rk out th	e electronic c	onfiguration
	of the	Vanadiu	um ion iı	n the co	mpound :						-
	(1) 1s	s²2s²2p63	s²3p ⁶ 4s	1		(2) 1s	² 2s ² 2p ⁶ 3	3s²3p63d	2		
	(3) 1s	s ² 2s ² 2p ⁶ 3	s²3pº3d	1		(4) nothing can be said with certainty					
53.	A neu matcl		n of an e	element	has 2K, 8L, 9M a	ind 2N e	electrons	s. Which	n of the f	ollowing is/ar	e incorrectly
	(1) To	otal numb	per of s	electron	s - 8	(2) To	otal num	ber of p	electror	ns - 12	
	(3) To	otal numb	per of d	electron	s -1	(4) Ni	umber of	f unpaire	ed electr	ons in eleme	nt - 3
54.		n electro	n, with	n = 3 ha	is only one radial	node. T	The orbit	al angu	lar mom	entum of the	electron will
	be				L		Ŀ			(
	(1) 0			(2) 🗸	$\frac{h}{2\pi}$	(3) √	$\frac{1}{2} \frac{n}{2\pi}$		(4) 3	$\left(\frac{h}{2\pi}\right)$	
55.	The r	naximum	n probab	oility of fi	nding electron in	the d _{xv} o	orbital is	:			
		ong the >				,	ong the				
	. ,	-		from the	e x and y axis	. ,	-	•	from the	e x and y axis	

	Exercise	-3			
	PART - I : N	IEET / AIPMT QU	ESTION (PREVI	OUS YEARS)	
* Marl		ing more than one corr	•		
1.		n is 3.03 × 10 ⁻¹⁹ J, then ^{.34} Js, c = 3.00 × 10 ⁸ ms ⁻ (2) 65.6 nm	wavelength of this photo ⁻¹) (3) 656 nm	n is: [AIPMT 2000] (4) 0.656 nm	
2.	Maximum number of c	orbitals in an atom which	can have the quantum r	numbers n = 3, <i>l</i> = 2, m = + 2 are [AIPMT 2001]	
	(1) 1	(2) 2	(3) 3	(4) 4	
3.	of hydrogen atom is :			energy of electron in same orbit [AIPMT 2002]	
	(1) + 3.4 eV	(2) + 6.8 eV	(3) – 13.6 eV	(4) + 13.6 eV	
4.			Js. The velocity of light quantum of light with freq	is 3.0×10^8 ms ⁻¹ . Which value is uency of 8×10^{15} s ⁻¹ ? [AIPMT 2003]	
	(1) 2×10^{-25}	(2) 5×10^{-18}	(3) 4×10^{1}	(4) 3 × 10 ⁷	
5.		on energy of H = 2.18×2		= 4 to n = 1 in a hydrogen atom 625 × 10 ⁻³⁴ Js) [AIPMT 2004] (4) $2.0 \times 10^{15} \text{ s}^{-1}$	
6.	configuration is [At No	os. Ti = 22, V = 23, Cr =	24, Mn = 25]	e metal ions have 3d ² electronic [AIPMT 2004] 1 ³⁺ (4) Ti ²⁺ , V ³⁺ , Cr ⁴⁺ , Mn ⁵⁺	
7.	Bohr orbit would be		rogen atom is -328 kJ mol^{-1} ; hence the energy of for [AIPMT 2005] (3) - 41 kJ mol}{-1} (4) - 164 kJ mol^{-1}		
8.	The Uncertainity invo (Given : The mass of e	lved in the measurement electron is 9.11 \times 10 ⁻³¹ k	nt of velocity of electron	within a distance of 0.1 Å is : 26 × 10 ⁻³⁴ J s) [AIPMT 2006]	
9.	The orientation of an a (1) azimuthal eqantum (3) magnetic quantum		d by : (2) spin quantum num (4) principal quantum		
10.	n l (i) 3 0	sets of quantum number m s 0 +1/2	ers :		
	(iv) 1 0	-2 -1/2 -1 -1/2			
	(v) 3 2 Which of the following (1) (i) and (iii)	3 +1/2 sets of quantum numbe (2) (ii), (iii) and (iv)	rs is not possible ? (3) (i), (ii), (iii) and (iv)	[AIPMT 2007] (4) (ii), (iv) and (v)	

