Exercise-1 ONLY ONE OPTION CORRECT TYPE 1. The displacement current was first postulated by (1) Ampere (2) Maxwell (3) Hertz (4) Marconi 2. The fundamental source of e.m. waves (1) is varying magnetic field (2) constant magnetic and electric fields (3) oscillations of electric charge (4) is planets An accelerated electric charge emits 3. (1) β – rays (3) e.m. waves (4) none of the above (2) v - ravs4. Electromagnetic waves in nature are (1) longitudinal (2) longitudinal stationary (3) transverse (4) transverse - stationary 5. The speed of e.m. waves is given by the relation (4) $1/\sqrt{(\mu_0 \varepsilon_0)}$ (2) $\sqrt{\mu_0 \epsilon_0}$ (1) μ₀ ε₀ (3) 1/μ₀ ε₀ 6. Choose the only wrong statement from the following about electromagnetic waves (1) are transverse (2) travels free space at the speed of light (3) are produced by accelerating charges (4) travel with the same speed in all media 7. Electromagnetic waves (1) are longitudinal waves (2) travel in free space at the speed of light (3) are produced by charges moving with uniform velocity (4) travel with the same speed in all media 8. An accelerated charge (1) emits an electromagnetic wave (2) produces stationary electric and magnetic fields (3) produces a gravitational field (4) none of the above 9. In an electromagnetic wave, electric field E and magnetic field B are (1) mutually perpendicular to each other (2) all parallel (3) at 300 to each other (4) depends upon polarization 10. If E and B be the electric and magnetic fields of electromagnetic waves, then the direction of propagation of e.m. wave is along the direction of (1) E (2) B (3) E × B (4) None of the above 11. Which of the following pairs of space and time varying E and B fields would generate a plane electromagnetic wave travelling in the Z- direction (1) E_x, B_y (2) E_v, B_x (3) E_x, B_z (4) E_z, B_x 12. Electromagnetic wave obey the principle of (1) superposition (2) interference (3) 1 and 2 both (4) none of the above 13. Hertz produced electromagnetic wave by using (1) L C R circuit (2) C R circuit (3) L C circuit (4) None of the above 14. Choose the correct statement about electromagnetic waves (1) they are supersonic waves (2) they are the electrically charged particles (3) they travel with the speed of light (4) they can only be produced in laboratory.

15.	Visible range of light hat (1) $3 \times 10_{-6}$ to 10_{-10}	s wavelength in cm is (2) 7 × 10₋₅ to 4 × 10₋₅	(3) 4 × 10 ₋₅ to 3 × 10 ₋₆	(4) 6 x 1	l0₄ to 1.5 × 10₃
16.	The following electroma (1) γ – rays	agnetic waves has the sh (2) x – rays	ortest wavelength (3) ultraviolet rays	(4) micr	owaves
17.	Which of the following h (1) infrared light	nas the longest waveleng (2) ultraviolet light	th (3) microwaves	(4) X–ra	ays
18.	Only microwaves are us (1) television	sed for (2) radio transmission	(3) radar system	(4) all th	ne above
19.	The earth's atmosphere (1) infra - red radiation (3) visible radiations	e is richer in	(2) ultraviolet radiations(4) blue colour radiation	s	
20.	Greenhouse effect is du (1) visible radiations (3) green colour radiation	ue to on	(2) red colour radiation(4) infra - red radiation		
21.	Greenhouse effect keep (1) cold in night	os the earth surface (2) dusty and cold	(3) warm in night	(4) mois	st in night
22.	Ozone layer protectes t (1) ultraviolet radiations (3) X–rays	he living organism from	(2) unfra –red radiations(4) all the radiations	;	
23.	Practically ozone layer a (1) less than 3 x 10 ₋₇ m (3) equal to 3 x 10 ₋₇ m	absorbs the radiation of v	wavelength (2) greater than 3 x 10 ₋₇ (4) all the above	m	
24.	Frequency of a wave is (1) radioactive	6 × 1015 Hz. The wave is (2) microwave	; (3) X-rays	(4) ultra	[ORISSA JEE 2004] violet
25.	If the wavelength of ligh (1) 25	t is 4000 Å, then the nur (2) 0.25	nber of waves in 1 mm le (3) 0. 25 × 10₄	ngth will (4) 25 ×	be [J & KCET 2004] 104
26.	What is the range of fre (1) 1kHz	quency for ultrasonic wa (2) 5kHz	ve ? (3) 50 kHz	(4) 10 k	[Manipal 2005] Hz
27.	If c is the speed of electron and relative permeabilit (1) $v = \frac{1}{\sqrt{\mu_r k}}$	ctromagnetic waves in va y μ_r , is (2) $V = c \sqrt{\mu_r k}$	acuum, its speed v in a r (3) $v = \frac{c}{\sqrt{\mu_r k}}$	v = - (4)	of dielectric constant k [CET 2005] $\frac{k}{\sqrt{\mu_r c}}$
28.	Which one of the follow (1) X-rays	ing is not an electromagn (2) gamma rays	netic waves ? (3) cathode rays	(4) infra	[CET 2005] red rays
29	The dimensions of $\frac{1}{2}$	$_{0}$ \mathbf{F}_{2} (so : permittivity of free	e space: E : electric field) is	[IIT 2000]
-0.	(1) M L T_{-1}	(2) M L ₂ T ₋₂	(3) M L ₋₁ T ₋₂	(4) M L ₂	T_1
30.	The speed of electroma (1) depends upon the si (2) increases as we mo (3) decreases as we mo (4) is same for all of the	ignetic waves in vacuum ource of radiation ve from γ-rays to radiow ove from γ-rays to radiow m	/es vaves		[AIPMT 2004]
31.	If λ_{v} , $\lambda_{\text{x}},$ and λ_{m} represer	nt the wavelengths of visi	ble light, x-rays and micr	owave re	espectively then
	(1) $\lambda_m > \lambda_x > \lambda_v$	(2) $\lambda_v > \lambda_m > \lambda_x$	(3) $\lambda_{u} > \lambda_{x} > \lambda_{m}$	(4) λm >	λ ^ν > λ ^x