ATOMIC STRUCTURE

11.	The uncertainity in measurement position of the electron is associated with an uncertainity in momentum, which is equal to 1×10^{-18} g cm s ⁻¹ . The Uncertainity in electron velocity is, (mass of an electron is 9×10^{-28} g) [AIPMT 2008] (1) 1×10^9 cm s ⁻¹ (2) 1×10^6 cm s ⁻¹ (3) 1×10^5 cm s ⁻¹ (4) 1×10^{11} cm s ⁻¹							
	(1) 1 \times 10° cm s ⁻¹	(2) 1 × 10° cm s⁻¹	(3) 1×10^{3} cm s ⁻¹	(4) 1 × 10" cm s ⁻				
12.		_		y in velocity is : [AIPMT 2008]				
	(1) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$	(2) $\sqrt{\frac{h}{2\pi}}$	(3) $\frac{1}{m}\sqrt{\frac{h}{\pi}}$	(4) $\sqrt{\frac{h}{\pi}}$				
13.	Maximum number of e (1) 4 <i>l</i> + 2	lectrons in a subshell of a (2) 2 <i>l</i> + 1	an atom in determined by (3) 4 <i>l</i> – 2	/ the following : [AIPMT 2009] (4) 2 n ²				
14.	A photon of energy 4.4	4 × 10 ⁻¹⁹ J collides with A	Λ_2 molecules. If bond energy	ergy of A_2 is 4.0 × 10 ⁻¹⁹ J. Then				
	kinetic energy of per a	tom of A will be :	-	[AIPMT 2009]				
	(1) 2.0 × 10 ⁻²⁰ J	(2) 2.2 × 10 ⁻¹⁹ J	(3) 2.0 × 10 ⁻¹⁹ J	(4) 4.0 × 10 ⁻²⁰ J				
15.	-	is not permissible set of	-	[AIPMT 2009]				
	(1) $n = 4$, $l = 0$, $m = 0$, (3) $n = 3$, $l = 3$, $m = 0$,		(2) n = 5, <i>l</i> = 3, m = 0, s (4) n = 3, <i>l</i> = 2, m = -2					
16.	-	ng with a speed of 100 m	/s. The associated with I	ball wavelength will be : $(h = 6.6)$				
	× 10 ^{–34} Js) (1) 6.6 × 10 ^{–32} m	(2) 6.6 × 10 ⁻³⁴ m	(3) 1.0 × 10 ⁻³⁵ m	[AIPMT 2010] (4) 1.0 × 10 ⁻³² m				
17.	The total number of ate (1) 8	omic orbitals in fourth ene (2) 16	ergy level of an atom are (3) 32	: [AIPMT 2011] (4) 4				
17. 18.	(1) 8	(2) 16 E_2 of two radiations are 2	(3) 32					
	(1) 8 The energies E_1 and E	(2) 16 E_2 of two radiations are 2 and λ_2) will be :	(3) 32	(4) 4 ively. The relation between their				
	(1) 8 The energies E_1 and E_2 wavelengths (i.e. λ_1 and (1) $\lambda_1 = \lambda_2$ If n = 6, the correct set (1) ns \rightarrow (n - 2)f \rightarrow (n	(2) 16 E ₂ of two radiations are 2 id λ_2) will be : (2) $\lambda_1 = 2\lambda_2$ quence for filling of electr - 1)d \rightarrow np	(3) 32 5 eV and 50 eV respect (3) $\lambda_1 = 4\lambda_2$ ons will be : (2) ns \rightarrow (n - 1)d \rightarrow (n	(4) 4 ively. The relation between their [AIPMT 2011] (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] $-2)f \rightarrow np$				
18.	(1) 8 The energies E_1 and E_2 wavelengths (i.e. λ_1 and (1) $\lambda_1 = \lambda_2$ If n = 6, the correct sec (1) ns \rightarrow (n – 2)f \rightarrow (n (3) ns \rightarrow (n – 2)f \rightarrow np	(2) 16 E ₂ of two radiations are 2 Id λ_2) will be : (2) $\lambda_1 = 2\lambda_2$ quence for filling of electr - 1)d \rightarrow np \rightarrow (n - 1)d	(3) 32 5 eV and 50 eV respective (3) $\lambda_1 = 4\lambda_2$ ons will be : (2) ns \rightarrow (n - 1)d \rightarrow (n (4) ns \rightarrow np(n - 1)d \rightarrow	(4) 4 ively. The relation between their [AIPMT 2011] (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] $-2)f \rightarrow np$ (n-2)f				
18. 19.	(1) 8 The energies E_1 and E_2 wavelengths (i.e. λ_1 and (1) $\lambda_1 = \lambda_2$ If n = 6, the correct sec (1) ns \rightarrow (n – 2)f \rightarrow (n (3) ns \rightarrow (n – 2)f \rightarrow np	(2) 16 (2) 16 (2) of two radiations are 2 (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (3) $\lambda_1 = 2\lambda_2$ (4) $\lambda_1 = 2\lambda_2$ (5) $\lambda_1 = 2\lambda_2$ (6) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7	(3) 32 5 eV and 50 eV respective (3) $\lambda_1 = 4\lambda_2$ ons will be : (2) ns \rightarrow (n - 1)d \rightarrow (n (4) ns \rightarrow np(n - 1)d \rightarrow	(4) 4 ively. The relation between their [AIPMT 2011] (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] $-2)f \rightarrow np$ (n - 2)f hydrogen atom will give rise to [AIPMT 2011]				
18. 19.	(1) 8 The energies E_1 and E_1 wavelengths (i.e. λ_1 and (1) $\lambda_1 = \lambda_2$ If $n = 6$, the correct set (1) $ns \rightarrow (n - 2)f \rightarrow (n)$ (3) $ns \rightarrow (n - 2)f \rightarrow np$ According to the Bohr the least energetic photon (1) $n = 6$ to $n = 1$	(2) 16 (2) 16 (2) of two radiations are 2 (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (3) $\lambda_1 = 2\lambda_2$ (4) $\lambda_1 = 2\lambda_2$ (5) $\lambda_1 = 2\lambda_2$ (6) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7	(3) 32 5 eV and 50 eV respective (3) $\lambda_1 = 4\lambda_2$ ons will be : (2) ns \rightarrow (n - 1)d \rightarrow (n (4) ns \rightarrow np(n - 1)d \rightarrow lowing transitions in the (3) n = 6 to n = 5	(4) 4 (4) 4 (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] (5) $f \rightarrow np$ (n - 2) f hydrogen atom will give rise to [AIPMT 2011] (4) n = 5 to n = 3				
18. 19. 20.	(1) 8 The energies E_1 and E_1 wavelengths (i.e. λ_1 and (1) $\lambda_1 = \lambda_2$ If $n = 6$, the correct set (1) $ns \rightarrow (n - 2)f \rightarrow (n)$ (3) $ns \rightarrow (n - 2)f \rightarrow np$ According to the Bohr the least energetic photon (1) $n = 6$ to $n = 1$	(2) 16 (2) 16 (2) of two radiations are 2 (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (3) $\lambda_1 = 2\lambda_2$ (4) $\lambda_1 = 2\lambda_2$ (5) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (3) $\lambda_1 = 2\lambda_2$ (4) $\lambda_1 = 2\lambda_2$ (5) $\lambda_1 = 2\lambda_2$ (6) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7	(3) 32 5 eV and 50 eV respective (3) $\lambda_1 = 4\lambda_2$ ons will be : (2) ns \rightarrow (n - 1)d \rightarrow (n (4) ns \rightarrow np(n - 1)d \rightarrow lowing transitions in the (3) n = 6 to n = 5	(4) 4 (4) 4 (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] (5) $f \rightarrow np$ (n - 2) f hydrogen atom will give rise to [AIPMT 2011] (4) n = 5 to n = 3				
18. 19. 20.	(1) 8 The energies E_1 and E_1 wavelengths (i.e. λ_1 and (1) $\lambda_1 = \lambda_2$ If $n = 6$, the correct set (1) $ns \rightarrow (n - 2)f \rightarrow (n)$ (3) $ns \rightarrow (n - 2)f \rightarrow np$ According to the Bohr the least energetic photon (1) $n = 6$ to $n = 1$ Maximum number of equation (1) 14	(2) 16 (2) 16 (2) λ_1 will be : (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (3) $\lambda_1 = 2\lambda_2$ (4) $\lambda_1 = 2\lambda_2$ (5) $\lambda_1 = 2\lambda_2$ (6) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 =$	(3) 32 5 eV and 50 eV respective (3) $\lambda_1 = 4\lambda_2$ ons will be : (2) ns \rightarrow (n - 1)d \rightarrow (n (4) ns \rightarrow np(n - 1)d \rightarrow lowing transitions in the (3) n = 6 to n = 5 ving n = 4 and ℓ = 3 are : (3) 10	(4) 4 (4) 4 (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] (-2)f \rightarrow np (n - 2)f hydrogen atom will give rise to [AIPMT 2011] (4) n = 5 to n = 3 [AIPMT 2012] (4) 12				
18. 19. 20. 21.	(1) 8 The energies E_1 and E_1 wavelengths (i.e. λ_1 and (1) $\lambda_1 = \lambda_2$ If $n = 6$, the correct set (1) $ns \rightarrow (n - 2)f \rightarrow (n)$ (3) $ns \rightarrow (n - 2)f \rightarrow np$ According to the Bohr the least energetic photon (1) $n = 6$ to $n = 1$ Maximum number of equation (1) 14	(2) 16 (2) 16 (2) λ_1 will be : (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (3) $\lambda_1 = 2\lambda_2$ (4) $\lambda_1 = 2\lambda_2$ (5) $\lambda_1 = 2\lambda_2$ (4) $\lambda_1 = 2\lambda_2$ (5) $\lambda_1 = 2\lambda_2$ (6) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 =$	(3) 32 5 eV and 50 eV respective (3) $\lambda_1 = 4\lambda_2$ ons will be : (2) ns \rightarrow (n - 1)d \rightarrow (n (4) ns \rightarrow np(n - 1)d \rightarrow lowing transitions in the (3) n = 6 to n = 5 ving n = 4 and ℓ = 3 are : (3) 10	(4) 4 (4) 4 (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] (-2)f \rightarrow np (n - 2)f hydrogen atom will give rise to [AIPMT 2011] (4) n = 5 to n = 3 [AIPMT 2012] (4) 12 dium atom (Z=37) is :				
18. 19. 20. 21.	(1) 8 The energies E_1 and E_1 wavelengths (i.e. λ_1 and (1) $\lambda_1 = \lambda_2$ If n = 6, the correct sec (1) ns \rightarrow (n – 2)f \rightarrow (n (3) ns \rightarrow (n – 2)f \rightarrow np According to the Bohr the least energetic phot (1) n = 6 to n = 1 Maximum number of e (1) 14 The correct set of four (1) 5, 1, + 1/2	(2) 16 (2) 16 (2) λ_1 will be : (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (2) $\lambda_1 = 2\lambda_2$ (3) $\lambda_1 = 2\lambda_2$ (4) $\lambda_1 = 2\lambda_2$ (5) $\lambda_1 = 2\lambda_2$ (4) $\lambda_1 = 2\lambda_2$ (5) $\lambda_1 = 2\lambda_2$ (6) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_2 = 2\lambda_2$ (7) $\lambda_1 = 2\lambda_2$ (7) $\lambda_2 =$	(3) 32 5 eV and 50 eV respective (3) $\lambda_1 = 4\lambda_2$ ons will be : (2) ns \rightarrow (n - 1)d \rightarrow (n (4) ns \rightarrow np(n - 1)d \rightarrow lowing transitions in the (3) n = 6 to n = 5 ving n = 4 and ℓ = 3 are : (3) 10 e valence elecron of rubin (3) 5, 0, 0 + 1/2	(4) 4 (4) 4 (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] (4) $\lambda_1 = \frac{1}{2} \lambda_2$ [AIPMT 2011] (-2)f \rightarrow np (n - 2)f hydrogen atom will give rise to [AIPMT 2011] (4) n = 5 to n = 3 [AIPMT 2012] (4) 12 dium atom (Z=37) is : [AIPMT 2012]				