32.	The frequency of light v	vave in a material is 2 \times	1014 Hz and wavelength	is 5000 Å	A. The refractive index
	(1) 1.40	(2) 1.50	(3) 3.00	(4) 1.33	
33.	The electric and magne (1) in phase and paralle (2) in opposite phase ar (3) in opposite phase ar (4) in phase and perper	tic fields of an electroma I to each other Ind perpendicular to each Ind parallel to each other Indicular to each other.	gnetic wave are : other	I	[AIPMT 2007]
34.	The velocity of electrom	agnetic radiation in a me	edium of permittivity ϵ_0 ar	nd permea	ability µ₀ is given by : [AIPMT 2008]
	ε		1	μ_0	
	(1) $\sqrt{\frac{1}{\mu_0}}$	(2) $\sqrt{\mu_0 \epsilon_0}$	$(3) \overline{\sqrt{\mu_0 \varepsilon_0}}$	(4) $\sqrt{\varepsilon_0}$	-
35.	Which of the following is (1) 10 ₋₄ cm	s the infra-red wavelengt (2) 10₋₅ cm	h ? (3) 10₋₀ cm	 (4) 10₋⁊ ɗ	[AIIMS 1997] cm
36.	According to maxwell's (1) an e.m.f	hypothesis, a changing e (2) electric current	electric field gives rise to (3) magnetic field	l (4) press	[AIIMS 1998] sure gradiant
37.	Maxwell in his famous e (1) a.c. current (3) displacement curren	equation of electromagne	etism introduced the conc (2) d.c. current (4) impedance	ept of	[AIIMS 2003]
38.	Sodium lamps are used (1) yellow light is scatte (2) yellow light is scatte (3) yellow light is unaffe (4) wavelength of yellow	I in foggy conditions beca red less by the fog partic red more by the fog parti cted during its passage to v light is the mean of the	ause les cles throught the fog visible part of the spectru	l um.	[AIIMS 2003]
39.	The pressure exerted b [c is the velocity of light]	y an electromagnetic wa (2) Lec	ve of intensity I (watt / m	 2) on a no [AIIMS 2 (4) L/ co 	on-reflecting surface is 2005]
40.	An electromagnetic was permittivity $\varepsilon = 4.0$, then (1) wavelength is double (2) wavelength is double (3) wavelength is halved (4) wavelength and freq	(2) $1 C^2$ ive of frequency v = 3. ed and the frequency rer ed and frequency becom d and frequency remains juency both remain unch	0 MHz passes vacuum nains unchanged les half unchanged anged	into a d	ielectric medium with [AIEEE 2004]
41.	The S.I unit of displacer (1) H	ment current is (2) A	(3) Fm ₋₁	(4) C	
42.	The speed of electroma (1) wavelength (3) intensity	gnetic waves is indepen	dent of (2) frequency (4) medium, in which it t	ravels	
43.	Dimension of $\epsilon_0\mu_0$ is : (1) LT ₋₁	(2) L ₋₁ T	(3) L ₂ T ₋₂	(4) L ₋₂ T ₂	2
44.	If ε_0 and μ_0 are the electron corresponding quantities (1) $\sqrt{\frac{\varepsilon_0 \mu}{\varepsilon \mu_0}}$	lectric permittivity and r s in a medium, then inde (2) $\sqrt{\frac{\epsilon}{\epsilon_0}}$	magnetic permeability in ex of refraction of the med (3) $\sqrt{\frac{\epsilon_0 \mu_0}{\epsilon \mu}}$	free spatial free	ace, ε and μ are the $\frac{1}{\mu_0}$
45.	Red light differs from ble (1) speed	ue light while traveling in (2) frequency	vacuum is (3) intensity	(4) ampli	itude