	closest to the wavelen	gth in nanometer of a qua	antum of light with freque	ency of 6×10^{15}				
	(1) 25	(2) 50	(3) 75	(4) 10	[NEET 2013]			
25.	What is the maximum numbers ? $n = 3$, $\ell = 2$	numbers of electrons th and $m = -1$.	nat can be associated w	rith the followin	g set of quantum [NEET 2013]			
	(1) 6	(2) 4	(3) 2	(4) 10				
26.	Based on equation E	$= -2.178 \times 10^{-18} J \left(\frac{Z^2}{n^2} \right)$, certain conclusions a	re written. Whi	ch of them is not			
	 correct ? [NEET 2013] (1) Larger the value of n, the larger is the orbit radius. (2) Equation can be used to calculate the change in energy when the electron changes orbit. (3) For n = 1, the electron has a more negative energy than it does for n = 6 which mean that the electron is more loosely bound in the smallest allowed orbit. (4) The negative sign in equation simply means that the energy or electron bound to the nucleus is lower than it would be if the electrons were at the infinite distance from the nucleus. 							
27.	What is the maximum $n = 3$, $\ell = 1$, $m = 0$	n number of orbitals tha	t can be identified with	the following	quantum number [AIPMT 2014]			
	(1) 1	(2) 2	(3) 3	(4) 4				
28.	Calculate the energy in Js : speed of light $c = 3$ (1) 6.67 × 10 ¹⁵	n corresponding to light o 3 × 10 ⁸ ms ⁻¹) (2) 6.67 × 10 ¹¹	of wavelength 45 nm : (P (3) 4.42 × 10 ⁻¹⁵	lanck's constar (4) 4.42 × 10	[AIPMT 2014]			
29.	Be ²⁺ is isoelectronic wi (1) H ⁺	th which of the following (2) Li+	ions? (3) Na+	(4) Mg ²⁺	[AIPMT 2014]			
30.	Magnetic moment 2.84 (At. nos, Ni =28, Ti= 22 (1) Ti ³⁺	• •	(3) Co ²⁺	(4) Ni ²⁺	[AIPMT 2015]			
31.	The number of d-elect following? (1) p - electrons in Cl ((3) p-electrons in Ne (2		ot equal to the number (2) d-electrons in Fe (2 (4) s-electrons in Mg (2	Z=26)	which one of the [AIPMT 2015]			
32.	The angular momentum (1) $\sqrt{2} \hbar$	m of electron in 'd' orbital (2) $2\sqrt{3} \hbar$	is equal to : (3) 0 <i>ћ</i>	(4) √6 ħ	[AIPMT 2015]			
33.	Two electrons occupyi (1) Spin quantum num (3) Magnetic quantum		listinguished by : (2) Principal quantum (4) Azimuthal quantum		[NEET-1 2016]			
34.	How many electrons c	an fit in the orbital for wh (2) 2	ich n = 3 and ℓ = 1 ? (3) 6	(4) 10	[NEET-2 2016]			

The value of Planck's constant is 6.63×10^{-34} Js. The speed of light is 3×10^{17} nm s⁻¹. Which value is

35. Which of the following pairs of d-orbitals will have electron density along the axis ? [NEET-2 2016] (1) d_{xy} , $d_{x^2-y^2}$ (2) d_{z^2} , d_{xz} (3) d_{xz} , d_{yz} (4) d_{z^2} , $d_{x^2-y^2}$

24.

36.	Which one is the wron	g statement ?			[NEET- 2017]						
	(1) de-Broglie's wavele	ngth is given by $\lambda = \frac{h}{mv}$, where m = mass of the	particle, $\upsilon = \text{grow}$	qı						
	velocity of the particle.										
	(2) The uncertainty prin	$\text{nciple is } \Delta E \times \Delta t \geq \frac{h}{4\pi}$									
	greater symmetry and i	illed orbitals have greate more balanced arrangem bital is less than the energi	ient.								
37.	Which one is a wrong s (1) Total orbital angular (2) The value of m for o	r momentum of electron i			[NEET- 2018]						
	(3) The electronic configuration of N atom is- $ \begin{array}{c} 1s^2 & 2s^2 & 2p_x^{-1} & 2p_y & 2p_z^{-1} \\ \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow \\ \end{array} $										
	(4) An orbital is desigr four quantum numbers	nated by three quantum	numbers while an electr	ron in an atomis	designated by						
38.	Which of the following	series of transitions in the	e spectrum of hydrogen a		le region ? • 1- 2019]						
	(1) Brackett series	(2) Lyman series	(3) Balmer series	(4) Paschen se	-						
39.	4d, 5p, 5f and 6p orbita	Is are arranged in the or	der of decreasing energy		ion is : • 1- 2019]						
	(1) 5f > 6p > 4d > 5p	(2) 5f > 6p > 5p > 4d	(3) 6p > 5f > 5p > 4d								
40.	Orbital having 3 angula (1) 5 p	rr nodes and 3 total node (2) 3 d	s is : (3) 4 f	[NEET-2- 2019] (4) 6 d							
41.	In hydrogen atom, the c [Given that Bohr radius (1) 211.6 pm	de Broglie wavelength of a, a₀ = 52.9 pm] (2) 211.6 π pm	an electron in the secon (3) 52.9 π pm		2- 2019]						
	PART - I	I : AIIMS QUEST	ION (PREVIOUS	YEARS)							
1.	The isoelectronic pair is (1) Cl_2O , ICl_2^-		(3) IF ₂ ⁺ , I ₃ ⁻	(4) CIO ₂ ⁻ , CIF ₂ ⁺	[AIIMS 2005]						
2.	α – particles can be de (1) thin aluminium shee (3) zinc sulphide screen	et	(2) barium suplhate (4) gold foil		[AIIMS 2005]						
3.	The most probable radi (1) 0.0	ius (in pm) for finding the (2) 52.9	electron in He ⁺ is : (3) 26.5	(4) 105.8	[AIIMS 2006]						
4.	The de-broglie waveler	ngth associated with a ba	II of mass 1 kg having ki	netic energy 0.5							
	(1) $6.626 \times 10^{-34} \text{ m}$	(2) 13.20×10^{-34} m	(3) 10.38×10^{-21} m	(4) 6.626 × 10 ⁻³	[AIIMS 2006] ³⁴ Å						
5.	The uncertainties in the	e velocities of two partic	les, A and B are 0.05 ar	nd 0.02 ms ⁻¹ , re	spectively. The						
	mass of B is five times	of that of the mass of A.	What is the ratio of unce	rtainties $\left(\frac{\Delta \mathbf{x}_{A}}{\Delta \mathbf{x}_{B}}\right)$	[AIIMS 2008]						