46.	If an electromagnetic was $E = E_0 \sin (kx - \omega t)$; $B =$	ave propagating through = B₀ sin (kx – ωt)	vacuum is described by	following	g then
	(1) $E_0 k = B_0 \omega$	(2) $E_0B_0 = \omega k$	(3) $E_0 \omega = B_0 k$	(4) E₀ B	$B_0 = \omega / k$
47.	Which of the following is (1) k	s independent of waveler (2) ω	ngth? (k = propagation co (3) ωk	ontact, ω (4) k / ω	e = angular frequency)
48.	A magnetic field can be (1) A charge at rest only (2) Time varying electric	produced by / c field	(2) A moving charge on (4) both by (2) and (3)	ly	
49.	An electric charge in un (1) an electric field only (3) both electric and ma	iform motion produces Ignetic field	(2) a magnetic field only (4) no such field at all.	/.	[CPMT 1990, 1983]
50.	Which of the following r (1) alpha rays	adiation form the part of (2) beta rays	electromagnetic spectrur (3) cathode rays	m (4) gam	[C.P.M.T. 92] nma rays
51.	The oscillating electric a	and magnetic field vector	s of electromagnetic way	/e are or	iented along
	 (1) The same direction a (2) The same direction a (3) mutually perpendicut (4) mutually perpendicut 	and in phase but have a phase differer lar direction and are in p lar directions but has a p	nce of 90° hase hase difference of 90°		
52.	Which one of the follow	ing electromagnetic radia	ations have the smallest	wavelen	gth? [CBSE PMT 1994]
	(1) ultraviolet waves	(2) X-rays	(3) γ-rays	(4) mico	prwaves
53.	Which of the following r (1) U.V-rays	ays has minimum freque (2) X-rays	ncy ? (3) micorwaves	(4) infra	[CBSE PMT 1995] a-red-rays
54.	An accelerated electron (1) γ-rays	i would produce (2) β-rays	(3) α-rays	(4) e.m.	[CBSE PMT 1996] . rays
55.	Ozone layer blocks the (1) less than $3 \times 10_{-7}$ m (3) more than $3 \times 10_{-7}$ n	radiation of wavelength : n.	 (2) equal to 3 × 10-7 m. (4) None of these. 		[CBSE 1999]
56.	The frequencies of X-ra	ys, γ-rays and ultraviolt r	ays are respectively a, b	and c. T	Then
	(1) a < b, b > c	(2) a > b, b > c	(3) a > b, b < c	(4) a <	b, b < c.
57.	When light travels from (1) wavelength	air to water, which parar (2) frequency	neter does not change ? (3) velocity	[CPMT (4) all o	1999, DPMT 2000] f these
58.	The velocity of light in v (1) frequency	acuum can be changed l (2) amplitude	by changing (3) wavelength	(4) non	[AFMC 2000] e of these.
59.	Which of the following s (1) Ultra-violet rays hav (2) Infra-red rays travel (3) Infra-red can be focu (4) Infra-red rays have r	tatement is wrong e a wavelength longer th with the same velocity as ussed by a lens and can more heating power than	an infra-red rays. s visible light. be reflected by a mirror j visible light rays	ust as vi	[NCERT 1976] sible light
60.	In an electromagnetic w energy flow is (1) 26.5W/m ₂	ave, the electric and mag (2) 36.5W/m ₂	netic fields are 100 Vm ₋₁ [Pb. Pf] (3) 46.7 Wm ₂	and 0.2 MT 1998 (4) 765	65 Am ₋₁ . The maximum , 1997] W/m ²
61.	In an apparatus, the ele oscillating magnetic field (1) $4 \times 10_{-6} T$	ctric field was found to os d will be (2) 6 × 10₋ଃ T	scillate with an amlitude o (3) 9 × 10-9 T	of 18 V/m [Pb. PN (4) 11 ×	n. The magnitude of the /T 1999] ‹ 10 ₋₁₁ T

62.	If a source is transmitting magnetic waves transm (1) 36.6 m	g electromagnetic wave c itted from the source will (2) 40.5 m	of frequency 8.2 × 10₀ Hz be (3) 42.3 m	, then wa [DPMT (4) 50.9	avelength of the electro- 1999]) m
63.	There are three waveler (1) Radiowaves, X-rays (3) X-rays, γ-rays, Visibl	ngth 10 ^{,7} m, 10 ₋₁₀ m, 10 ₋₇ , visible rays le rays	 m. Find their respective (2) X-rays, Visible rays, (4) Visible rays, γ-rays, 	names Radio w X-rays	[PMT 2001] vaves
64.	Which of the following h (1) radio wave	as the minimum frequen (2) micro wave	cy ? (3) audible wave	(4) ultra	[CET 2001] asonic wave
65.	Electromagnetic radiation (1) Infrared radiations	on of highest frequency is (2) Visible radiations	s (3) Radiowaves	(4) γ-ray	[PMT 2002] ys
66.	Which is having minimu (1) X-rays	m wavelength : (2) Ultraviolet rays	(3) γ-rays	(4) cosr	[PMT 2002] mic rays
67.	The range of wavelengt (1) 10 Å to 100 Å	h of visible light is (2) 4000 Å to 8000 Å	(3) 8000 Å to 10,000 Å	(4) 10,0	[PET 2002] 000 Å to 15, 000 Å
68.	The fact that radiosigna	Is reach the earth from o	utside the atmosphere, v	vas disco	overd accidently by
	(1) K.G. Jansky	(2) Millikan	(3) Aryabhatta	(4) Prof	. Kanu
69.	Which of the following s (1) Velocity of light is co (2) Velocity of light in va (3) Velocity of light is sa (4) Laws of nature have	tatement is true ? Instant in all media Icuum is maximum Ime in all reference frame identical form in all refer	es rence frames		[ORISSA JEE 2002]
70.	The ozone layer absorb (1) Infrared radiations	s (2) ultraviolet radiations	(3) X-rays	(4) γ-ra	[PET 2002] ys
71.	A microwave and an ultr	asonic sound wave have	e the same wavelength. T	heir freo	uencies are in the ratio
	(approximately) (1) 10 ₆ : 1	(2) 104 : 1	(3) 102 : 1	[PET 2 (4) 10 :	002] 1
72.	 (approximately) (1) 10₆ : 1 The electromagnetic was (1) equal to the velocity (3) less than velocity of 	 (2) 10₄ : 1 aves travel with a velocity of light light 	 (3) 10² : 1 (2) equal to velocity of s (4) none of these 	[PET 2 ((4) 10 :	002] 1 [J & K CET 2002]
72. 73.	 (approximately) (1) 10₆ : 1 The electromagnetic was (1) equal to the velocity (3) less than velocity of A capacitor is having a element of the velocity 	 (2) 10₄ : 1 aves travel with a velocity of light light capacity of 2pF. Electric 	 (3) 10² : 1 (2) equal to velocity of s (4) none of these field across the capacito 	[PET 20 (4) 10 : cound r is chan	002] 1 [J & K CET 2002] ging with a value of
72. 73.	(approximately) (1) 10_6 : 1 The electromagnetic wa (1) equal to the velocity (3) less than velocity of A capacitor is having a 10_{12} V/s. The displacement (1) 2 A	 (2) 10₄ : 1 aves travel with a velocity of light light capacity of 2pF. Electric tent current is (2) 3 A 	 (3) 10² : 1 (2) equal to velocity of s (4) none of these field across the capacito (3) 6 A 	[PET 20 (4) 10 : sound r is chan (4) 9 A	002] 1 [J & K CET 2002] ging with a value of [DPMT 2002]
72. 73. 74.	(approximately) (1) 10_6 : 1 The electromagnetic wa (1) equal to the velocity (3) less than velocity of A capacitor is having a c 10_{12} V/s. The displacement (1) 2 A In a certain region of species of electron enters in region of electron is : $ \vec{E_1} $	 (2) 10₄ : 1 aves travel with a velocity of light light capacity of 2pF. Electric feat current is (2) 3 A ace electric field E and r ace perpendicular to the dimensional sectors of the dimensional sect	(3) 10_2 : 1 (2) equal to velocity of s (4) none of these field across the capacito (3) 6 A magnetic field \overrightarrow{B} are performed rection of and \overrightarrow{E} both m	(4) 10 : cound r is chan (4) 9 A coendicula oves un [AIPMT	1 [J & K CET 2002] ging with a value of [DPMT 2002] ar to each other and an deflected, then velocity 2001]