+									
	(1) 2		(2) 0.25		(3) 4		(4) 1		
6.		⊢Broglie wavele × 10 ^{−34} m	ngth of helium a (2) 4.39 × 10 ⁻¹			oerature is : k × 10 ^{−11} m	(4) 2.335 × 10 ⁻	[AIIMS 2009] ^{−20} m	
7.	n and <i>l</i>	for some electr	ons are given. W	/hich of t	he follow	ving is expected	d to have least er	nergy ? [AIIMS 2009]	
	(1) n =	3, ℓ = 2	(2) n = 3, ℓ = 0		(3) n = 2	2, ℓ = 1	(4) n = 4, ℓ = 0		
8.	If the photon of the wavelength 150 pm strikes an atom and one of its inner bound electrons is ejected out with a velocity of 1.5 × 10 ⁷ ms ⁻¹ , what is the energy with which it is bound to the nucleus ? [AIIMS 2010]								
	(1) 1.2	× 10 ² eV	(2) 2.15 × 10 ³ e	eV	(3) 7.6	× 10 ³ eV	(4) 8.12 × 10 ²		
9.		st wavelength o nan series	ccurs for : (2) Balmer seri	es	(3) Pas	chen series	(4) Brackett se	[AIIMS 2011] rries	
10.	 (1) Lyman series (2) Barner series (3) Paschen series (4) Brackett series (4) Brackett series (4) Brackett series (5) Paschen series (6) Paschen series (7) Brackett series (8) Paschen series (9) Brackett series (1) It explains is wrong for Bohr model ? (1) It establishes stability of atom. (2) It is inconsistent with Heisenberg uncertainty principle. (3) It explains the concept of spectral lines for hydrogen like species. (4) Electrons behave as particle and wave. 								
11.	Ratio c (1) 3 :	•••••	on of wavelengtl (2) 2 : 1	n 3000Å	and 6000 (3) 1 : 2		(4) 1 : 3	[AIIMS 2012]	
12.	Assert	t ion : Angular m	omentum of an e	electron i	n any ort	oit is given by a	angular momentu	$m = \frac{n,h}{2\pi}$, where	
	Reaso (1) If bo (2) If bo (3) If A	oth assertion an oth assertion an ssertion is true b	l quantum numbo d reason are true	e and rea e but rea e.	ason is th	e correct expla	e. anation of assertion xplanation of asso		
13.		-	ion M ^{x+} (Z= 24) ed electrons in th (2) 4			magnetic mo	ment of √15 Bo (4) 3	hr Magenetons. [AIIMS 2013]	
14.	Which	of the following	combinations of	quantum	number	s is allowed ?		[AIIMS 2013]	
	(1)	n 3	l 2	m 1		m _s 0			
	(1)	2	0	0		$-\frac{1}{2}$			
	(3)	3	-3	-2		$+\frac{1}{2}$			
	(4)	1	0	1		$+\frac{1}{2}$			
15.	The ele	ectrons, identifie	ed by quantum n	umbers	n and I ((i) n = 4, ℓ = 1	(ii) n = 4, ℓ = 0	(iii) n = 3, ℓ = 2	

(iv) $n = 3, \ell = 1$ can be placed in order of increasing energy, from the lowest to highest, as

[AIIMS 2014]

ATOMIC STRUCTURE

(1) (iv) < (ii) < (iii) < (i)	(2) (ii) < (iv) < (v) < (iii)	(3) (i) < (iii) < (ii) < (iv)	(4) (iii) < (i) < (iv) < (ii)
-------------------------------	-------------------------------	-------------------------------	-------------------------------

16.In hydrogen atomic spectrum, a series limit is found at 12186.3 cm⁻¹. Then it belong to[AIIMS 2014](1) Lyman series(2) Balmer series(3) Paschen series(4) Brackett series

17. Assertion : Spin quantum number can have two values, $+\frac{1}{2}$ and $-\frac{1}{2}$ [AIIMS 2014]

 $\ensuremath{\textbf{Reason}}$: + and – signs signify the positive and negative wave functions.

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If Assertion is true but reason is false.
- (4) If both assertion and reason are false.