72. 73. 74.	(approximately) (1) 10_6 : 1 The electromagnetic wa (1) equal to the velocity (3) less than velocity of A capacitor is having a of 10_{12} V/s. The displacement (1) 2 A In a certain region of species of electron enters in region of electron is : $ \vec{E} $ (1) $ B $	(2) 10_4 : 1 aves travel with a velocity of light light capacity of 2pF. Electric ent current is (2) 3 A ace electric field \vec{E} and r n perpendicular to the dia (2) $\vec{E} \times \vec{B}$	(3) $10_2 : 1$ (2) equal to velocity of s (4) none of these field across the capacito (3) 6 A magnetic field \overrightarrow{B} are perprection of and \overrightarrow{E} both m $ \overrightarrow{B} $ (3) $ \overrightarrow{E} $	[PET 20 (4) 10 : sound r is chan (4) 9 A coendicula oves un [AIPMT (4) Ē.	1 [J & K CET 2002] ging with a value of [DPMT 2002] ar to each other and an deflected, then velocity 2001] B
72. 73. 74. 75.	(approximately) (1) 10_6 : 1 The electromagnetic wa (1) equal to the velocity (3) less than velocity of A capacitor is having a 10_{12} V/s. The displacement (1) 2 A In a certain region of species electron enters in region of electron is : $ \vec{E} $ (1) $ \vec{B} $ What is the cause of "G (1) Infrared rays	(2) 10_4 : 1 aves travel with a velocity of light light capacity of 2pF. Electric ent current is (2) 3 A ace electric field \vec{E} and r n perpendicular to the dir (2) $\vec{E} \times \vec{B}$ reen house effect" ? (2) Ultraviolet rays	(3) $10_2 : 1$ (2) equal to velocity of s (4) none of these field across the capacito (3) 6 A magnetic field \overrightarrow{B} are performed rection of and \overrightarrow{E} both m (\overrightarrow{B}) (3) X-rays	[PET 20 (4) 10 : sound r is chan (4) 9 A coendicula oves una [AIPMT (4) Ē. (4) Rad	J J [J & K CET 2002] ging with a value of [DPMT 2002] ar to each other and an deflected, then velocity 2001] B [AIPMT 2002] iowaves
72. 73. 74. 75. 76.	(approximately) (1) 10_6 : 1 The electromagnetic way (1) equal to the velocity (3) less than velocity of A capacitor is having a of 10_{12} V/s. The displacement (1) 2 A In a certain region of species electron enters in region of electron is : E (1) $ B $ What is the cause of "G (1) Infrared rays The velocity of electrom (1) $ B \times E$	(2) $10_4 : 1$ aves travel with a velocity of light light capacity of 2pF. Electric ent current is (2) 3 A ace electric field \vec{E} and r n perpendicular to the difference (2) $\vec{E} \times \vec{B}$ reen house effect" ? (2) Ultraviolet rays agnetic wave is paralled (2) $\vec{E} \times \vec{B}$	(3) $10_2 : 1$ (2) equal to velocity of s (4) none of these field across the capacito (3) 6 A magnetic field \overrightarrow{B} are performed rection of and \overrightarrow{E} both m $\overrightarrow{ B }$ (3) X-rays to (3) \overrightarrow{E}	$\begin{bmatrix} \mathbf{PET} & 20 \\ (4) & 10 \\ \vdots \\ \mathbf{cound} \\ \mathbf{r} \text{ is chan} \\ (4) & 9 \\ \mathbf{A} \\ \mathbf{condicula} \\ \mathbf{condicular} \\ condi$	D02] 1 [J & K CET 2002] ging with a value of [DPMT 2002] ar to each other and an deflected, then velocity 2001] B [AIPMT 2002] iowaves [AIPMT 2002]
 72. 73. 74. 75. 76. 77. 	(approximately) (1) 10_6 : 1 The electromagnetic war (1) equal to the velocity (3) less than velocity of A capacitor is having a construction (1) $2 A$ In a certain region of species electron enters in region of electron is : $ \vec{E} $ (1) $ B $ What is the cause of "G (1) Infrared rays The velocity of electrom (1) $B \times E$ Which of the following ray (1) X-rays	(2) $10_4 : 1$ aves travel with a velocity of light light capacity of 2pF. Electric ent current is (2) 3 A ace electric field \vec{E} and r in perpendicular to the difference (2) $\vec{E} \times \vec{B}$ reen house effect" ? (2) Ultraviolet rays agnetic wave is paralled (2) $\vec{E} \times \vec{B}$ ays are not electromagne (2) γ -rays	(3) $10_2 : 1$ (2) equal to velocity of s (4) none of these field across the capacito (3) 6 A magnetic field \overrightarrow{B} are performed rection of and \overrightarrow{E} both m $\overrightarrow{ B }$ (3) X-rays to (3) \overrightarrow{E} etic wave ? (3) β -rays	$\begin{bmatrix} \mathbf{PET} & 2\mathbf{i} \\ (4) & 10 \\ \vdots \\ \mathbf{cound} \\ \mathbf{r} \text{ is chan} \\ (4) & 9 \\ \mathbf{A} \\ \mathbf{condicula} \\ \mathbf{condicular} \\ condi$	D02] 1 [J & K CET 2002] ging with a value of [DPMT 2002] ar to each other and an deflected, then velocity 2001] B [AIPMT 2002] iowaves [AIPMT 2002] trays

79.	Infrared radiation is de (1) spectrometer	etected by (2) pyrometer	(3) nanometer	[AIEEE 2002] (4) photometer
	1			
80.	Dimensions of $\mu_0 \in_0$ (1) [L ₋₁ T]	, where symbols have (2) [L ₋₂ T ₂]	e their usual meanings, are (3) [L₂ T₋₂]	[AIEEE 2003] (4) [L T ₋₁]
81.	Which of the following (1) γ-rays	radiation has the lea (2) β-rays	ast wavelength ? (3) α-rays	[AIEEE 2003] (4) X-rays
82.	Which of the following (1) Cathode rays (3) Sound waves	required no medium	for propagation ? (2) Electromagnetic ra (4) None of these	[RPMT-2001] ys
	Exercise	-2		

ONLY ONE OPTION CORRECT TYPE

1. A uniform but time varying magnetic field B (t) exists in a circular region of radius a it is directed into the plane of the paper as shown. The magnitude of the induced electric field at point P at a distance r from the centre of the circular region.

- (3) Infrared rays are invisible but make shadow like visible light
- (4) As compared to visible light photon, infrared photon has more energy.
- The E and B vectors associated with an electromagnetic wave are : 8.
 - (1) parallel to each other and are in the same phase
 - (2) parallel to each other and are opposite in phase
 - (3) perpendicular to each other and are opposite in phase
 - (4) perpendicular to each other and are in phase
- The electric vector of an electromagnetic wave in vacuum is represented by $\vec{E} = 6.3 \hat{j} V / m$. The frequency 9. of the wave is 20 MHz and it is propagating along the positive z-direction. At this point magnetic vector is [RPMT-2014]

(1) −2.1 × 10_{−8} ^î T (2) +2.1 × 10₋₈ \hat{i} T (3) + 4.0 × 10₋₈ \hat{i} T (4) –18.9 × 10_{−8} ⁱ T

10. An electromagnetic radiation of frequency v, wavelength λ , travelling with velocity c in air, enters a glass slab of refractive index µ. The frequency, wavelength and velocity of light in the glass slab will be respectively :

(3) v. $\mu\lambda$ and μ

ν λ (1) μ , μ and μ

(2) v^{μ} and $\bar{\mu}$

Exercise-3

С

PART - I : NEET / AIPMT QUESTION (PREVIOUS YEARS)

1. The electric field of an electromagnetic wave in a medium is represented by $E_x = 0$:

$$\mathsf{E}_{\mathsf{v}} = \frac{2.5 \frac{\mathsf{N}}{\mathsf{C}} \mathsf{cos} \left[\left(2\pi \times 10^6 \frac{\mathsf{rad}}{\mathsf{s}} \right) \mathsf{t} - \left(\pi \times 10^{-2} \frac{\mathsf{rad}}{\mathsf{m}} \right) \mathsf{x} \right]$$

 $E_z = 0$. The wave is :

[AIPMT 2009]

(4) μ , μ and c

[RPMT-2011]

(1) moving along y direction with frequency $2\pi \times 10_6$ Hz and wavelength 200 m.

- (2) moving along x direction with frequency 106 Hz and wavelength 100m
- (3) moving along x direction with frequency 10_6 Hz and wavelength 200m
- (4) moving along -x direction with frequency 106 Hz and wavelength 200m
- 2. Which of the following statement is false for the properties of electromagnetic waves? [AIPMT 2010]
 - (1) Both electric and magnetic field vectors attain the maxima minima at the same place and same time.
 - (2) The energy in electromagnetic wave is divided equally between electric and magnetic vectors.
 - (3) Both electric and magnetic field vectors are parallel to each other perpendicular to the direction of propagation of wave.
 - (4) These waves do not require any material medium for propagation.
- The electric field of an electromagnetic wave in free space is given by $\vec{E} = 10\cos(10^7 t + kx)\hat{j}$ V/m, where 3. t and x are in seconds and metres respectively. It can be inferred that [AIPMT 2010 (mains)] (i) the wavelength λ is 188.4 m. (ii) the wave number k is 0.33 rad/m (iii) the wave amplitude is 10 V/m (iv) the wave is propagating along +x direction Which one of the following pairs of statements is correct ? (2) (i) and (ii) (3) (ii) and (iii) (4) (i) and (iii) (1) (iii) and (iv) The electric field associated with an e.m. wave in vacuum is given by $E = \hat{i} 40 \cos (kz - 6 \times 10_{\circ} t)$, where 4. E, z and t are in volt/m, meter and seconds respectively. The value of wave vector k is : [EMW AIPMT Pre 2012] (2) 0.5 m₋₁ (3) 6 m₋₁ (1) 2 m₋₁ (4) 3 m-1 5. The ratio of amplitude of magnetic field to the amplitude of electric field for an electromagnetic wave
- propagating in vacuum is equal to : [AIPMT 2012 (Mains)] (1) the speed of light in vacuum