18.	The degeneracy of hyd	rogen that has energy eo	qual to $\frac{-R_{H}}{9}$ is :		[AIIMS 2015]
	(1) 6	(2) 8	(3) 5	(4) 9	
19.	The electrons identified	l by qunatum numbers n	and ℓ :		[AIIMS 2016]
	(a) n = 4, ℓ = 1	(b) $n = 4, \ell = 0$	(c) n = 3, ℓ = 2	(d) n = 3, ℓ = 1	
	•	der of increasing energy (2) 4 < 2 < 3 < 1	as : (3) 2 < 4 < 1 3	(4) 1 < 3 2 < 4	
20.		e hydrogen atomic spe n = 2) of He+ spectrum ?	ctrum wil have the sar	me wavelength a	as the balmer [AIIMS 2017]
	(1) n = 4 to n = 3	(2) n = 3 to n = 2	(3) n = 4 to n = 2	(4) n = 2 to n =	1
21.	Wave length of particut transition :	lar transition for H atom	n is 400 nm. What can t	be wavelength of	He⁺ for same [AIIMS 2018]
	(1) 400 nm	(2) 100 nm	(3) 1600 nm	(4) 200 nm	
22.	A gas metal in bivalent (1) 2.87	state have approximatel (2) 5.5	y 23e⁻ what is spin magr (3) 5.9	netic moment in e (4) 4.9	lemental state [AIIMS 2018]
23.	What is maximum wave (1) 400 nm	elength of line of Balmer (2) 654 nm	series of Hydrogen spec (3) 486 nm	trum (R = 1.09 x (4) 434 nm	10 ⁷ m ^{−1}) : [AIIMS 2018]
24.	In second orbit of H ato (1) 2.18 × 10 ⁶ m/sec	om what is velocity of e⁻ (2) 3.27 × 10 ⁶ m/sec	(3) 10.9 × 10⁵m/sec	(4) 21.8 × 10 ⁶ m	[AIIMS 2018] /sec
25.	When on metal sheet f velocity, what is $v_2^2 - v_3^2$	• •	tron with V_1 velocity and	with λ_2 light ejec	t electron of v ₂ [AIIMS 2018]
	(1) $\frac{2hc}{m} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right)$	(2) $\frac{hc}{m} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right)$	(3) $\frac{2hc}{m}\left(\frac{1}{\lambda_1}-\frac{1}{\lambda_2}\right)$	(4) $\frac{m}{2hc}\left(\frac{1}{\lambda_2}-\frac{1}{\lambda_2}\right)$	$\left(\frac{1}{1}\right)$
	PART - III : JEE	(MAIN) / AIEEE F	PROBLEMS (PR	EVIOUS YE	ARS)

 1.
 Which of the following ions has the maximum magnetic moment?
 [AIEEE 2002, 3/225]

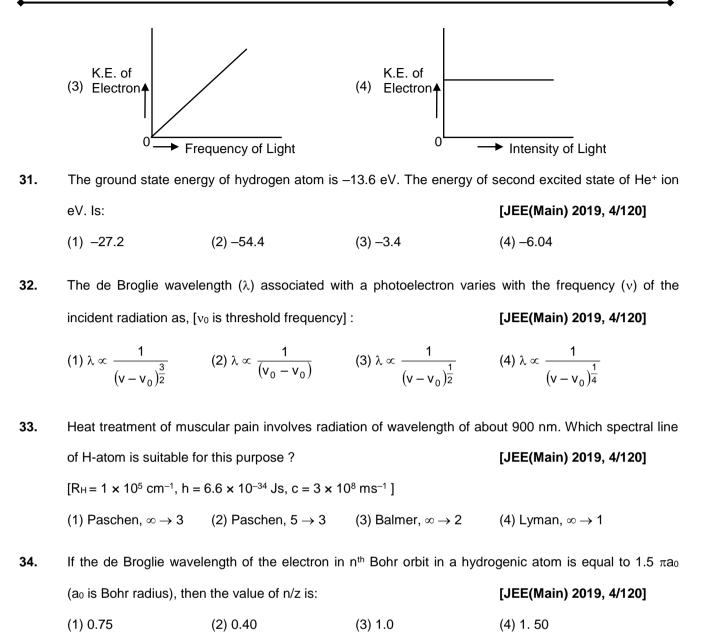
 (1) Mn^{+2} (2) Fe^{+2} (3) Ti^{+2} (4) Cr^{+2} .

2.	Energy of H-atom in the ground state is –13.6 eV, hence energy in the second excited state is : [AIEEE 2002, 3/225]								
3.	(1) – 6.8 eV Uncertainity in position ¹) is: (plank's constant, (1) 2.1 \times 10 ⁻¹⁸	,		ence, Uncertain	.53 eV ity in velocity (in m.sec- [AIEEE 2002, 3/225]				
4.	-	length of a tennis ball k's constant, h = 6.63 × ⁻ (2) 10 ⁻³¹ m	-	noving with a (4) 10 ⁻²	[AIEEE 2003, 3/225]				
5.		of hydrogen spectrum, to of hydrogen spectrum, to orbit jumps of the electror			•				
	(1) 3 ÷ 2	(2) 5 - 2 2	1ډ 4 (3)	5 ډِ 2 (4)	[/]				
6.	The numbers of d-elec (1) 3	ctrons retained in Fe²+ (at (2) 4	omic number Fe = (3) 5	26) ion is (4) 6	[AIEEE 2003, 3/225]				
7.	The orbital angular m momentum for an s-ele	omentum for an electro ectron will be given by	n revolving in an	orbit is given t	by $\sqrt{\ell}$ $(\ell + 1)$ $\frac{h}{2\pi}$. This [AIEEE 2003, 3/225]				
	$(1) + \frac{1}{2} \cdot \frac{h}{2\pi}$	(2) Zero	$(3) \frac{h}{2\pi}$	(4) √2					
8.	stationary state 1, wou	ne radiation emitted, wh Ild be (Rydberg constant			n falls from infinity to [AIEEE 2004, 3/225] × 10 ⁻⁶ nm				
	(1) 91 nm	(2) 192 nm							
9.	Which of the following	set a of quantum numbe	rs is correct for an	electron in 4f o	rbital? [AIEEE 2004, 3/225]				
	(1) n = 4, l =3, m = +4, (3) n = 4, l = 3, m = +1		(2) $n = 4$, $l = 4$, $m = -4$, $s = -1/2$ (4) $n = 3$, $l=2$, $m =-2$, $s = +1/2$						
10.	Consider the ground s numbers, $\ell = 1$ and 2 a	state of Cr atom (Z = 24) are, respectively). The numbers of	electrons with	the azimuthal quantum [AIEEE 2004, 3/225]				
	(1) 12 and 4	(2) 12 and 5	(3) 16 and 4	(4) 16 a	and 5				
11.		om, which of the followin in the absence of magne (ii) n =2, l = 0, m = 0 (2) (iii) and (iv)	etic and electric fie	ld ?	[AIEEE 2005, 3/225] 3, I = 2, m =1				
12.	(1) 3s, 3p and 3d orbits(2) 3s and 3p orbitals a	statements in relation to als all have the same end are of lower energy than n energy than 3d orbital	ergy	n is correct ? [/	AIEEE 2005, 4½/225]				