6.	 (2) reciprocal of speed (3) the ratio of magnet (4) unity The condition under we efficiently is : (1) The frequency of th (2) Microwaves are he (3) Infra-red waves pro- (4) The frequency of th 	of light in vacuum ic permeability to the elect which a microwave oven ne microwaves has no rel at waves, so always proc oduce heating in a microw ne microwaves must mate	ctric susceptibility of vacu heats up a food items c ation with natural freque luce heating. vave oven. ch the resonant frequenc	uum containing water molecules most [NEET-2013] ncy of water molecules. cy of the water molecules.
7.	Out of the following op	tions which one can be u	sed to produce a propag	gating electromagnetic wave ?
	(1) An accelerating cha(3) A stationary charge	arge	(2) A charge moving at (4) A chargeless partic	t constant velocity le
8.	In an electromagnetic The peak value of the (1) 1.41 ×10 ⁻⁸ T	wave in free space the ro magnetic field is : (2) 2.83 ×10 ⁻⁸ T	oot mean square value o (3) 0.70 ×10 ⁻⁸ T	f the electric field is E _{rms} = 6V/m. [NEET 2017] (4) 4.23 ×10 ⁻⁸ T
9.	An em wave is propag field of this em wave is be along (1) – z direction	ating in a medium with a along +y axis. Then the (2) – x direction	a velocity $\vec{V} = V\hat{i}$. The i direction of oscillating m (3) – y direction	instantaneous oscillating electric nagnetic field of the em wave will [NEET 2018] (4) + z direction
10.	Which colour of the lig (1) violet	ht has the longest wavele (2) red	ength? (3) blue	[NEET 2019-I] (4) green
11.	A parallel plate capaci changing at the rate of current through the pla (1) zero, zero	tor of capacitance 20 μF 3 V/s. The conduction cu ites of the capacitor, wou (2) zero, 60 μA	is being charged by a v rrent through the connec ld be, respectively: (3) 60 μA, 60 μA	oltage source whose potential is cting wires, and the displacement [NEET 2019-I] (4) 60 µA, zero
12.	For a transparent med The velocity of light in (1) 2.5×10^8	ium, relative permeability this medium would be : (2) 3 × 10 ⁸	and permittivity, μ r and (3) 2.08 × 10 ⁸ m/s	∈r are 1.0 and 1.44 respectively. [NEET 2019-II] (4) 4.32 × 10 ⁸ m/s
	PART - II : JEE	(MAIN) / AIEEE P	ROBLEMS (PRE	EVIOUS YEARS)

- 1. An electromagnetic wave in vacuum has the electric and magnetic field \vec{E} and \vec{B} , which are always perpendicular to each other. The direction of polarization is given by \vec{X} and that of wave propagation by
 - kThen(1) $\vec{X} \parallel \vec{B}$ and $\vec{k} \parallel \vec{E} \times \vec{B}$ (2) $\vec{X} \parallel \vec{E}$ and $\vec{k} \parallel \vec{E} \times \vec{B}$ [AIEEE 2012, 4. 1](3) $\vec{X} \parallel \vec{B}$ and $\vec{k} \parallel \vec{E} \times \vec{B}$ (4) $\vec{X} \parallel \vec{E}$ and $\vec{k} \parallel \vec{B} \times \vec{E}$ [AIEEE 2012, 4. 1]

2. The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of electric field strength is : [JEE-MAIN 2013] (1) 3 V/m
(2) 6 V/m
(3) 9 V/m
(4) 12 V/m

- 3. During the propagation of electromagnetic waves in a medium :
 - (1) Electric energy density is double of the magnetic energy density.

[JEE-Mains 2014]

- (2) Electric energy density is half of the magnetic energy density.
- (3) Electric energy density is equal to the magnetic energy density.
- (4) Both electric and magnetic energy densities are zero.

4. Match List-I (Electromagnetic wave type) with List-II (Its association/application) and select the correct option from the choices given below the lists : [JEE-Mains 2014]

	List-I		List-II	
(a)	Infrared waves	(i)	To treat muscular strain	
(b)	Radio waves	(ii)	For broadcasting	
(C)	X-rays	(iii)	To detect fractureof bones	
			Absorbed by the ozone layer	
(d)	Ultraviolet	(iv)	of the atmosphere	
	(a)		(b) (c)	(d)
(1)	(iv)		(iii) (ii)	(i)
(2)	(i)		(ii) (iv)	(iii)
(3)	(iii)		(ii) (i)	(iv)
(4)	(i)		(ii) (iii)	(iv)

A red LED emits light at 0.1 watt uniformly around it. The amplitude of the electric field of the light at a distance of 1 m from the diode is :

 (1) 1.73 V/m
 (2) 2.45 V/m
 (3) 5.48 V/m
 (4) 7.75 V/m

Arrange the following electromagnetic radiations per quantum in the order of increasing energy :

 A : Blue light
 B : Yellow light
 C : X-ray
 D : Radiowave
 A, B, D, C
 C, C, A, B, D
 C, C, A, B, C

7. An EM wave from air enters a medium. The electric fields are $\vec{E}_1 = E_{01}\hat{x}\cos\left[2\pi v\left(\frac{z}{c}-t\right)\right]$ in air and $\vec{E}_2 = E_{02}\hat{x}\cos[k(2z-ct)]$ in medium, where the wave number k and frequency v refer to their values in air.

The medium is non-magnetic. If ϵ_{r_1} and ϵ_{r_2} refer to relative permittivities of air and medium respectively, which of the following options is correct ? [JEE-Main-2018]

$$\frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = \frac{1}{4} \qquad \qquad (2) \quad \frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = \frac{1}{2} \qquad \qquad (3) \quad \frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = 4 \qquad \qquad \frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = 2$$

8. The energy associated with electric field is (U_E) and with magnetic field is (U_B) for an electromagnetic wave in free space. Then : [JEE-Main-2019]

9. If the magnetic field of a plane electromagnetic wave is given by (The speed of light =3 x 10⁸ m/s)

$$B=100 \times 10^{-6} \sin \left[2\pi \times 2 \times 10^{15} \left(t - \frac{x}{c} \right) \right]$$
then the maximum electric field associated with it is **[JEE-Main-2019]**
(1) 4.5x 10⁴ N/C (2) 4x 10⁴ N/C (3) 6x 10⁴ N/C (4) 3 x 10⁴ N/C
An amplitude modulated signal is given by V(t) = 10 [1+ 0.3 cos (2.2 x 10⁴t) sin (5.5 x 10⁵t)]. Here t is in

- seconds. The sideband frequencies (in kHz) are, [Given $\pi = 22/7$] [JEE-Main-2019] (1) 892.5 and 857.5 (2) 89.25 and 85.75 (3) 1785 and 1715 (4) 178.5 and 171.5
- 11. An electromagnetic wave of intensity 50 Wm⁻² enters in a medium of refractive index 'n' without any loss. The ratio of the magnitudes of electric fields, and the ratio of the magnitudes of magnetic field of the wave before and after entering into the medium are respectively, given by : [JEE-Main-2019]

(1) $\left(\sqrt{n},\sqrt{n}\right)$	(2) $\left(\frac{1}{\sqrt{n}}, \sqrt{n}\right)$	(3) $\left(\sqrt{n}, \frac{1}{\sqrt{n}}\right)$	(4) $\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)$
()		()	()

	Ar	ISN	<i>iers</i>										
						EXER	CISE	# 1					
1.	(2)	2.	(3)	3.	(3)	4.	(3)	5.	(4)	6.	(4)	7.	(2)
8.	(1)	9.	(1)	10.	(3)	11.	(1)	12.	(3)	13.	(3)	14.	(3)
15.	(2)	16.	(1)	17.	(3)	18.	(3)	19.	(1)	20.	(4)	21.	(3)
22.	(1)	23.	(1)	24.	(4)	25.	(3)	26.	(3)	27.	(3)	28.	(3)
29.	(3)	30.	(4)	31.	(4)	32.	(3)	33.	(4)	34.	(3)	35.	(1)
36.	(3)	37.	(3)	38.	(1)	39.	(3)	40.	(3)	41.	(2)	42.	(3)
43.	(4)	44.	(4)	45.	(2)	46.	(1)	47.	(4)	48.	(4)	49.	(3)
50.	(4)	51.	(3)	52.	(3)	53.	(3)	54.	(4)	55.	(1)	56.	(1)
57.	(2)	58.	(4)	59.	(1)	60.	(1)	61.	(2)	62.	(1)	63.	(1)
64.	(3)	65.	(4)	66.	(4)	67.	(2)	68.	(1)	69.	(2)	70.	(2)
71.	(1)	72.	(1)	73.	(1)	74.	(1)	75.	(1)	76.	(2)	77.	(3)
78.	(4)	79.	(2)	80.	(3)	81.	(1)	82.	(2)				
						EXER	CISE	#2					
1.	(2)	2.	(4)	3.	(4)	4.	(3)	5.	(3)	6.	(1)	7.	(4)
8.	(4)	9.	(1)	10.	(2)								
						EXER	CISE	#3					
						PA	RT – I						
1.	(3)	2.	(3)	3.	(4)	4.	(1)	5.	(2)	6.	(4)	7.	(1)
8.	(2) 9.	(4)	10.	(2)	11.	(3)	12.	(1)					
						ΡΑ	RT – II						
1.	(2)	2.	(2)	3.	(3)	4.	(4)	5.	(2)	6.	(4)	7.	(1)
8.	(4)	9.	(4)	10.	(2)	11.	(3)						

٠