(4) 3s orbital is lower in energy than 3p orbital

13.	Uncertainity in the position of an electron (mass = 9.1×10^{-31} Kg) moving with a velocity 300 m.sec ⁻¹ , Accurate upto 0.001%, will be : (h = 6.63×10^{-34} J-s) [AIEEE 2006, 3/165]								
14.	(1) 19.2 × 10 ⁻² m	(2) 5.76 × 10 ⁻² m	(3) 1.92 × 10 ⁻² m						
	(1) 25 $\frac{h}{\pi}$	(2) 1.0 $\frac{h}{\pi}$	(3) 10 $\frac{h}{\pi}$	(4) 2.5 $\frac{h}{\pi}$					
15.	The 'spin-only' magnet (Atomic number : Ni = :		ohr magneton $(\mu_{\beta})]$ of Ni	²⁺ in aqueous solution would be [AIEEE 2006, 3/165]					
	(1) 2.84	(2) 4.90	(3) 0	(4) 1.73					
16.	Which of the following (1) Neutron particle em (3) α-particle emission	nuclear reactions will ger hission	nerate an isotope ? (2) Positron emission (4) β-particle emission	[AIEEE 2007, 3/120]					
17.	The ionisation enthalp electron in the atom fro		$1.312 \times 10^6 \text{ J mol}^{-1}$. The	e energy required to excite the [AIEEE 2008, 3/105]					
18.		(2) 6.56×10^5 J mol ⁻¹ set of quantum numbers		. ,					
	(1) n = 3, l = 0, m = 0, s	$5 = + \frac{1}{2}$	(2) n = 3, l = 1, m =1, s						
	(3) n = 3, l = 2, m = 1, s	$s = + \frac{1}{2}$	(4) n = 4, l = 0, m = 0, s	$S = + \frac{1}{2}$					
19.		king a single Cl – Cl bon	-	I mol ^{_1} . The longest wavelength [AIEEE 2010, 4/144]					
	(1) 594 nm	(2) 640 nm	(3) 700 nm	(4) 494 nm					
20.				stationary state (n = 1) of Li ²⁺ is [AIEEE 2010, 4/144]					
	 (1) 4.41 × 10⁻¹⁶ J aton (3) - 2.2 × 10⁻¹⁵ J atom 		(2) -4.41×10^{-17} J ato (4) 8.82 × 10 ⁻¹⁷ J atom ⁻¹⁷						
21.	A gas absorbs a photo the other is at :	on of 355 nm and emits a	at two wavelengths. If or	ne of the emission is at 680 nm, [AIEEE 2011, 4/120]					
	(1) 1035 nm	(2) 325 nm	(3) 743 nm	(4) 518 nm					
22.	The frequency of light corresponding to which	n of the following?		equalto the transition in H atom [AIEEE 2011, 4/120]					
	(1) n = 2 to n = 1	(2) n = 3 to n = 2	(3) n = 4 to n = 3	(4) n = 3 to n = 1					
23.	The electrons identified	d by quantum numbers n	and ℓ :	[AIEEE 2012, 4/120]					
	(a) $n = 4$, $\ell = 1$	(b) $n = 4, \ell = 0$	(c) $n = 3$, $\ell = 2$	(d) n = 3, ℓ = 1					
		of increasing energy as : (2) (d) < (b) < (c) < (a)		(4) (a) < (c) < (b) < (d)					

0


Energy of Light

Energy of an electron is given by E = -2.178×10^{-18} J. $\left(\frac{Z^2}{n^2}\right)$ Wavelength of light required to excite an 24. electron in an hydrogen atom fr/om level n = 1 to n = 2 will be : (h = 6.62×10^{-34} Js and c = 3.0×10^{8} [JEE(Main)2013] ms⁻¹) (1) 1.214×10^{-7} m (2) 2.816×10^{-7} m (3) 6.500×10^{-7} m (4) 8.500×10^{-7} m 25. The correct set of four quantum numbers for the valence electrons of rubidium atom (Z = 37) is : [JEE(Main)2014, 4/120] (1) 5, 0, 0, $+\frac{1}{2}$ (2) 5, 1, 0, $+\frac{1}{2}$ (3) 5, 1, 1, $+\frac{1}{2}$ (4) 5, 0, 1, $+\frac{1}{2}$ Which of the following is the energy of a possible excited state of hydrogen ? [JEE(Main) 2015, 4/120] 26. (1) +13.6 eV (2) -6.8 eV (3) -3.4 eV (4) +6.8 eV 27. A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference V esu. If e and m are charge and mass of an electron, respectively, then the value of h/ λ (where λ is wavelength associated with electron wave) is given by : [JEE(Main) 2016, 4/120] (3) \(\sqrt{2meV}\) (1) 2meV (2) √meV (4) meV The radius of the second Bohr orbit for hydrogen atom is : 28. [JEE(Main) 2017, 4/120] (Planck's Const. h = 6.6262×10^{-34} Js; mass of electron = 9.1091×10^{-31} kg; charge of electron e = 1.60210×10^{-19} C: permittivity of vacuum $\in_0 = 8.854185 \times 10^{-12} \text{ kg}^{-1}\text{m}^{-3}\text{A}^2$) (1) 4.76 Å (2) 0.529 Å (3) 2.12 Å (4) 1.65 Å For emission line of atomic hydrogen from $n_i = 8$ to $n_f = n$, the plot of wave number (\overline{v}) against $\left(\frac{1}{n^2}\right)$ will 28. be (The Rydberg constant, R_H is in wave number unit) [JEE(Main) 2019, 4/120] (2) Linear with slope -R_H (1) Linear with intercept $-R_{H}$ (3) Non linear (4) Linear with slope R_H 29. Which of the following combination of statements is true regarding the interpretation of the atomic orbitals? [JEE(Main) 2019, 4/120] An electron in an orbital of high angular momentum stays away from the nucleus than an (a) electron in the orbitals of lower angular momentum. For a given value of the principal quantum number, the size of the orbit is inversely proportional (b) to the azimuthal quantum number. According to wave mechanics, the ground state angular momentum is equal to $\frac{h}{2\pi}$. (C) The plot of Ψ Vs r for various azimuthal quantum numbers, show peak shifting towards higher (d) value. (1) (b), (c) (2) (a), (c) (3) (a), (d) (4) (a), (b) 30. Which of the graphs shown below does not represent the relationship between incident light and the electron ejected from metal surface ? [JEE(Main) 2019, 4/120] K.E. of No. of Electrons (1) Electron (2)

0

Frequency

of Light

		1SV	<i>lers</i>										
)		EXER	CISE	- 1					
1. 8. 15.	(1) (3) (4)	2. 9.	(4) (2)	3. 10.	(3) (4)	4. 11.	(2) (3)	5. 12.	(2) (1)	6. 13.	(4) (3)	7. 14.	(1) (4)
1. 8.	ION (B) (2) (1) (1) ION (C)	2. 9.	(3) (4)	3. 10.	(1) (3)	4. 11.	(1) (3)	5. 12.	(4) (3)	6. 13.	(1) (2)	7. 14.	(1) (3)
1. 8. 15. 22.	(2) (2) (1) (2) ION (D)	2. 9. 16. 23.	(2) (1) (4) (4)	3. 10. 17. 24.	(2) (2) (1) (3)	4. 11. 18. 25.	(2) (1) (1) (4)	5. 12. 19. 26.	(3) (4) (2) (1)	6. 14. 20. 27.	(1) (2) (2) (3)	7. 14. 21.	(2) (4) (2)
1. 8.	(4) (3) ION (E)	2. 9.	(1) (3)	3. 10.	(2) (2)	4. 11.	(1) (3)	5. 12.	(4) (2)	6. 13.	(4) (3)	7. 14.	(4) (1)
1. 8. 15.	(3) (1) (4)	2. 9.	(1) (4)	3. 10.	(3) (2)	4. 11.	(3) (2)	5. 12.	(1) (2)	6. 13.	(2) (3)	7. 14.	(4) (3)
1. 8. 15. 22.	ION (F) (3) (1) (2)	2. 9. 16. 23.	(4) (4) (2) (4)	3. 10. 17. 24.	(1) (1) (2) (3)	4. 11. 18. 25.	(4) (4) (2) (2)	5. 12. 19. 26.	(4) (2) (3) (3)	6. 13. 20. 27.	(2) (1) (3) (4)	7. 14. 21.	(4) (2) (2)
SECT 1. 8.	ION (G) (1) (1)	2. 9.	(4) (3)	3. 10.	(3) (3)	4. 11.	(3) (4)	5. 12.	(4) (2)	6.	(2)	7.	(3)
						EXER							
1. 8. 15. 22. 29. 36. 43. 50.	(4) (1) (3) (3) (1) (1) (1) (2)	2. 9. 16. 23. 30. 37. 44. 51.	(1) (2) (4) (1) (1) (1) (4) (4)	3. 10. 17. 24. 31. 38. 45. 52.	(4) (3) (3) (3) (2) (2) (3)	4. 11. 25. 32. 39. 46. 53.	(2) (3) (2) (3) (3) (1) (4) (4)	5. 12. 19. 26. 33. 40. 47. 54.	(2) (1) (3) (4) (1) (1) (1) (3)	6. 13. 20. 27. 34. 41. 48. 55.	(4) (2) (2) (2) (4) (1) (3)	7 14. 21. 28. 35. 42. 49.	(1) (1) (4) (2) (4) (2)
						EXER		- 3					
1. 8. 15. 22. 29. 36.	(3) (3) (3) (2) (4)	2. 9. 16. 23. 30. 37.	(1) (3) (3) (1) (4) (3)	3. 10. 17. 24. 31. 38.	(1) (4) (2) (2) (1) (3)	4. 11. 18. 25. 32. 39.	ART-I (3) (1) (2) (3) (4) (2) ART-II	5. 12. 19. 26. 33. 40.	(3) (1) (1) (3) (1) (3)	6. 13. 20. 27. 34. 41.	(4) (1) (3) (1) (2) (2)	7. 14. 21. 28. 35.	(2) (1) (1) (4) (4)
1. 8. 15.	(4) (3) (1)	2. 9. 16.	(3) (1) (3)	3. 10. 17.	(3) (4) (3)	4. 11. 18.	(1) (2) (4)	5. 12. 19.	(1) (2) (2)	6. 13. 20.	(3) (4) (4)	7. 14. 21.	(3) (2) (2)
22.	(3)	23.	(2)	24.	(3)	25.	(1) DT III						
1. 8. 15. 22. 28.	(1) (1) (1) (1) (4)	2. 9. 16. 23. 29.	(3) (3) (1) (2) (2)	3. 10. 17. 24. 30.	(1) (2) (4) (1) (3)	4. 11. 18. 25. 31.	RT-III (1) (3) (1) (4)	5. 12. 19. 26. 32.	(2) (1) (4) (3) (3)	6. 13. 20. 27. 33.	(4) (3) (2) (3) (1)	7. 14. 21. 28. 34.	(2) (4) (3) (3) (1)